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Convolutional Neural Networks have proven highly successful at static im-
age recognition problems such as the MNIST, CIFAR, and ImageNet Large-
Scale Visual Recognition Challenge [5, 7, 8]. By using a hierarchy of train-
able filters and feature pooling operations, CNNs are capable of automati-
cally learning complex features required for visual object recognition tasks
achieving superior performance to hand-crafted features. Encouraged by
these positive results several approaches have been proposed recently to ap-
ply CNNs to video and action classification tasks [1, 3, 4, 6].

Video analysis provides more information to the recognition task by
adding a temporal component through which motion and other information
can be additionally used. At the same time, the task is much more compu-
tationally demanding even for processing short video clips since each video
might contain hundreds to thousands of frames, not all of which are useful.
A naïve approach would be to treat video frames as still images and ap-
ply CNNs to recognize each frame and average the predictions at the video
level. However, since each individual video frame forms only a small part of
the video’s story, such an approach would be using incomplete information
and could therefore easily confuse classes especially if there are fine-grained
distinctions or portions of the video irrelevant to the action of interest.

Therefore, we hypothesize that learning a global description of the video’s
temporal evolution is important for accurate video classification. This is
challenging from a modeling perspective as we have to model variable length
videos with a fixed number of parameters. We evaluate two approaches
capable of meeting this requirement: feature-pooling and recurrent neural
networks. The feature pooling networks independently process each frame
using a CNN and then combine frame-level information using various pool-
ing layers. The recurrent neural network architecture we employ is derived
from Long Short Term Memory (LSTM) [2] units, and uses memory cells
to store, modify, and access internal state, allowing it to discover long-range
temporal relationships. Like feature-pooling, LSTM networks operate on
frame-level CNN activations, and can learn how to integrate information
over time. By sharing parameters through time, both architectures are able
to maintain a constant number of parameters while capturing a global de-
scription of the video’s temporal evolution.

Since we are addressing the problem of video classification, it is natural
to attempt to take advantage of motion information in order to have a better
performing network. Previous work [4] has attempted to address this issue
by using frame stacks as input. However, this type of approach is compu-
tationally intensive since it involves thousands of 3D convolutional filters
applied over the input volumes. The performance grained by applying such
a method is below 2% on the Sports-1M benchmarks [4]. As a result, in this
work, we avoid implicit motion feature computation.

In order to learn a global description of the video while maintaining
a low computational footprint, we propose processing only one frame per
second. At this frame rate, implicit motion information is lost. To compen-
sate, following [6] we incorporate explicit motion information in the form
of optical flow images computed over adjacent frames. Thus optical flow
allows us to retain the benefits of motion information (typically achieved
through high-fps sampling) while still capturing global video information.
Our contributions can be summarized as follows:

1. We propose CNN architectures for obtaining global video-level de-
scriptors and demonstrate that using increasing numbers of frames
significantly improves classification performance.

2. By sharing parameters through time, the number of parameters re-
mains constant as a function of video length in both the feature pool-
ing and LSTM architectures.

3. We confirm that optical flow images can greatly benefit video clas-
sification and present results showing that even if the optical flow
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Figure 1: Overview of our approach.

images themselves are very noisy (as is the case with the Sports-1M
dataset), they can still provide a benefit when coupled with LSTMs.

Leveraging these three principles, our best networks exhibit significant
performance improvements over previously published results on the Sports
1 million dataset (73.1% vs. 60.9%) and the UCF-101 datasets with (88.6%
vs. 88.0%) and without additional optical flow information (82.6% vs.
73.0%).
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