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Interest in correlation filters has been reignited in the vision world through
the recent work of Bolme et al. [5] on Minimum Output Sum of Squared
Error (MOSSE) correlation filters for object detection and tracking. Bolme
et al.’s work was able to circumvent some of the classical problems with
correlation filters and performed well in tracking under changes in rotation,
scale, lighting and partial occlusion. MOSSE correlation filter [1] can be
expressed in the spatial domain as solving a ridge regression problem,
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where yi ∈RD is the desired response for the i-th observation xi ∈RD and λ

is a regularization term. C= [∆τ1, . . . ,∆τD] represents the set of all circular
shifts for a signal of length D.

The major problem with the objective in Equation 1, however, is that the
shifted image patches x[∆τ] at all values of ∆τ ∈ C, except where ∆τ = 0
(no shift), are exploited to estimate a discriminative template from an un-
balanced set of "real-world" and "synthetic" examples (Figure 1(c)). In
signal-processing, one often refers to this as the boundary effect. These syn-
thetic examples are created through the application of a circular shift on the
real-world examples, x[∆τ], and are supposed to be representative of those
examples at different translational shifts. We use the term synthetic, as all
these shifted examples are plagued by circular boundary effects and are not
truly representative of the shifted example (see Figure 1(c)). As a result,
the training set used for learning the template is extremely unbalanced with
one real-world example for every D−1 synthetic examples (where D is the
dimensionality of the examples). These boundary effects can dramatically
affect the resulting performance of the estimated template [18].

we proposed to circumvent this problem by allowing the training sig-
nal x∈RT to be a larger size than the filter h∈RD such that T >D. Through
the use of a D×T masking matrix P, Equation 1 can be expressed as:
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The masking matrix P of ones and zeros encapsulates what part of the sig-
nal should be active/inactive. The central benefit of this augmentation in
Equation 2 is the dramatic increase in the proportion of examples unaffected
by boundary effects ( T−D+1

T instead of 1
D in canonical correlation filters).

From this insight it becomes clear that if one chooses T >> D then bound-
ary effects become greatly diminished (Figure 1(d)). The computational
cost O(D3 +NT D) of solving this objective is only slightly larger than the
cost of Equation 1, as the role of P in practice can be accomplished effi-
ciently through a lookup table. A major contribution of this paper is to solve
this objective function efficiently in terms of computational cost.

A problem arises, however, when one attempts to solve the objective in
2 in the same Fourier domain for computational efficiency. Equation 2 can
be expressed in the Fourier domain as:
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Unfortunately, since we are enforcing a spatial constraint P> on h the effi-
ciency of this objective balloons to O(D3 +ND2) as h must be solved in the
spatial domain.

Our proposed approach for solving Equation 3 is introducing an auxil-
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Figure 1: (a) An example of fixed spatial support within the image from
which the peak correlation output should occur. (b) The desired output re-
sponse, based on (a). (c) A subset of shifted patch examples used in a canon-
ical correlation filter where green and red respectively denote a non-zero and
zero correlation output at (b). (d) A subset of real patch examples used in
our proposed correlation filter.

iary variable ĝ. In this case, Equation 3 can be identically expressed as:
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We propose to handle the introduced equality constraints through an Aug-
mented Lagrangian Method (ALM) [2], in particular Alternating Direction
Method of Multipliers (ADMM), as detailed in our paper.

The dominant cost per iteration of the ADMM optimization process
is O(T logT ) for FFT. There is a per-computation cost for estimating the
auto- and cross-spectral energies. This cost is O(NT logT ) where N is the
number of training images. Given that K represents the number of ADMM
iterations the overall cost of the algorithm is therefore O([N +K]T logT ).

Key Results. Comparing our approach with a steepest descent method [3]
to solve Equation 2 showed that (i) our convergence performance is largely
independent to the filter size and the number of images, and (ii) relatively
few iterations are required to achieve good convergence. Moreover, we eval-
uated our correlation filter for the task of eye detection on CMU Multi-PIE
face database. The results showed that the detection performance of our
approach is significantly higher than the state of the art correlation filters
(around 15%). Finally, we demonstrated the superiority of the proposed
method for real-time tracking (100 fps) comparing with recent leading track-
ers/correlation filters. The results showed the robustness of our approach
against camera motion, rotation, scaling, illumination and partial occlusion.
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