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Abstract

Correlation filters take advantage of specific proper-

ties in the Fourier domain allowing them to be estimated

efficiently: O(ND logD) in the frequency domain, ver-

sus O(D3 + ND2) spatially where D is signal length,

and N is the number of signals. Recent extensions to cor-

relation filters, such as MOSSE, have reignited interest of

their use in the vision community due to their robustness

and attractive computational properties. In this paper we

demonstrate, however, that this computational efficiency

comes at a cost. Specifically, we demonstrate that only 1
D

proportion of shifted examples are unaffected by boundary

effects which has a dramatic effect on detection/tracking

performance. In this paper, we propose a novel approach

to correlation filter estimation that: (i) takes advantage of

inherent computational redundancies in the frequency do-

main, (ii) dramatically reduces boundary effects, and (iii)

is able to implicitly exploit all possible patches densely ex-

tracted from training examples during learning process. Im-

pressive object tracking and detection results are presented

in terms of both accuracy and computational efficiency.

1. Introduction

Correlation between two signals is a standard approach

to feature detection/matching. Correlation touches nearly

every facet of computer vision from pattern detection to ob-

ject tracking. Correlation is rarely performed naively in the

spatial domain. Instead, the fast Fourier transform (FFT)

affords the efficient application of correlating a desired tem-

plate/filter with a signal.

Correlation filters, developed initially in the seminal

work of Hester and Casasent [15], are a method for learning

a template/filter in the frequency domain that rose to some

prominence in the 80s and 90s. Although many variants

have been proposed [15, 18, 20, 19], the approach’s central

tenet is to learn a filter, that when correlated with a set of

training signals, gives a desired response, e.g. Figure 1 (b).

Like correlation, one of the central advantages of the ap-
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Figure 1. (a) Defines the example of fixed spatial support within

the image from which the peak correlation output should occur.

(b) The desired output response, based on (a), of the correlation

filter when applied to the entire image. (c) A subset of patch ex-

amples used in a canonical correlation filter where green denotes

a non-zero correlation output, and red denotes a zero correlation

output in direct accordance with (b). (d) A subset of patch ex-

amples used in our proposed correlation filter. Note that our pro-

posed approach uses all possible patches stemming from different

parts of the image, whereas the canonical correlation filter simply

employs circular shifted versions of the same single patch. The

central dilemma in this paper is how to perform (d) efficiently in

the Fourier domain. The two last patches of (d) show that D−1

T

patches near the image border are affected by circular shift in our

method which can be greatly diminished by choosing D << T ,

where D and T indicate the length of the vectorized face patch in

(a) and the whole image in (a), respectively.

proach is that it attempts to learn the filter in the frequency

domain due to the efficiency of correlation in that domain.

Interest in correlation filters has been reignited in the vi-

sion world through the recent work of Bolme et al. [5] on

Minimum Output Sum of Squared Error (MOSSE) correla-

tion filters for object detection and tracking. Bolme et al.’s

work was able to circumvent some of the classical problems



with correlation filters and performed well in tracking under

changes in rotation, scale, lighting and partial occlusion. A

central strength of the correlation filter is that it is extremely

efficient in terms of both memory and computation.

The Problem: An unconventional interpretation of a cor-

relation filter, is that of a discriminative template that has

been estimated from an unbalanced set of “real-world” and

“synthetic” examples. These synthetic examples are created

through the application of a circular shift on the real-world

examples, and are supposed to be representative of those

examples at different translational shifts. We use the term

synthetic, as all these shifted examples are plagued by cir-

cular boundary effects and are not truly representative of the

shifted example (see Figure 1(c)). As a result, the training

set used for learning the template is extremely unbalanced

with one real-world example for every D − 1 synthetic ex-

amples (where D is the dimensionality of the examples).

These boundary effects can dramatically affect the resulting

performance of the estimated template [19]. Fortunately,

these effects can be largely removed (see Section 2) if the

correlation filter objective is slightly augmented, but has to

be now solved in the spatial rather than frequency domains.

Unfortunately, this shift to the spatial domain destroys the

computational efficiency that make correlation filters so at-

tractive. This is the challenge that this paper addresses.

Contribution: In this paper we make the following contri-

butions:

• We propose a new correlation filter objective that can

drastically reduce the number of examples in a corre-

lation filter that are affected by boundary effects.

• We theoretically demonstrate, however, that solv-

ing this objective in closed form drastically de-

creases computational efficiency: O(D3 +ND2) ver-

susO(ND logD) for the canonical objective where D
is the length of the vectorized image and N is the num-

ber of examples.

• We demonstrate how this new objective can be ef-

ficiently optimized in an iterative manner through

an Augmented Lagrangian Method (ALM) so as to

take advantage of inherent redundancies in the fre-

quency domain. The efficiency of this new approach

is O([N +K]T log T ) where K is the number of iter-

ations and T is the size of the search window.

• We show that our approach performs learning with

dense sampling, meaning that it is capable of incor-

porating all possible patches stemmed from different

parts of training images with a constant amount of

memory regardless to the number of training images

and patches (Figure 1 (d)).

Related Work: Bolme et al. [5] recently proposed an ex-

tension to traditional correlation filters referred to as Mini-

mum Output Sum of Squared Error (MOSSE) filters. This

approach has proven invaluable for many object tracking

tasks, outperforming state of the art methods such as [2, 23]

at 2010. What made the approach of immediate interest

in the vision community was the dramatically faster frame

rates than current state of the art (600 fps versus 30 fps). A

strongly related method to MOSSE was also proposed by

Bolme et al. [6] for object detection/localization referred to

as Average of Synthetic Exact Filters (ASEF) which also

reported superior performance to state of the art. A full dis-

cussion on other correlation filters such as Optimal Trade-

off Filters (OTF) [21], Unconstrained MACE (UMACE)

[24] filters, Multi-Channel Correlation Filters (MCCF) [16],

Maximum Margin Correlation Filters (MMCF) [22], ker-

nel MOSSE [13], etc. and their applications [17, 14, 4] are

outside the scope of this paper. Readers are encouraged to

inspect [19] for a full treatment on the topic.

Notation: Vectors are always presented in lower-case bold

(e.g., a), Matrices are in upper-case bold (e.g., A) and

scalars in italicized (e.g. a or A). a(i) refers to the ith
element of the vector a. All M -mode array signals shall

be expressed in vectorized form a. A M -mode convolu-

tion operation is represented as the ∗ operator. One can

express a M -dimensional discrete circular shift ∆τ to a

vectorized M -mode matrix a through the notation a[∆τ ].
The matrix I denotes a D × D identity matrix and 1

denotes a D dimensional vector of ones. A ˆ applied to

any vector denotes the M -mode Discrete Fourier Trans-

form (DFT) of a vectorized M -mode matrix signal a such

that â ← F(a) =
√
DFa. Where F() is the Fourier trans-

forms operator and F is the orthonormal D × D matrix of

complex basis vectors for mapping to the Fourier domain

for any D dimensional vectorized image/signal. Addition-

ally, we take advantage of the fact that diag(ĥ)â = ĥ ◦ â,

where ◦ represents the Hadamard product, and diag() is

an operator that transforms a D dimensional vector into

a D ×D dimensional diagonal matrix. The role of filter ĥ

or signal â can be interchanged with this property. Any

transpose operator ⊤ on a complex vector or matrix in this

paper additionally takes the complex conjugate in a similar

fashion to the Hermitian adjoint [19]. The operator conj(â)
applies the complex conjugate to the complex vector â.

2. Correlation Filters

Due to the efficiency of correlation in the frequency do-

main, correlation filters have canonically been posed in the

frequency domain. There is nothing, however, stopping one

(other than computational expense) from expressing a cor-

relation filter in the spatial domain. In fact, we argue that

viewing a correlation filter in the spatial domain can give us



crucial insights into fundamental problems in current corre-

lation filter methods.

MOSSE correlation filter [5] can be expressed in the spa-

tial domain as solving a ridge regression problem,

E(h) =
1

2

N∑

i=1

D∑

j=1

||yi(j)− h⊤xi[∆τ j ]||22 +
λ

2
||h||22 (1)

where yi ∈ R
D is the desired response for the i-th ob-

servation xi ∈ R
D and λ is a regularization term. C =

[∆τ 1, . . . ,∆τD] represents the set of all circular shifts for

a signal of length D. Bolme et al. advocated the use of a

2D Gaussian of small variance (2-3 pixels) for yi centered

at the location of the object (typically the centre of the im-

age patch). The solution to this objective becomes,

h = H−1
N∑

i=1

D∑

j=1

yi(j)xi[∆τ j ] (2)

where,

H = λI+

N∑

i=1

D∑

j=1

xi[∆τ j ]xi[∆τ j ]
⊤ (3)

Solving a correlation filter in the spatial domain quickly be-

comes intractable as a function of the signal length D, as

the cost of solving Equation 2 becomes O(D3 +ND2).
Putting aside, for now, the issue of computational cost,

the correlation filter objective described in Equation 1 pro-

duces a filter that is particularly sensitive to misalignment in

translation. A highly undesirable property when attempting

to detect or track an object in terms of translation. This sen-

sitivity is obtained due to the circular shift operator x[∆τ ],
where ∆τ = [∆x,∆y]⊤ denotes the 2D circular shift in x
and y. It has been well noted in correlation filter litera-

ture [19] that this circular-shift alone tends to produce fil-

ters that do not generalize well to other types of appear-

ance variation (e.g. illumination, viewpoint, scale, rotation,

etc.). This generalization issue can be somewhat mitigated

through the judicious choice of non-zero regularization pa-

rameter λ, and/or through the use of an ensemble N > 1 of

training observations that are representative of the type of

appearance variation one is likely to encounter.

2.1. Boundary Effects

A deeper problem with the objective in Equation 1, how-

ever, is that the shifted image patches x[∆τ ] at all values

of ∆τ ∈ C, except where ∆τ = 0 (no shift), are not repre-

sentative of image patches one would encounter in a normal

correlation operation (Figure 1(c)). In signal-processing,

one often refers to this as the boundary effect. One sim-

ple way to circumvent this problem spatially is to allow

the training signal x ∈ R
T to be a larger size than the fil-

ter h ∈ R
D such that T > D. Through the use of a D × T

masking matrix P one can reformulate Equation 1 as,

E(h) =
1

2

N∑

i=1

T∑

j=1

||yi(j)−h⊤Pxi[∆τ j ]||22+
λ

2
||h||22 (4)

The masking matrix P of ones and zeros encapsulates

what part of the signal should be active/inactive, Figure 2.

The central benefit of this augmentation in Equation 4 is

the dramatic increase in the proportion of examples unaf-

fected by boundary effects (T−D+1
T

instead of 1
D

in canoni-

cal correlation filters). From this insight it becomes clear

that if one chooses T >> D then boundary effects be-

come greatly diminished (Figure 1(d)). The computational

costO(D3+NTD) of solving this objective is only slightly

larger than the cost of Equation 1, as the role of P in prac-

tice can be accomplished efficiently through a lookup table.

It is clear in Equation 4, that boundary effects could be

removed completely by summing over only a T − D + 1
subset of all the T possible circular shifts. However, as we

will see in the following section such a change along with

the introduction of P is not possible if we want to solve this

objective efficiently in the frequency domain.

2.2. Efficiency in the Frequency Domain

It is well understood in signal processing that circular

convolution in the spatial domain can be expressed as a

Hadamard product in the frequency domain [19]. This al-

lows one to express the objective in Equation 1 more suc-

cinctly and equivalently as,

E(ĥ) =
1

2

N∑

i=1

||ŷi − x̂i ◦ conj(ĥ)||22 +
λ

2
||ĥ||22 (5)

=
1

2

N∑

i=1

||ŷi − diag(x̂i)
⊤ĥ||22 +

λ

2
||ĥ||22 .

where ĥ, x̂, ŷ are the Fourier transforms of h,x,y. The

complex conjugate of ĥ is employed to ensure the op-

eration is correlation not convolution. The equiva-

lence between Equations 1 and 5 also borrows heavily

upon another well known property from signal process-

ing namely, Parseval’s theorem which states that x⊤i xj =
D−1x̂⊤i x̂j ∀i, j, where x ∈ R

D. The solution to Equa-

tion 5 becomes

ĥ = [diag(ŝxx) + λI]−1
N∑

i=1

diag(x̂i)ŷi (6)

= ŝxy ◦−1 (ŝxx + λ1)

where ◦−1 denotes element-wise division, and

ŝxx =
N∑

i=1

x̂i◦conj(x̂i) & ŝxy =
N∑

i=1

ŷi◦conj(x̂i) (7)



are the average auto-spectral and cross-spectral energies re-

spectively of the training observations. The solution for ĥ in

Equations 1 and 5 are identical (other than that one is posed

in the spatial domain, and the other is in the frequency do-

main). The power of this method lies in its computational

efficiency. In the frequency domain a solution to ĥ can be

found with a cost of O(ND logD). The primary cost is

associated with the DFT on the ensemble of training sig-

nals {xi}Ni=1 and desired responses {yi}Ni=1.

3. Our Approach

A problem arises, however, when one attempts to apply

the same Fourier insight to the augmented spatial objective

in Equation 4 for computational efficiency. Equation 4 can

be expressed in the Fourier domain as:

E(h) =
1

2

N∑

i=1

||ŷi − diag(x̂i)
⊤√DFP⊤h||22 +

λ

2
||h||22

(8)

Unfortunately, since we are enforcing a spatial constraint

P⊤ on h the efficiency of this objective balloons toO(D3+
ND2) as h must be solved in the spatial domain.

3.1. Augmented Lagrangian

Our proposed approach for solving Equation 8 involves

the introduction of an auxiliary variable ĝ. In this case,

Equation 8 can be identically expressed as:

E(h, ĝ) =
1

2

N∑

i=1

||ŷi − diag(x̂i)
⊤ĝ||22 +

λ

2
||h||22

s.t. ĝ =
√
DFP⊤h . (9)

We propose to handle the introduced equality constraints

through an Augmented Lagrangian Method (ALM) [7]. The

augmented Lagrangian of our proposed objective can be

formed as,

L(ĝ,h, ζ̂) =
1

2

N∑

i=1

||ŷi − diag(x̂i)
⊤ĝ||22 +

λ

2
||h||22

+ ζ̂
⊤
(ĝ −

√
DFP⊤h)

+
µ

2
||ĝ −

√
DFP⊤h||22 (10)

where µ is the penalty factor that controls the rate of con-

vergence of the ALM, and ζ̂ is the Fourier transform of the

Lagrangian vector needed to enforce the newly introduced

equality constraint in Equation 9. ALMs are not new to

learning and computer vision, and have recently been used

to great effect in a number of applications [7, 8]. Specifi-

cally, the Alternating Direction Method of Multipliers (AD-

MMs) has provided a simple but powerful algorithm that

is well suited to distributed convex optimization for large

learning and vision problems. A full description of AD-

MMs is outside the scope of this paper (readers are en-

couraged to inspect [7] for a full treatment and review), but

they can be loosely interpreted as applying a Gauss-Seidel

optimization strategy to the augmented Lagrangian objec-

tive. Such a strategy is advantageous as it often leads to

extremely efficient subproblem decompositions. A full de-

scription of our proposed algorithm can be seen in Algo-

rithm 1. We detail each of the subproblems as follows:

Subproblem g:

ĝ∗ = argminL(ĝ; ĥ, ζ̂) (11)

= (ŝxy + µĥ− ζ̂) ◦−1 (ŝxx + µ1)

where ĥ =
√
DFP⊤h. In practice ĥ can be estimated ex-

tremely efficiently by applying a FFT to h padded with ze-

ros implied by the P⊤ masking matrix.

Subproblem h:

h∗ = argminL(h;g, l) (12)

= (µ+
λ√
D
)−1(µg + l)

where g = 1√
D
PF⊤ĝ and l = 1√

D
PF⊤ζ̂. In practice

both g and l can be estimated extremely efficiently by ap-

plying an inverse FFT and then applying the lookup table

implied by the masking matrix P.

Lagrange Multiplier Update:

ζ̂
(i+1) ← ζ̂

(i)
+ µ(ĝ(i+1) − ĥ(i+1)) (13)

where ĝ(i+1) and ĥ(i+1) are the current solutions to the

above subproblems at iteration i + 1 within the iterative

ADMM.

Choice of µ: A simple and common [7] scheme for select-

ing µ is the following

µ(i+1) = min(µmax, βµ
(i)) . (14)

We found experimentally µ(0) = 10−2, β = 1.1
and µmax = 20 to perform well.

3.2. Learning with Dense Sampling

The advantage of learning detectors with dense sampling

strategy has been fully explored in recent approaches [25,

13, 12]. These approaches intend to train a classier/detector

by exploiting all possible negative patches which can be

extracted from training samples (e.g. 104 patches of a

100 × 100 training image), as an alternative to Hard Neg-

ative Mining (HNM). Adopting a dense sampling strategy

within an LDA framework, Hariharan et al. [12] demon-

strated very competitive detection performance compared

to HNM with superior memory usage and computations.



Inspecting Equation 4 one can see that the circular shift

operator ∆τ returns all shifted versions of the (vectorized)

training image xi, {xi[∆τ j ]}Tj=1, where T is the length

of xi. Note that the shifted images in our approach are

implicitly generated by the circular shift property of con-

volution/correlation operation in the Fourier domain, and

in practice, we do not need to directly use the shift oper-

ator ∆τ to generate the shifted images (see Equation 8).

By applying the masking matrix P on each shifted im-

age, Pxi[∆τ j ] in Equation 4, we indeed select (crop) a

patch (sub image) from xi[∆τ j ] whose size is smaller than

the size of xi and is centered on the jth location of the

(vectorized) image/signal. This generates all T possible

patches/samples of the training image xi, Figure 2. Since

this dense sampling is embedded in the objective in Equa-

tion 4 and we learn correlation filters by optimizing this ob-

jective, the proposed approach is a dense sampling based

learning technique.

3.3. Computational Cost

Inspecting Algorithm 1 the dominant cost per iteration

of the ADMM optimization process is O(T log T ) for FFT.

There is a per-computation cost (before the iterative compo-

nent, steps 4 and 5) in the algorithm for estimating the auto-

and cross-spectral energy vectors ŝxx and ŝxy respectively.

This cost is O(NT log T ) where N refers to the number

of training signals. Given that K represents the number of

ADMM iterations the overall cost of the algorithm is there-

fore O([N +K]T log T ).

3.4. Memory Efficiency

Given N vectorized training images of length T , the

memory usage of our approach to learn a correlation filter is

O(T ). This is the amount of memory required to compute

the auto- and cross-spectral energy vectors ŝxx and ŝxy in

steps 4 and 5, Equation 7. This means that the memory

cost of the proposed approach is constant and independent

of both the number of images and ADMM iterations. More-

over, as mentioned above, the dense sampling is embedded

in our learning approach, meaning that no extra memory is

required to load all possible patches of training images.

We emphasize this advantage by giving a practical ex-

ample. Suppose that 100,000 100 × 100 of training im-

ages (in double precision) are given to learn a 50 × 50
object detector (template). In this case, our method uses

1000×100×100 = 107 patches of size 50×50 to train the

detector (by dense sampling) and this amounts only 0.02

MB storage to compute ŝxx and ŝxy . On the other hand,

learning a SVM classifier [26], which has been extensively

employed for recognition tasks, incurs a memory cost lin-

ear to the number of patches [16]. Therefore, using 107 of

50×50 patches, storage belows out to an untenable 200 GB.
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Figure 2. Dense sampling: (left) a vectorized signal xi of length

T = 5, (right) all possible sub-signals of xi with length D = 3
obtained by multiplying all shifted versions of xi, {xi[∆τ j ]}

T
j=1

by mask matrix P, {Pxi[∆τ j ]}
T
j=1. P is a D × T matrix.

Algorithm 1 Our approach using ADMMs

1: Intialize h(0), l(0).
2: Pad with zeros and apply FFT:

√
DFP⊤h(0) → ĥ(0).

3: Apply FFT:
√
DFl(0) → ζ̂

(0)
.

4: Estimate auto-spectral energy ŝxx using Eqn. (7).

5: Estimate cross-spectral energy ŝxy using Eqn. (7).

6: i = 0
7: repeat

8: Solve for ĝ(i+1) using Eqn. (11), ĥ(i) & ζ̂
(i)

.

9: Inverse FFT then crop: 1√
D
PF⊤ĝ(i+1) → g(i+1).

10: Inverse FFT then crop: 1√
D
PF⊤ζ̂

(i+1) → l(i+1).

11: Solve for h(i+1) using Eqn. (12), g(i+1) & l(i).
12: Pad and apply FFT:

√
DFP⊤h(i+1) → ĥ(i+1).

13: Update Lagrange multiplier vector Eqn. (13).

14: Update penalty factor Eqn. (14).

15: i = i+ 1
16: until ĝ,h, ζ̂ has converged

4. Experiments

4.1. Localization Performance

In the first experiment, we evaluated our method on the

problem of eye localization, comparing with leading cor-

relation filters in the literature, e.g. OTF [21], MACE

[20], UMACE [24], ASEF [6], and MOSSE [5]. The

CMU Multi-PIE face database 1 was used for this experi-

ment, containing 900 frontal faces with neutral expression

and normal illumination. We randomly selected 400 images

for training and the reminder for testing. All images were

cropped to have a same size of 128 × 128 with fixed coor-

dinates of the left and the right eyes. The cropped images

were power normalized to have a zero-mean and a standard

deviation of 1.0.

We trained a 64× 64 filter of the right eye using 64× 64
cropped patches (centered upon the right eye) for the other

methods, and full face images for our method (T = 128 ×

1http://www.multipie.org/



128 and D = 64 × 64). Similar to ASEF and MOSSE,

we defined the desired response as a 2D Gaussian function

with an spatial variance of s = 2. Eye localization was

performed by correlating the filters over the testing images

followed by selecting the peak of the output as the predicted

eye location. The eye localization was evaluated by the dis-

tance between the predicted and desired eye locations nor-

malized by inter-ocular distance [6], d = ‖pr−mr‖2
‖ml−mr‖2 , where

mr and ml respectively indicate the true coordinates of the

right and left eye, and pr is the predicted location of the

right eye. A localization with normalized distance d < th

was considered as a successful localization. The threshold

th was set to a fraction of inter-ocular distance.

The average of evaluations across 10 runs are depicted

in Figure 3, where our method outperforms the other ap-

proaches across all thresholds and training set sizes. The ac-

curacy of OTF and MACE declines by increasing the num-

ber of training images due to the over-fitting. During the

experiment, we observed that the low performance of the

UMACE, ASEF and MOSSE was mainly caused by wrong

localizations of the left eye and the nose. This was much

less in our method, since our filter was trained using all

negative patches (dense sampling) collected form full face

images. A visual depiction of the filters and their outputs

can be seen in Figure 4. The Peak-to-Sidelobe Ratio (PSR)

[5] values show that our method returns stronger correlation

responses than the other filters.

Moreover, we examined the influence of T (the size of

training images) on the performance of eye localization. for

this, we used cropped patches of the right eye with varying

sizes of T = {D, 1.5D, 2D, 2.5D, 3D, 3.5D, 4D} to train

filters of size D = 32 × 32. In the case of T = D, train-

ing images are just the right eye patches, while in T = 4D
the training images are full face images. The result is illus-

trated in Figure 5(a), showing that the lowest performance

obtained when T = D and the localization rate improved by

increasing the size of the training patches with respect to the

filter size. The highest localization rate was obtained when

T = 4D. The reason is that when T = 4D (i) the portion of

patches unaffected by boundary effects (T−D+1
T

) is remark-

ably increases, and (ii) a huge set of negative patches (from

nose, mouth, the left eye, etc.) are used for filter training

that makes the filter fairly robust against wrong detections

of background patches.

4.2. Runtime Performance

This experiment demonstrates the advantage of our ap-

proach to other iterative methods. Specifically, we com-

pared our proposed approach against other methods in liter-

ature for learning filters efficiently using iterative methods.

We compared our convergence performance with a steep-

est descent method [27] for optimizing our same objective.

Results in Figure 6 represent: (a) time to converge as a func-
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Figure 3. Eye localization performance as a function of (a) num-

ber of training images, and (b) localization thresholds.
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Figure 4. An example of eye localization. The outputs (bottom)

are produced using 64×64 correlation filters (top). The green box

represents the approximated location of the right eye. The peak

strength (PSR) shows the sharpness of the output peak.
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Figure 5. (a) Localization rate as a function of training images size

(T), the size of filter is D = 32 × 32. (b) Tracking position error

versus the number of ADMM iterations. We selected 2 iterations

as a tradeoff between tracking performance and computation.

tion of the filter size and the number of training images, and

(b) the number of iterations required to optimize the ob-

jective in Equation 8. In (a) one notices impressively how

convergence performance is largely independent to the fil-

ter size and the number of images used during training. This

can largely be attributed to the per-computation of the auto-

and cross-spectral energies. As a result, iterations of the

ADMM do not need to re-touch the training set, allowing

our approach to dramatically outperform more naive iter-

ative approaches such as [27] that needs to re-compute a

set of convolutions in the spatial domain over each iteration

of the training process. Similarly, in (b) one notices how

relatively few iterations are required to achieve good con-

vergence.
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Figure 6. Runtime performance of our method versus steepest de-

scent method [27]. Our approach shows superior performance in

terms of: (a) convergence speed to train two filters with different

sizes and (b) the number of iterations required to converge.

4.3. Tracking Performance

Finally, we evaluated the proposed method for the task

of real-time tracking on a sequence of commonly used test

videos [23], comparing with the leading trackers in the lit-

erature [3, 11, 9, 10, 1, 23, 5, 13]. All of these methods

were tuned by the parameters proposed in their reference

papers. The desired response for a m×n target was defined

as a 2D Gaussian with a variance of s =
√
mn/16 [13].

The regularization parameter λ was set to 10−2. We eval-

uated our method with different number of ADMM itera-

tions {1, 2, 4, 8, 16, 32, 64}, as shown in Figure 5(b), and

eventually selected two iterations (a tradeoff between preci-

sion and tracking speed) for our tracker. A track initializa-

tion process was employed for our approach and MOSSE,

where eight random affine perturbations were used to ini-

tialize the first filter. We borrowed the online adaption from

MOSSE [5] to adapt our filter at ith frame using averaged

auto-spectral and cross-spectral energies:

(ŝxx)
i = η(x̂i ◦ conj(x̂i)) + (1− η)(ŝxx)

i−1

(ŝxy)
i = η(ŷi ◦ conj(x̂i)) + (1− η)(ŝxy)

i−1 (15)

where, η is the adaption rate. We practically found that η =
0.025 is appropriate for our method to quickly be adapted

against pose change, scale, illumination, etc.

The tracking results are evaluated in Table 1 based on

(i) percentage of frames where the predicted position is

within 20 pixels of the ground truth (precision), (ii) average

localization error in pixels, and (iii) tracking speed (fps),

which are standard measures in tracking papers [3] [11] [9].

Our method averagely achieved the highest precision and

the lowest localization error, followed by STRUCK. The

reason is that our method incorporates visual information

from all possible foreground (target) and background (non-

target) patches to train the tracker (dense sampling, e.g.

104 patches from a 100 × 100 frame). While, due to

computational constrains, the non-filter approaches such as

STRUCK and MILTrack employ a handful of target and

Figure 7. Failure examples of ”Girl”, ”Coke Can” and ”Tiger1”

videos caused by severe pose changing and full occlusion.

non-target patches (e.g. 10-20 patches) randomly collected

around the estimated position of the object of interest [13].

Moreover, the accuracy of MOSSE and kernel-MOSSE

is much less than our tracker due to the boundary effects,

Figure 1(c). Besides, they do not use any background patch

for filter learning. In terms of tracking speed, MOSSE out-

performed the other methods by 600 fps. Our method ob-

tained lower fps than MOSSE, due to its iterative manner.

However, the speed of our tracker, 100 fps, is still appro-

priate for real-time tracking. The tracking results for some

selected videos is shown in Figures 8, where our method

shows higher precision for almost all thresholds in (a) and

less drift per frames in (b). Figure 9 depicts some qualita-

tive results in some frames. The extension of Figures 8 and

9 can be found in the supplemental materials.

Please note that the goal of this experiment is not show-

ing the superiority of our approach over all the test videos.

For instance, we obtained lower precision on ”Tiger1” video

(79%) compared to MILTrack (94%) and STRUCK (%95).

This implies that same as the other correlation filter based

trackers, our approach does not perform well on videos

such as ”Tiger1” with full occlusion and severe appearance

changes, Figure 7. Indeed, we aimed to show that very com-

petitive results can be achieved by our simple and fairly fast

tracker, compared to the complicated and slow techniques

were particularly tailored for object tracking.

5. Conclusions

A method for estimating a correlation filter is presented

here that dramatically limits circular boundary effects while

preserving many of the computational advantages of canon-

ical frequency domain correlation filters. Moreover, we

showed that the proposed approach implicitly learns cor-

relation filters over an embedded dense sampling strategy

which is inherited from the shift circular property of the

convolution operation in the Frequency domain. This al-

lows one to learn an effective detector/filter by exploiting a

huge set of negative examples with very efficient memory

cost which was shown to be independent of the number of

training images and sampled patches. Our approach demon-

strated superior empirical results for both object detection

and real-time tracking compared to current state of the arts.



MOSSE KMOSSE MILTrack STRUCK OAB(1) SemiBoost FragTrack Our method

[5] [13] [3] [11] [9] [10] [1]

FaceOcc1 {1.00, 7} {1.00, 5} {0.75, 17} {0.97, 8} {0.22, 43} {0.97, 7} {0.94, 7} {1.00, 8}
FaceOcc2 {0.74, 13} {0.95, 8} {0.42, 31} {0.93, 7} {0.61, 21} {0.60, 23} {0.59, 27} { 0.97, 7}

Girl {0.82, 14} {0.44, 35} {0.37, 29} {0.94, 10} - - {0.53, 27} {0.90, 12}
Sylv {0.87, 7} {1.00, 6} {0.96, 8} {0.95, 9} {0.64, 25} {0.69, 16} {0.74, 25} {1.00, 4}

Tiger1 {0.61, 25} {0.62, 25} {0.94, 9} {0.95, 9} {0.48, 35} {0.44, 42} {0.36, 39} {0.79, 18}
David {0.56, 14} {0.50, 16} {0.54, 18} {0.93, 9} {0.16, 49} {0.46, 39} {0.28, 72} {1.00, 7}

Cliffbar {0.88, 8} {0.97, 6} {0.85, 12} {0.44, 46} {0.76, -} - {0.22, 39} { 1.00, 5}
Coke Can {0.96, 7} {1.00, 7} {0.58, 17} {0.97, 7} {0.45, 25} {0.78, 13} {0.15, 66} {0.97, 7}

Dollar {1.00, 4} {1.00, 4} {1.00, 7} {1.00, 13} {0.67, 25} {0.37, 67} {0.40, 55} { 1.00, 6}
Twinings {0.48, 16} {0.89, 11} {0.76, 15} {0.99, 7} {0.74, -} - {0.82, 14} {0.99, 9}

mean {0.80, 11} {0.84, 12} {0.72, 16} {0.91, 12} {0.53, 31} {0.62, 29} {0.51, 37} {0.97, 8}
fps 600 100 25 11 25 25 2 100

Table 1. The tracking performance is shown as a tuple of {precision within 20 pixels, average position error in pixels}, where our method

achieved the best performance over 8 of 10 videos. The best fps was obtained by MOSSE. Our method obtained a real-time tacking speed

of 100 fps using two iterations of ADMM. The best result for each video is highlighted in bold.
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Figure 8. Tracking results for selected videos, (a) precision versus the thresholds, and (b) position error per frame.

Figure 9. Tracking results of our method over two videos with challenging variations of pose, scale, illumination and partial occlusion.

The blue (dashed) and red boxes respectively represent the ground truth and the positions predicted by our method. For each frame, we

illustrate the target, trained filter and correlation output.
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