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Abstract

Intuitively, the appearance of true object boundaries
varies from image to image. Hence the usual monolithic
approach of training a single boundary predictor and ap-
plying it to all images regardless of their content is bound
to be suboptimal. In this paper we therefore propose situ-
ational object boundary detection: We first define a variety
of situations and train a specialized object boundary detec-
tor for each of them using [10]. Then given a test image,
we classify it into these situations using its context, which
we model by global image appearance. We apply the cor-
responding situational object boundary detectors, and fuse
them based on the classification probabilities. In experi-
ments on ImageNet [35], Microsoft COCO [24], and Pascal
VOC 2012 segmentation [13] we show that our situational
object boundary detection gives significant improvements
over a monolithic approach. Additionally, our method sub-
stantially outperforms [17] on semantic contour detection
on their SBD dataset.

1. Introduction
Most methods for object boundary detection are mono-

lithic and use a single predictor to predict all object bound-
aries in an image [2, 10, 23] regardless of the image con-
tent. But intuitively, the appearance of object boundaries
is dependent on what is depicted in the image. For exam-
ple, black-white transitions are often good indicators of ob-
ject boundaries, unless the image depicts a zebra as in Fig-
ure 1. Outdoors, the sun may cast shadows which create
strong contrasts that are not object boundaries, while similar
colour contrasts in an indoor environment with diffuse light-
ing may be caused by object boundaries. Furthermore, not
all objects are equally important in all circumstances: one
may want to detect the boundary between a snowy moun-
tain and the sky in images of winter holidays, while ignoring
sky-cloud transitions in images depicting air balloons, even
though such boundaries may be visually very similar. These
examples show that one cannot expect a monolithic predic-
tor to accurately predict object boundaries in all situations.

In this work we recognize the need for different object
boundary detectors in different situations: first we define a
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Figure 1. Monolithic vs situational object boundary detection.
Black-white transitions indicate an object boundary for the snow-
board, but are false object boundaries for a zebra. This ambiguity
cannot be resolved by a monolithic detector. In contrast, by train-
ing class specific object boundary detectors and classifying the
image as a zebra, we correctly ignore most of the stripes.

set of situations and pre-train object boundary detectors for
each of them. For a test image, we classify which situations
the image depicts based on its context, modelled by global
image appearance. Then we apply the appropriate set of ob-
ject boundary detectors. Hence conditioned on the situation
of an image we choose which object boundary detectors to
run. We call this Situational Object Boundary Detection.

One important question is how to define such situations.
Since the appearance of object boundaries are for a large
part dependent on the object class, one natural choice is to
use each object class as a single situation. This results in
class specific object boundary detectors, which can deal for
example with the zebra in Figure 1. However, object bound-
aries are also determined by the object pose and the back-
ground or context of the image. Since this can vary within
a single object class, we propose to cluster images of a sin-
gle class into subclasses based on global image appearance.
This leads to subclass specific object boundary detectors.
Finally, one can imagine that the context of the image it-
self determines what kind of object boundaries to expect.
For example, one can expect cow-grass boundaries in the
countryside and street-car boundaries in the city. Therefore
we cluster images based on their global image appearance,
which results in class agnostic object boundary detectors.



Hence we experiment with three types of situations: class
specific, subclass specific, and class agnostic.

Obviously, situational object boundary detection re-
quires more training data than a monolithic approach.
Therefore we cannot use the standard BSD500 [2] dataset of
500 images for our evaluation. Instead, we evaluate on three
larger datasets: Pascal VOC 2012 segmentation [13], Mi-
crosoft COCO [24], and part of ImageNet [35]. Microsoft
COCO is two orders of magnitude larger than BSD500. For
ImageNet we train from segments which are created in a
semi-supervised fashion by Guillaumin et al. [16].

Additionally, our class-specific situational object bound-
ary detectors can also be applied to semantic contour de-
tection, the task of predicting class-specific object bound-
aries [17]. We compare with [17] on their SBD dataset.

2. Related Work
Manually defined predictors. Early work on object
boundary detection aimed to manually define local filters
to generate edges from an image. In these works, convolu-
tional derivative filters are applied to find local image gra-
dients [12, 32, 34] and their local maximum [6, 28].

Trained predictors. But object boundaries arise from a
complex combination of local cues. Therefore more recent
techniques resort to machine learning and datasets with an-
notated object boundaries: Martin et al. [29] compute local
brightness, colour, and texture cues, which they combine
using a logistic model. Both Mairal et al. [27] and Prasad
et al. [31] use RGB-features from local patches centred on
edges found by the canny edge detector [6], which they clas-
sify as true or false positives. Dollár et al. [9] use boosted
decision trees to predict if the centre label of an image patch
is an object boundary or not. Lim et al. [23] use Random
Forests [5] to predict sketch tokens, which are object bound-
ary patches generated by k-means clustering. Dollár and
Zitnick [10] proposed structured random forests, which use
object boundary patches as structured output labels inside
a random forest. Their method is extremely fast and yields
state-of-the-art results. We build on [10] in our paper.

Domain specific predictors. Some works that use ma-
chine learning to predict object boundaries observed that
this enables tuning detectors to specific domains. Dollár et
al. [9] showed qualitative examples of domain-specific de-
tectors for finding mouse boundaries in a laboratory setting
and detecting streets in aerial images. Both [27] and [31]
used class-specific object boundary detectors for boundary-
based object classification. Whereas in all these cases
the domain was predefined, in this work we automatically
choose which object boundary detector to apply at runtime.

Semantic contour detection. Like [27] and [31], Hariha-
ran et al. [17] addressed class-specific object boundary de-
tection. They call this ‘semantic contour detection’ and cre-

ate the SBD benchmark to directly evaluate this task. Their
method combines a monolithic object boundary detector
(gPb [2]) with object class detectors (Poselets [4]). Since
the class-specific version of our situational object boundary
detection can readily be applied to semantic contour detec-
tion, we compare to [17] in Section 4.4.

Globally constrained predictors. Instead of predicting
boundaries only at a local level, Arbeláez et al. [2] cast
the problem into a global optimization framework capturing
non-local properties in the spirit of Normalized Cuts [36].
In this paper we use the global image appearance to deter-
mine the set of local object boundary predictors to use. In
this sense, the global appearance of the image restricts our
algorithm to a limited set of expected object boundaries.

Contextual guidance. Context, as modelled by global
image appearance, has been successfully used to guide a va-
riety of computer vision tasks. Torralba et al. [38] showed
that global image features effectively constrain both the ob-
ject class and its location, which is frequently used in object
localisation (e.g. [13, 14, 18]). Boix et al. [3] do semantic
segmentation by region prediction, where the global image
appearance enforces a consistency potential in their hier-
archical CRF. Liu et al. [25] perform semantic segmenta-
tion through label transfer. Given a test image, they retrieve
nearest neighbours from a pixel-wise annotated dataset us-
ing global image appearance. After region alignment, they
transfer labels to the test image. In this paper we use con-
text modelled by global image features to select those object
boundary detectors that correspond to the situation depicted
in the image.

3. Method
3.1. Situational Object Boundary Detection

Our main idea is visualized in Figure 2. For each specific
situation, one can train a specialized object boundary detec-
tor. Given a test image, one then only needs to apply those
boundary detectors which best fit its situation. Intuitively,
the global image appearance can help distinguish the local
appearance of true object boundaries from edges caused by
other phenomena.

Formally, let D = {D1, . . . , Dk} be a set of k trained
object boundary detectors for a corresponding set of k sit-
uations S = {S1, . . . , Sk}. Applying the j-th detector Dj

to image I gives the boundary prediction Dj(I). We write
the probability that image I corresponds to situation Sj as
P (Sj |I), which we obtain using global image classification
as explained in section 3.3. Now we get the final object
boundary prediction D(I) by:

D(I) =

k∑
j=1

P (Sj |I) ·Dj(I) (1)
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Figure 2. Overview of situational object boundary detection. For
each situation there is a specialised boundary detector D̂j which
we apply by D̂j(I). The specialised predictions vary greatly and
are combined into a final prediction using Equation (2).

Of course, we do not need to apply all object boundary de-
tectors to the image since P (Sj |I) is likely to be small for
most situations j. To reduce computational costs we take
the top few n� k situations for which P (Sj |I) is highest.
Formally, let Ŝ = {Ŝ1, . . . , Ŝk} be an ordered set for a spe-
cific image I such that P (Ŝi|I) > P (Ŝj |I) for all i < j.
Let D̂ be the set of boundary detectors corresponding to Ŝ.
Then the final object boundary prediction is obtained by:

D(I) =
1

Z

n∑
j=1

P (Ŝj |I) · D̂j(I) (2)

where Z =
∑n

j=1 P (Ŝj |I) is a normalizing factor ensuring
that the values of the predicted boundaries are comparable
for different n and across images.

We have two choices for n: either we fix n or we take
n such that Z > m for a specific probability mass m. We
determine the best solution experimentally in section 4.1.

3.2. Situations

For situational object boundary detection to work, the
key is to define proper situations. We propose three ways to
define our situations as visualised in Figure 3: class specific,
subclass specific, and class agnostic.
Class specific. As the term already says itself, object
boundaries are caused by the presence of an object. A logi-
cal way to define a situation is therefore to use class specific
situations, leading to class specific boundary detection. We
use class labels from the dataset to obtain these situations.

Class specific situations constrain the appearance of ob-
ject boundaries in two ways. Most importantly, instances
of the same class tend to have similar appearance: in Fig-
ure 3a the boundaries of a baboon are all a specific type of
fur, while air balloons have a characteristic oval shape. Sec-
ond, objects often occur in similar contexts: killer-whales
are mostly in the water while balloons are often in the air.
If both the context and object class is the same, there is lit-
tle variation in the appearance of object boundaries and one

can learn an object boundary detector which is sensitive to
these specific object boundaries.

Subclass specific. For some classes, its instances are de-
picted in a variety of contexts, poses, and from a variety
of viewpoints, which can significantly influence the ap-
pearance of the object boundaries. Take for example the
killer-whale in Figure 3b. Photographed in the wild the
object boundaries are only caused by water-whale transi-
tions, while in a whale-show object boundaries can also be
caused by crowd-whale transitions. Furthermore, spurious
edges caused by the crowd should not yield object bound-
aries here. Additionally, a viewpoint from within the water
or from above the water causes the object boundaries to be
very different due to colour changes and absence/presence
of foaming water or waves. Pose may also affect object
boundary appearance: a sleeping, curled-up cat has much
smoother boundaries than a playing cat.

We create subclass specific situations by taking all im-
ages of a certain class, model their global image appearance
as described in Section 3.3, and apply k-means clustering.

Class agnostic. Finally, the appearance of object bound-
aries may be more influenced by context than by the object
class itself. For example, as visualised in Figure 3c, pho-
tographs taken through a fence yield spurious edges which
are not object boundaries. Detecting such situation allows
for using an object boundary detector which ignores edges
from this fence. Furthermore, various object classes occur
in similar contexts and share characteristics. Indeed, the
second row shows furry animals in a forest environment,
giving rise to a similar appearance of object boundaries.

Therefore the last situation type we consider is class ag-
nostic. We ignore all class labels and cluster all images of
the training set using k-means on global image appearance.
As shown in Figure 3c, this leads to clusters of objects in
similar contexts, some with predominantly instances of a
single class.

3.3. Image Classification

For each situation Sj ∈ S we need to predict P (Sj |I).
We do this using either Bag of Visual Words [8, 37] or Con-
volutional Neural Net (CNN) features [21].

Bag of Visual Words. We extract SIFT descriptors [26]
of 16 × 16 pixels on a dense regular grid [20] at every 4
pixels using [39]. We use PCA to reduce SIFT to 84 dimen-
sions. We train a GMM with diagonal covariance of 64 clus-
ters. We then create Fisher Vectors following [30]: we use
derivatives only with respect to the means and standard de-
viations of the GMM. Vectors are normalized by taking the
square root while keeping the sign, followed by L2 norm.
We use a spatial partitioning [22] using the whole image
and a division into three horizontal regions (e.g. [39]). The
final Fisher representation has 43008 dimensions.



(a) Class specific (b) Subclass specific (c) Class agnostic
Figure 3. Visualisation for the three types of situations used in this paper. Each row per subfigure depicts three example images of a single
situation on ImageNet (Section 4.1). Figure 3a shows class specific situations, where each situation is a single object class. Figure 3b show
subclass specific situations, beneficial for classes with significant context or pose variation such as the killer-whale. Finally, Figure 3c
shows class agnostic situations, which results in contextually similar clusters, some containing predominantly images of a single class.

CNN features. We use the publicly available software for
deep Neural Networks of Jia et al. [19]. Instead of train-
ing a specialized network for each dataset, we choose the
more flexible option of using a pre-trained network, remov-
ing the final classification layer, and using the last layer as
global image appearance features. This was shown to yield
excellent features by e.g. [11, 15, 33].

In particular, we use the pre-trained network modelled
after Krizhevsky [21] that comes with [19], trained on the
training set of the ILSVRC classification task [35]. This
network takes as input RGB images rescaled to 227 × 227
pixels. It consists of five convolutional layers, two fully
connected layers, and a final classification layer which we
discard. Hence we use the outputs of the 7-th layer as CNN
features, yielding features of 4096 dimensions.

Classification. For both the Fisher Vectors and CNN fea-
tures, we train linear SVMs with Stochastic Gradient De-
scent using [40]. We use cross-validation to optimize the
slack-parameter and, following [1], to optimize the relative
sampling frequency of positive examples.

3.4. Boundary Detector

As boundary detector we use the Structured Edge Forests
of Dollár and Zitnick [10], as these are extremely fast and
yield state-of-the-art performance. Using their standard set-
tings, their detector predicts 16× 16 pixel boundary masks
from 32 × 32 pixel local image patches. From each local
image patch a variety of colour and gradient features is ex-
tracted. They train a random forest directly on the structured
output space of segmentation masks: at each node they sam-
ple 256 random pixel pairs and perform binary tests check-
ing if both pixels come from the same segment. The result-
ing 256 dimensional vector is reduced to a single dimension
using PCA, where its sign is used as a binary label. This al-
lows for the calculation of information gain as usual.

Unless mentioned otherwise, we use their framework
with standard settings except for the number of training
patches. We lower these from 1 million to 300,000 resulting
in similar performance as shown in Section 4.1.

4. Results
In Section 4.1 to 4.3, we evaluate our method on

object boundary detection on ImageNet [35], Microsoft
COCO [24], and Pascal VOC 2012 segmentation [13]. We
use the evaluation software of [29], average results over all
images and report precision/recall curves, precision at 20%
and 50% recall, and average precision (AP).

In Section 4.4, we evaluate our method on semantic con-
tour detection on the SBD database [17] using their evalua-
tion software and report average precision (AP).

4.1. ImageNet

Dataset. While ImageNet has no manually annotated ob-
ject boundaries, Guillaumin et al. [16] obtained good seg-
mentations using a semi-supervised segmentation transfer
strategy, applied to increasingly difficult image subsets. As
our training set, we use their most reliable segmentations
created from bounding box annotations. As test set, we use
the ground-truth segmentations collected by [16].

To keep evaluation time reasonable we randomly sam-
ple 100 classes from the set of [16]. This results in 23,457
training and 1,000 test images. Since each image is anno-
tated with one object class, this experiment evaluates only
boundaries of that class.

Number of situations. For subclass specific situations,
we choose to cluster classes into 10 subclasses, yielding
1000 situations. For good comparison, we choose to also
have the same number of 1000 class agnostic situations.

Number of detectors at test time. We now establish the
number of object boundary detectors to apply to get opti-
mal performance using Equation (2). Table 1 shows results
when varying n for subclass specific object boundary de-
tection (other situations yield similar results). As can be
seen, starting from n = 5 results saturate for both meth-
ods. Looking at the probability mass Z, at n = 5 it is 61%
for Fisher vectors and 71% for CNN features. However,
Z greatly differs per image. Hence for stable and efficient
computation time with optimal performance, we fix n = 5



n = 1 n = 3 n = 5 n = 25
Z - CNN - subclass specific 47% 65% 71% 85%
Z - Fisher - subclass specific 29% 51% 61% 79%
AP - CNN - subclass specific 0.274 0.289 0.296 0.295
AP - Fisher - subclass specific 0.267 0.283 0.290 0.291
AP - Monolithic 0.258 0.259 0.260 0.260

Table 1. Influence of number of situational object boundaries de-
tectors applied at test time. Results saturate in average precision
(AP) after applying 5 object boundary detectors.

precision at precision at average
20% recall 50% recall precision

monolithic 0.382 0.282 0.260
CNN - class specific 0.435 0.311 0.289
CNN - subclass specific 0.451 0.317 0.296
CNN - class agnostic 0.446 0.315 0.295
Fisher - class specific 0.426 0.305 0.283
Fisher - subclass specific 0.442 0.312 0.290
Fisher - class agnostic 0.429 0.307 0.284
GT - class specific 0.433 0.311 0.290
monolithic - CNN enhanced 0.385 0.278 0.259

Table 2. Results on ImageNet show that situational object bound-
ary detection significantly outperforms a monolithic strategy.

random forest detectors (of 8 trees) for all subsequent ex-
periments.

Baseline. Our baseline (monolithic) is a single mono-
lithic detector. However, for a fair comparison our baseline
should be trained on the same number of training patches
and use the same number of decision trees. This is equiv-
alent to training multiple monolithic detectors [10]. As
shown in Table 1, results are affected little by training more
monolithic detectors, and stabilize at n = 5 at 0.260 AP.

We also trained a random forest with the recommended
1M training examples [10] instead of 300k. This yields
0.262 AP. Since this is not significantly different, for con-
sistency of all experiments we choose as baseline n = 5
random forests trained on 300k examples per tree.

Situational Object Boundary Detection. Figure 4 and
Table 2 show that situational object boundary detection
significantly outperforms the monolithic approach. Using
CNN features, at 20% recall, the precision for monolithic is
0.38, while it is respectively 0.44, 0.45, and 0.45 for class
specific, subclass specific, and class agnostic situations.

Figure 4 shows that subclass specific situations slightly
outperform class specific situations. This is because sub-
division into subclasses by clustering yields more special-
ized object boundary detectors, which are especially helpful
when the object class can occur in different contexts. In-
deed, looking at performance increase of individual classes,
the use of subclasses yields an increase in AP of 0.04, 0.08,
and 0.14 for respectively killer-whale, airship, and basket-
ball. The variety of contexts of the killer-whale can be seen
in Figure 3b, airships occur on the ground and against the
sky, while basketball images range from basketball close-
ups, to indoor competition (see Figure 5), to outdoor play.

Note that the monolithic boundary detector is trained ex-
clusively on the objects of interest. Hence if a local image
patch causes a false boundary prediction, it is necessarily
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Figure 4. Performance of object boundary detection on ImageNet.
Situational object boundary detection significantly outperforms
monolithic. The black line is occluded by the blue.

similar in appearance to a local image patch of a true object
boundary. Now notice in Figure 5 that monolithic bound-
ary detection fires on many non-object boundary edges: the
crowd of the basketball player, the shade behind the dog, the
dog’s internal boundaries, and the water of the killer-whale.
Therefore such background edges are necessarily similar in
appearance to true object boundaries. This means a mono-
lithic approach can never work well in all situations.

In contrast, situational object boundary detection per-
forms much better, especially when using subclass specific
situations. On the basketball image, our method ignores not
only the crowd but also the player, which is good since the
player is not the object of interest. For the dog our method
focuses primarily on the dog boundaries ignoring shadow
and its interior boundaries. For the killer-whale spurious
edges caused by the water are ignored.

We conclude that by using object boundary detectors
specialized for the identified situation, we effectively con-
strain the expected local appearance of object boundaries,
which helps resolving ambiguities. This yields significant
improvements: whereas a monolithic approach results in
0.260 AP, our subclass specific situation yield 0.296 AP, a
relative improvement of 14%.

CNNs vs Fisher Vectors. Table 2 shows that CNN fea-
tures work generally better than Fisher vectors for situa-
tional object boundary detection. This confirms other ob-
servations on the strength of CNN features (e.g. [7, 11, 33]).
For class-agnostic situations improvements are especially
good since it improves both the creation of situations and
the classification. We use CNN features for the remainder
of this paper.

Using ground-truth image labels. Table 2 includes an
experiment where we use the ground-truth label to deter-
mine which class-specific boundary detector should be ap-
plied (GT - class specific). This helps assessing the quality
of the global image appearance classifier within our frame-
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Figure 5. Qualitative comparison for monolithic versus situational object boundary detection. The upper row shows object boundary
predictions. The lower row shows the ground truth boundaries and evaluation at 50% recall, with true positives in green, false positives
in red, and undetected boundaries in grey. Monolithic boundary detection fires on many false object boundaries caused by the background
and internal boundaries, while situational object boundary detection focuses much better on the boundaries of the object of interest.

work. As the table shows, there is almost no difference be-
tween GT - class specific and CNN - class specific. Hence
within our framework global image classification achieves
what can be maximally expected from it.

CNN features inside the Random Forest. Theoretically,
the Random Forests can learn from any features of different
modalities. So it would arguably be simpler to directly pro-
vide global image features to the Structured Edge Forests
and bypass the intermediate step of classifying images into
situations. We tried this with CNN features, which are
stronger and have a lower dimensionality than Fisher vec-
tors. We name this setting monolithic - CNN enhanced. Ta-
ble 2 shows that this does not work better than the baseline
monolithic detector.

4.2. Microsoft COCO

Dataset. Microsoft COCO [24] provides accurate seg-
mentations for its 80 object classes such as person, banana,
bus, cat, and others. We use v0.9 consisting of 82,783 train-
ing and 40,504 validation images. Images contain on aver-
age 7.7 different object classes. Since evaluation of bound-
ary predictions is relatively slow by necessity [29], we limit
evaluation to the first 5,000 images of the validation set
(which comes already randomized).

Number of situations. For our subclass specific situa-
tions, we choose 10 subclasses per class, leading to a total
of 800 situations. We also use 800 class agnostic situations.

Results. In contrast to the previous experiment, here most
images contain multiple object classes. Now the first ques-
tion is: should we train (sub)class specific object boundary
detectors on only the object boundaries of the target class
or on the boundaries of all object classes present in the im-
age? Results are shown in Table 3. Interestingly, results are
slightly better for true single class object boundary detectors
in the theoretical setting where we use the Ground Truth to
determine the class label (GT - class specific). In contrast,
when using CNN features results are slightly better when
the detectors are trained on all object boundaries in the im-
ages. This suggests that mistakes made by object classifi-
cation can be partially amended by having object boundary
predictors specialized to a certain context rather than to a
certain object class. For the rest of this paper, we therefore
train situational object boundary detectors always on all ob-
ject boundaries present in the images of a situation.

Figure 6 compares situational object boundary detection
with the monolithic baseline. Whereas a monolithic ap-
proach yields an AP of 0.368, our situational approaches
yield a substantial higher AP at 0.408, 0.424, and 0.434 for
respectively class specific, subclass specific, and class ag-
nostic situations. The best AP improvement is almost 0.07
for class agnostic situations.

As before, subclass specific situations outperform class
specific situations. But unlike ImageNet, on COCO the
class agnostic situations slightly outperform the subclass
specific. This is likely because in our ImageNet subset only
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Figure 6. Performance of object boundary detection on the first
5000 images of the COCO validation set.

Detectors trained on class object boundaries only
precision at precision at average
20% recall 50% recall precision

GT - class specific 0.566 0.460 0.422
CNN - class specific 0.543 0.443 0.407
CNN - subclass specific 0.560 0.459 0.418
Detectors trained on all object boundaries within images

precision at precision at average
20% recall 50% recall precision

monolithic 0.494 0.406 0.368
GT - class specific 0.556 0.454 0.416
CNN - class specific 0.544 0.446 0.408
CNN - subclass specific 0.567 0.465 0.424
CNN - class agnostic 0.578 0.474 0.434

Table 3. Results on Microsoft COCO. Situational object boundary
detection significantly outperforms a monolithic strategy.

a single class is annotated, whereas COCO images often
contain multiple classes The fact that class agnostic situa-
tions are superior suggests that the whole context of the im-
age is more important for determining which object bound-
aries to expect than the specific object classes depicted.

Figure 7 shows qualitative results. In contrast to a mono-
lithic approach, our situational object boundary detector
correctly ignores grass/gravel transitions in baseball, con-
tours of buildings (which are not objects of interest) in
streets, and interior boundaries of the train.

We conclude that by identifying a situation, we can avoid
many false positive object boundary predictions made by
a monolithic detector. This leads to significant improve-
ments: whereas a monolithic approach yields 0.368 AP,
class agnostic situations yield 0.434 AP, a relative improve-
ment of 18%.

4.3. Pascal VOC 2012 segmentation

Dataset. We use the 1,464 training and 1,449 validation
images of Pascal VOC 2012 segmentation, annotated with
contours for 20 object classes for all instances in all images.

Number of situations. Since the dataset is a lot smaller
than Microsoft COCO, we choose to have 5 subclasses per
class to still have sufficient training data per situation, lead-
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Figure 8. Performance of object boundary detection on the Pascal
VOC 2012 segmentation database.

precision at precision at average
20% recall 50% recall precision

monolithic 0.514 0.433 0.396
GT - class specific 0.576 0.470 0.430
CNN - class specific 0.573 0.469 0.426
CNN - subclass specific 0.582 0.475 0.426
CNN - class agnostic 0.578 0.472 0.422

Table 4. Results on validation of Pascal VOC 2012 segmentation.

ing to 100 subclass specific situations. For fair comparison,
we also cluster 100 class agnostic situations.
Results. Results are presented in Figure 8 and Table 4.
Again, with 0.426 AP the situational object boundary detec-
tion significantly outperforms the monolithic performance
of 0.396 AP. This is a relative 8% improvement.

On this dataset, class specific situations have about the
same performance as subclass specific and class agnostic.
This is different than on ImageNet and COCO, most likely
because the training set is smaller. Hence fine-grained sit-
uations yield fewer benefits since both training appearance
based classifiers and training object boundary detectors is
more difficult with less data.

4.4. Semantic Boundaries Dataset (SBD)

In some applications one may want do ‘semantic contour
detection’ [17], i.e. generating class-specific object bound-
ary maps. Our class-specific boundary detectors can pro-
duce such maps Dc(I), specific to class c, using (1) but
with the summation running only over class j = c:

Dc(I) = P (Sc|I) ·Dc(I) (3)

where P (Sc|I) is the probability that class c occurs in im-
age I according to CNN-based classification. Dc(I) is the
output of the class-specific boundary predictor for class c.

We use the Semantic Boundaries Dataset of [17], which
consists of 11,318 images from the Pascal VOC 2011
trainval dataset, divided in 8498 training and 2820 test
images. All instances of its 20 object classes were anno-
tated with accurate figure/ground masks by crowdsourcing.
We use the official evaluation software provided by [17].



Original Image / Ground Truth Monolithic GT − Class specific CNN − Class specific CNN − Subclass specific CNN − Class agnostic

Figure 7. Examples from COCO. Odd rows: input image and boundary predictions. Even rows: ground truth boundaries and precision at a
recall of 50%. True positives are green, false positives red, and undetected boundaries grey. While the monolithic detector often incorrectly
fires on the background and internal boundaries, our situational object boundary detectors focus better on true object boundaries.
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Hariharan et al. [17]

Ours: CNN − class specific

Figure 9. Semantic Contour Detection on BSD. [17] versus our
CNN-based class specific situational object boundary detector.

As figure 9 shows our method considerably outper-
forms [17] on most classes. While [17] report a mean AP
of 0.207, we obtain 0.316 mAP.

4.5. Computational Requirements

Runtime on a test image is essentially constant for
any reasonable number of situations: the most expensive
component is the boundary detector [10] which takes 73
ms/image on an Intel Core i5-3470. At test time we al-
ways apply n = 5 detectors (Equation (2)). Extracting

CNN features takes about 2 ms/image on a modern GPU.
Linear classification on 4096 dimensions takes less than 2
ms/image for 1000 situations. Hence our situational object
boundary prediction takes around 0.37 s/image, which is
still very fast for an object boundary detector (see e.g. [10]).

5. Conclusion
The appearance of true object boundaries varies from

situation to situation. Hence a monolithic object bound-
ary prediction approach which predicts object boundaries
regardless of the image content is necessarily suboptimal.
Therefore this paper introduces situational object bound-
ary detection. First the situation is determined based on
global image appearance. Afterwards only those boundary
detectors are applied which are specialized for this situa-
tion. Since we build on [10], our situational object boundary
prediction is fast and takes only 0.37 ms/image. More im-
portantly, results on object boundary detection show consis-
tent improvements on three large datasets: on Pascal VOC
2012 segmentation [13], the automatically segmented Ima-
geNet [16, 35], and Microsoft COCO [24], we obtained rel-
ative improvements of respectively 8%, 14% and 18% AP.
Furthermore, on semantic contour detection our approach
substantially outperforms [17] on their SBD dataset.
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