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Background Subtraction (BS) is one of the key steps in video analysis. Many
background models have been proposed and achieved promising perfor-
mance on public data sets. However, due to challenges such as illumina-
tion change, dynamic background etc. the resulted foreground segmenta-
tion often consists of holes as well as background noise. In this regard,
we consider generalized fused lasso (GFL) regularization [4] to quest for
intact structured foregrounds. Together with certain assumptions about the
background, we formulate BS as a matrix decomposition problem using reg-
ularization terms for both the foreground and background matrices. The op-
timization was carried out via applying the augmented Lagrange multiplier
(ALM) method in such a way that a fast parametric-flow algorithm is used
for updating the foreground matrix. Experimental results on several popular
BS data sets demonstrate better than state-of-the-arts performance.

We start by introducing our model for the unsupervised model learning
problem of BS, where foreground and background coexist in the frames.
Given a sequence of n video frames, each frame is denoted as d(i) ∈ Rp,
i = 1, ...,n. All data are concatenated into one matrix D ∈ Rp×n, which
is called the observation matrix. We assume that the observation matrix is
the summation of a background matrix B and a foreground matrix F, both
unknown. Therefore, by assuming low-rank of B and structured sparsity of
F, we propose the following matrix decomposition objective,

min
B,F

rank(B)+λ‖F‖g f l s.t. D = B+F, (1)

where λ ≥ 0 is a tuning parameter and ‖ ·‖g f l is the generalized fused lasso
regularization defined as

‖F‖g f l =
n

∑
k=1

{
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}
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where f(k) is the kth foreground vector and N is the spatial neighborhood
set. Due to the l1 penalties on each pixel as well as each adjacent pair of
pixels, solutions of fs tend to be both sparse and spatially connected. Here
wi j are introduced to enhance the conventional GFL model such that wi j
adaptively encode the strength of the fusion according to the image content.

Specifically, w(k)
i j = exp

−‖d(k)
i −d(k)

j ‖2
2

2σ 2 , where d is the pixel intensity.
In the situation where pure background frames are given, we explic-

itly utilized this piece of information by adding constraints to the above
optimization. Specifically, we separate the observation matrix D as D =
[D1,D2], where D1 is the matrix of all pure background frames and D2 is
the matrix containing the rest frames with mixed content. The unknown
B and F are separated correspondingly. Now we assume D1=B1 and thus
F1=0. By applying them to Eq. (1), we have

min
B,F

rank([B1,B2])+λ‖F2‖g f l s.t. D2 = B2 +F2, (3)

We further assume that rank([B1,B2]) = rank(B1). The idea behind this as-
sumption is that if we have enough pure background frames, the correspond-
ing background vectors fully span the background subspace. By taking this
assumption, the columns of the unknown B2 can be represented using linear
combinations of the columns of B1 (or D1). Specifically, Eq. (3) becomes

min
D1,S,F2

rank(D1[I,S])+λ‖F2‖g f l s.t. D2 = D1S+F2. (4)

Since D1 is observed/given, whose rank is irrelevant to the optimization, as
before, we assume D1 to be low-rank, therefore there must exists a sparse
coefficient matrix S (given that D1 is low-rank). So we can instead propose
to solve

min
S,F2
‖S‖1 +λ‖F2‖g f l s.t. D2 = D1S+F2, (5)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Alternated updating of the background and the foreground. In each itera-
tion (iter) either the background model or the foreground is updated and the objective
value (the green plots) keeps decreasing until convergence.

Table 1: Results for on the popular Li[3] data set, given as F-score.

cam ft mr lb sc ap br ss

[2] .7624 .7265 .3871 .6665 .6721 .5663 .6273 .5269
[1] .5226 .8650 .9014 .7245 .7785 .5879 .8322 .7374
[5] .8347 .8789 .8995 .6996 .8019 .5616 .7475 .6432

Ours .8386 .9011 .9592 .8208 .8500 .7422 .8476 .7613

where ‖ · ‖1 is a convex surrogate for ‖ · ‖0, which counts the number of
non-zero entries.

The optimization of both the unsupervised and the supervised case were
carried out via applying the augmented Lagrange multiplier (ALM) method
in such a way that a fast parametric-flow algorithm is used for updating the
foreground matrix. Interestingly, although ALM is a general optimization
method, its application to BS helps us to understand how our model alter-
nately pursues and refines the background and the foregrounds. In Figure
1, we visualize the estimation in each iteration of ALM. We observe that
the foreground estimation becomes better as the iteration goes on. This is
mainly due to the simultaneous estimation of the foreground and the back-
ground can reinforce each other. Indeed, experiments show that the pro-
posed model achieves better than state-of-the-art performance on several
popular data sets including both natural and synthetic videos. In Table 1,
we demonstrate some results on the popular Li data sets, where our model is
shown to outperformed the state-of-the-art models. More results, both quan-
titative and qualitative, can be found in our paper and/or on our webpage.
Note also that the algorithm does not take many iterations to converge, and
in practice the average number of iterations is about 10-20. Therefore, the
major computational cost to pursue structured background and foregrounds
in the mid-steps can be eased up by this few iterations. Moreover, since
the updating of the foreground are column-wise, the implementation can be
highly paralleled in practice. The code can be downloaded on our webpage.
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