
FaLRR: A Fast Low Rank Representation Solver

Shijie Xiao†, Wen Li†, Dong Xu†, Dacheng Tao‡

†School of Computer Engineering, Nanyang Technological University, Singapore
‡Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering and

Information Technology, University of Technology, Sydney, Australia
{XIAO0050, WLI1, DongXu}@ntu.edu.sg, Dacheng.Tao@uts.edu.au

Abstract

Low rank representation (LRR) has shown promising
performance for various computer vision applications such
as face clustering. Existing algorithms for solving LRR
usually depend on its two-variable formulation which con-
tains the original data matrix. In this paper, we develop
a fast LRR solver called FaLRR, by reformulating LRR as
a new optimization problem with regard to factorized da-
ta (which is obtained by skinny SVD of the original da-
ta matrix). The new formulation benefits the correspond-
ing optimization and theoretical analysis. Specifically, to
solve the resultant optimization problem, we propose a new
algorithm which is not only efficient but also theoretically
guaranteed to obtain a globally optimal solution. Regard-
ing the theoretical analysis, the new formulation is helpful
for deriving some interesting properties of LRR. Last but
not least, the proposed algorithm can be readily incorpo-
rated into an existing distributed framework of LRR for fur-
ther acceleration. Extensive experiments on synthetic and
real-world datasets demonstrate that our FaLRR achieves
order-of-magnitude speedup over existing LRR solvers, and
the efficiency can be further improved by incorporating our
algorithm into the distributed framework of LRR.

1. Introduction

Data in many real-world problems often lies in a union
of low-dimensional subspaces. Given data sampled from
multiple subspaces, the goal of subspace clustering is to
partition the data into a pre-defined number of groups, such
that each group corresponds to exactly one subspace. The
subspace clustering problem has been extensively studied
[20, 7, 14] for various real-world applications such as face
clustering [14, 7]. Recently, there are growing research
interests in the spectral clustering based methods [7, 14],
which solve the subspace clustering problem by applying
spectral clustering [21, 15] on a desired similarity matrix.

Among the spectral clustering based approaches, the
low-rank representation (LRR) method [14, 13] aims to
learn a low rank data representation matrix for construct-
ing the desired similarity matrix. Based on a convex for-
mulation, LRR is robust to noise (see [13] and references
therein), and thus it has achieved promising performance in
dealing with real-world vision problems [14, 13, 9].

Regarding optimization, several algorithms [14, 12, 13]
were proposed to exactly solve LRR. Moreover, to efficient-
ly obtain an approximated solution of LRR, a distributed
framework [17] was developed. However, existing algo-
rithms are usually based on the original formulation [14]
or a similar variant [13], either of which is a two-variable
problem with regard to the original data matrix.

In this paper, we reformulate LRR based on the factor-
ized data, so that the resultant problem contains the com-
ponents from skinny singular value decomposition (SVD)
of the original data matrix. Interestingly, the new prob-
lem benefits both the optimization and the theoretical study.
In terms of optimization, we develop an efficient algorithm
based on the alternating direction method (ADM) [2, 12],
in which both resultant subproblems can be solved exact-
ly. We show that our new optimization algorithm achieves a
global optimum in theory and it outperforms the existing L-
RR solvers [13, 12] in terms of efficiency. Moreover, based
on the new form, we provide theoretical analysis regarding
the influence of the parameter in LRR. Last but not least,
the proposed algorithm can be readily incorporated into the
distributed framework [17] of LRR, to further improve the
efficiency.

Notations: For convenient presentation, we denote a
vector (resp., matrix) with a lowercase (resp., uppercase)
letter in boldface. The transpose of a vector/matrix is de-
noted by the superscript ′. In ∈ Rn×n, Om×n ∈ Rm×n

denote the n×n identity matrix and the m×n zero matrix,
respectively. 0n ∈ Rn, 1n ∈ Rn denote the column vectors
with all elements being zeros and ones, respectively. For
simplicity, we drop the subscripts of In, Om×n, 0n and 1n

when the dimension is obvious.

1

The norms of a matrix A ∈ Rm×n are defined as fol-
lows. ∥A∥F =

√
trace(AA′) is the Frobenius norm.

∥A∥∗ is the nuclear norm, which is the sum of singular val-
ues of A. ∥A∥2 is the spectral norm, which is the maximal
singular value of A. ∥A∥max is the max norm, which is the
maximal absolute value of elements in A. The ℓ2,1 norm
[18] is defined as ∥A∥2,1 =

∑n
i=1 ∥ai∥, where ai ∈ Rm is

the i-th column of A, and ∥a∥ =
√
a′a is the ℓ2 norm of a

vector a. Besides, rank(A) denotes the rank of matrix A,
⟨A,B⟩ denotes the inner product of two matrices A and B
(i.e., ⟨A,B⟩ = trace(A′B)), and diag(·) denotes the diag-
onalization operator by converting a vector into a diagonal
matrix.

2. The LRR Problem
Let X = [x1, . . . ,xn] ∈ Rd×n be a set of data sam-

ples drawn from a union of several subspaces, where d is
the feature dimension and n is the total number of data
samples. LRR [14, 13] seeks a low-rank data representa-
tion matrix Z ∈ Rn×n such that X can be self-expressed
(i.e., X = XZ) if the data is clean. Considering that the in-
put data may contain outliers (i.e., some columns of X may
be corrupted), the LRR problem can be formulated as,

min
Z,E

∥Z∥∗ + λ∥E∥2,1 (1)

s.t. X = XZ+E, (2)

where λ is a tradeoff parameter and E ∈ Rd×n denotes the
representation error. The nuclear norm based term ∥Z∥∗
acts as an approximation of the rank regularizer [25, 24,
19], and ℓ2,1 norm based term ∥E∥2,1 encourages E to be
column-sparse.

Liu et al. [14] proposed a three-block Alternating Direc-
tion Method (3BADM) to solve the problem in (1). In par-
ticular, due to the term XZ in the constraint, it is nontrivial
to directly apply ADM for efficiently solving the original L-
RR problem. So they introduce an auxiliary variable J = Z
to solve the problem using ADM with three blocks of vari-
ables. However, this LRR solver suffers from O(n3) com-
putational complexity per iteration, and the introduction of
the auxiliary variable may slow down the convergence and
increase the memory consumption [12]. Moreover, it is d-
ifficult to generally ensure the convergence of ADM with
three or more blocks [13, 12].

To address the above drawbacks, Lin et al. [12] proposed
the accelerated linearized alternating direction method with
adaptive penalty (aLADMAP) to solve the LRR problem, in
which they solve LRR by using a variant of ADM. Specif-
ically, to address the challenging subproblem w.r.t. Z, they
proposed to linearize the quadratic term in the subprob-
lem. Moreover, to efficiently solve this subproblem, they
use a strategy [12] to predict the rank of Z in each iter-
ation and solve this subproblem based on truncated SVD

with the predicted rank, because truncated SVD is usually
faster than skinny SVD when the user-defined rank is smal-
l. They also proved that the theoretical convergence of aL-
ADMAP can be guaranteed, under the assumption that both
the subproblems in aLADMAP are exactly solved at each
iteration. However, aLADMAP may not converge to the
global optimum in practice, possibly because the subprob-
lem related to the nuclear norm based term may be solved
inexactly when the prediction of the rank of Z is inappropri-
ate. In addition, although the time complexity per iteration
for this solver is lower than that in [14], the complexity is
still quadratic w.r.t. n.

In [13], Liu et al. improved the LRR solver in [14].
Specifically, based on the observation that the optimal solu-
tion (w.r.t. the variable Z) of LRR is in span(X′) [13], they
first pre-calculate a matrix by orthogonalizing the columns
of X′, and then reformulate LRR as a problem w.r.t. {Ẑ,E},
where Ẑ ∈ Rr×n and E ∈ Rd×n. By using 3BADM to
solve the new problem, the time complexity per iteration is
at most O(d2n + d3) (assuming d ≤ n) [13]. However,
this LRR solver still suffers from the convergence issue and
additional space cost, similarly as that in [14].

In a recent work [17], Talwalkar et al. proposed a divide-
and-conquer algorithm named Divide-Factor-Combine L-
RR (DFC-LRR) to accelerate the optimization of LRR.
Specifically, they randomly partition the columns of X in-
to several submatrices, and solve the resultant subproblem
w.r.t. each submatrix by using the solver in [13]. However,
the performance (e.g., efficiency) of DFC-LRR essentially
depends on the solver of its subproblem. Besides, there are
several works (e.g., [28, 27, 26]) that study some variants of
LRR. Note those works are out of the scope of this paper,
because our main goal is to improve the efficiency when
exactly solving the LRR problem in (1).

3. Reformulating LRR via Factorized Data

In this section, we reformulate LRR via factorized data,
based on which we propose an efficient algorithm for solv-
ing LRR, and also conduct theoretical studies with regard to
the parameter λ.

Specifically, we study a more general formulation of L-
RR as follows,

min
Z∈Rn×m,E∈Rd×m

∥Z∥∗ + λ∥E∥2,1 (3)

s.t. XD = XZ+E

where X ∈ Rd×n is the data matrix, and D ∈ Rn×m is
a pre-defined matrix. We assume that XD is not a zero
matrix, otherwise it will result in the trivial (zero) solution.
Note that, when setting D = In and m = n, the above
problem is reduced to LRR in (1). We will discuss the use
of D when D ̸= In in Section 6.

To derive our reformulation of the problem in (3), we
first make the following definitions. Let r denote the rank
of X. Moreover, let us factorize X via the skinny singular
value decomposition (SVD):

X = UrSrV
′
r ,

where Ur ∈ Rd×r and Vr ∈ Rn×r are two column-wise
orthogonal matrices that satisfy U′

rUr = V′
rVr = Ir,

Sr ∈ Rr×r is a diagonal matrix defined as

Sr = diag([σ1, . . . , σr]
′) ,

in which {σi}ri=1 are the r positive singular values of X
sorted in descending order. Based on the definitions above,
we present the reformulation by the following theorem:

Theorem 1 Let W∗ denote the optimal solution of the fol-
lowing problem,

min
W∈Rr×m

∥W∥∗ + λ∥Sr(V
′
rD−W)∥2,1 . (4)

Then, {Z∗,E∗}, defined as{
Z∗ = VrW

∗

E∗ = XD−XVrW
∗ ,

is the optimal solution of the problem in (3). In particular,
∥Z∗∥∗ = ∥W∗∥∗ and ∥E∗∥2,1 = ∥Sr(V

′
rD −W∗)∥2,1

always hold, implying that the two problems in (3) and (4)
have equal optimal objective values.

Proof 1 Given page limitation, we sketch the outline of the
proof of Theorem 1 here. First, the feasibility of {Z∗,E∗}
can be easily verified by

XZ∗ +E∗ = XVrW
∗ + (XD−XVrW

∗) = XD.

To prove that {Z∗,E∗} is optimal to the problem in (3),
we need to show that for any feasible solution {Z,E}, the
following inequality holds:

∥Z∥∗ + λ∥E∥2,1 ≥ ∥Z∗∥∗ + λ∥E∗∥2,1 .

To this end, we prove the following lines.

∥Z∥∗ + λ∥E∥2,1
≥ ∥V′

rZ∥∗ + λ∥Sr(V
′
rD−V′

rZ)∥2,1
≥ ∥W∗∥∗ + λ∥Sr(V

′
rD−W∗)∥2,1

= ∥Z∗∥∗ + λ∥E∗∥2,1 .

In fact, the first inequality holds because we have ∥E∥2,1 =
∥Sr(V

′
rD−V′

rZ)∥2,1 and ∥Z∥∗ ≥ ∥V′
rZ∥∗ based on the

feasibility of {Z,E} and some properties of the ℓ2,1 norm
and the nuclear norm, the second inequality holds because
W∗ is the optimal solution of the problem in (4), and the
last equality can be verified by proving ∥Z∗∥∗ = ∥W∗∥∗
and ∥E∗∥2,1 = ∥Sr(V

′
rD−W∗)∥2,1.

Note that, the size of W ∈ Rr×m is no larger than
Z ∈ Rn×m since we have r ≤ n. Moreover, consider-
ing that Sr is a diagonal matrix and V′

rD can be treated as
a pre-computed matrix, the new formulation in (4) does not
contain matrix-matrix multiplication between full matrices.

Based on Theorem 1, we can analyze the problem in (3)
by studying the problem in (4) instead. In particular, we
propose a fast LRR solver called FaLRR to obtain the so-
lution of the LRR problem in (1) based on Theorem 1, for
which the core part is to solve the problem in the form of (4).
In Section 4, we show that the problem in (4) can be effi-
ciently solved by ADM with two blocks of variables, where
the resultant subproblems can be exactly solved. Thus, the
global optimum can be achieved. Moreover, based on the
new problem in (4), we present our theoretical results re-
garding the influence of the parameter λ in Section 5.

4. Optimization
To solve the problem in (4), we first equivalently rewrite

it as a two-variable optimization problem for ease of op-
timization. Specifically, by introducing another variable
Q ∈ Rr×m, we rewrite the problem in (4) as follows:

min
W,Q∈Rr×m

∥W∥∗ + λ∥SrQ∥2,1 (5)

s.t. W +Q = V′
rD.

The corresponding augmented Lagrangian [2] is

Lρ(W,Q,L)

= ∥W∥∗ + λ∥SrQ∥2,1 + ⟨L,V′
rD−W −Q⟩

+
ρ

2
∥V′

rD−W −Q∥2F ,

where L ∈ Rr×m is the Lagrangian multiplier and ρ > 0 is
the penalty parameter.

By employing ADM, we iteratively update the variables
{W,Q}, the Lagrange multiplier L and the penalty param-
eter ρ until convergence, as shown in Algorithm 1. In par-
ticular, we introduce how to efficiently and exactly solve the
subproblems for updating the variables {W,Q} as follows.

4.1. Updating W

The subproblem minW Lρ (W,Qt,Lt) for updating W
is given by

min
W∈Rr×m

∥W∥∗ +
ρ

2
∥W −G∥2F , (6)

where G ∈ Rr×m is defined as G = V′
rD−Qt + Lt/ρ.

Based on Theorem 2.1 in [4], the optimal solution of the
problem (6) can be obatined by applying the singular value
shrinkage operator to G, i.e.,

D1/ρ(G) = UGdiag

(
[sG − 1

ρ
1]+

)
V′

G, (7)

Algorithm 1 Solving the problem in (4).

Input: Sr, Vr, D and λ.
Initialize W0 = Q0 = L0 = Or×m, t = 0, and set the
parameters ρ, ρmax, γ and ε.
while not converged do

1. Wt+1 = argminW Lρ (W,Qt,Lt).
2. Qt+1 = argminQ Lρ (Wt+1,Q,Lt).
3. Lt+1 = Lt + ρ(V′

rD−Wt+1 −Qt+1).
4. ρ = min(γρ, ρmax).
5. t = t+ 1.
6. Check whether the following convergence condition
is satisfied: ∥V′

rD−Wt −Qt∥max≤ϵ.
end while
Output: W∗ = Wt

where UGdiag(sG)V
′
G is the skinny SVD of G, and [·]+ is

a thresholding operator by setting the negative elements to
zeros.

Interestingly, D1/ρ(G) can be calculated in another way.
Assume that we know the number of singular values in sG
that are greater than 1/ρ, and let p denote it. Then, D1/ρ(G)
can also be calculated as

D1/ρ(G) = ÛG

(
diag(ŝG)−

1

ρ
Ip

)
V̂′

G, (8)

where ÛG ∈ Rr×p, V̂G ∈ Rm×p and ŝG ∈ Rp are
obtained from the truncated SVD (with rank p) of G,
i.e., ÛGdiag(ŝG)V̂

′
G.

Since truncated SVD only calculates the largest p sin-
gular values rather than all positive singular values, it is
usually faster than skinny SVD when p is not very large.
Therefore, it is used in [12] to improve the efficiency when
solving the nuclear norm related problem which is similar
to (6). However, when p is large, truncated SVD might be
even slower than skinny SVD in practice. Therefore, such
a strategy cannot always guarantee the improvement of ef-
ficiency. Moreover, given G and ρ, it is non-trivial to accu-
rately estimate p, and inappropriate estimation may result
in a suboptimal solution of (6).

Therefore, we propose a tentative strategy. In particu-
lar, we first progressively calculate at most min(r, pmax)
largest singular values of G (where pmax is empirically set
to 5 in this work), and compare the smallest one of them
with 1

ρ . If it is not larger than 1
ρ , which indicates p ≤ pmax,

then we obtain ŝG based on these singular values and re-
cover {ÛG, V̂G} to calculate D1/ρ(G) as in (8). Other-
wise, we directly perform skinny SVD on G to calculate
D1/ρ(G) as in (7), and we will not do such attempt in the
subsequent iterations in Algorithm 1, because p (depends
on ρ and G) usually increases as the number of iterations
increases according to our experimental observations. Note

that, our method guarantees the exact solution to the prob-
lem in (6) without estimating p.

4.2. Updating Q

The subproblem minQ Lρ (Wt+1,Q,Lt) for updating
Q is given by,

min
Q∈Rr×m

λ∥SrQ∥2,1 +
ρ

2
∥Q−C∥2F , (9)

where C ∈ Rr×m is defined as C = V′
rD−Wt+1+Lt/ρ.

Let us denote the i-th column of Q and C as qi and ci,
respectively. Then the above problem can be rewritten as

min
{qi}m

i=1

λ
m∑
i=1

∥Srqi∥+
ρ

2

m∑
i=1

∥qi − ci∥2, (10)

which is separable w.r.t. {qi}mi=1. Therefore, we solve it
by optimizing m subproblems, with each in the following
form:

min
q∈Rr

∥Srq∥+
µ

2
∥q− c∥2, (11)

where the subscripts of qi and ci are dropped for convenient
presentation, µ is defined as µ = ρ

λ . The corresponding
optimal solution is

q∗ =

{
[µαc1
µα+σ2

1
, . . . , µαcr

µα+σ2
r
]′, if ∥S−1

r c∥ > 1
µ

0r, otherwise
, (12)

where ci denotes the i-th element of c ∀i = 1, . . . , r, and in
the case of ∥S−1

r c∥ > 1
µ , α can be obtained as the unique

positive root of
∑r

i=1(
ciσi

µα+σ2
i
)2 = 1

µ2 by using the bisection
method [3].

4.3. Time Complexity

The time complexity for iterative algorithms (such
as 3BADM [13], aLADMAP [12] and the proposed Algo-
rithm 1) mainly depends on two aspects: the total number
of iterations and the computational cost per iteration. We
observe that the total number of iterations of the proposed
Algorithm 1 is often relatively small (see Figure 3). So we
focus on the discussion of the computational cost per itera-
tion as follows.

For Algorithm 1, the most time-consuming steps at each
iteration are updating W and updating Q. In particular, for
updating W, the time complexity is usually no more than
O(rmmin(r,m)), given that pmax is small. To update Q,
we solve m subproblems, each with O(r) time complexity,
so the time complexity for updating Q is O(rm). In sum-
mary, for Algorithm 1, the total time complexity of each
iteration is O(rmmin(r,m) + rm). Particularly, for solv-
ing the LRR problem in (1) where m = n and r ≤ n, the

time complexity per iteration for FaLRR is O(nr2 + nr).
In contrast, the time complexity per iteration is at most
O(nd2 + d3) (assuming d ≤ n) for 3BADM [13], and
O(n2r̂) [12] for aLADMAP, where r̂ denotes the rank of
Z in one iteration of aLADMAP.

5. Theoretical Study

In this section, based on the new formulation (4), we
present some theoretical results w.r.t. the influence of the
parameter λ.

To avoid confusion, let W∗
λ denote the optimal solution

to the problem in (4) given the parameter λ, i.e.,

W∗
λ = argminW∈Rr×m∥W∥∗ + λ∥Sr(V

′
rD−W)∥2,1.

In addition, let

F (λ) = ∥W∗
λ∥∗ + λ∥Sr(V

′
rD−W∗

λ)∥2,1

denote the optimal objective value of the problem in (4).
Firstly, we have the following lemma that shows the be-

haviors of F (λ), ∥W∗
λ∥∗ and ∥Sr(V

′
rD −W∗

λ)∥2,1 when
the positive parameter λ increases.

Lemma 1 F (λ) and ∥W∗
λ∥∗ are both non-decreasing

w.r.t. λ > 0, while ∥Sr(V
′
rD−W∗

λ)∥2,1 is non-increasing
w.r.t. λ > 0.

Moreover, it is clear that 0 ≤ rank(W∗
λ) ≤ min(r,m),

given that W∗
λ ∈ Rr×m. Based on Lemma 1, we show a

lower-bound of rank(W∗
λ) in the following theorem.

Theorem 2 For any positive λ, the rank of W∗
λ satisfies

rank(W∗
λ) ≥

∥W∗
λ∥∗

∥V′
rD∥2 + 1

σr
∥Sr(V′

rD−W∗
λ)∥2,1

, (13)

where the right-hand side is non-decreasing w.r.t. λ.

In particular, the non-decreasing property of the right-hand
side of (13) can be easily obtained according to Lemma 1.
We omit the detailed proofs of Lemma 1 and Theorem 2,
due to the page limitation.

Based on Theorem 2, if λ is large, rank(W∗
λ) tends to be

large since its lower-bound is non-decreasing w.r.t. λ. In this
case, W in the last few iterations of Algorithm 1 tends to
have a large rank, so updating W via (8) based on truncated
SVD may be inefficient. This motivated us to design the
tentative strategy in Section 4.1. In addition, regarding the
influence of λ for the LRR problem in (1), we can draw
similar conclusions to Lemma 1 and Theorem 2 according
to Theorem 1.

Algorithm 2 Incorporating Algorithm 1 into DFC-LRR.

Input: Sr, Vr, λ, q.
1. Randomly generate Î and split Î into {Di}qi=1.
2. ∀i = 1, . . . , q, obtain W∗

i via Algorithm 1 with input
{Sr,Vr,Di, λi}, then calculate Z∗

i = VrW
∗
i .

3. Z∗
DFC=ColumnProjection([Z∗

1, . . . ,Z
∗
q],Z

∗
1) [17].

Output: Z∗
DFC .

6. Incorporation into DFC-LRR
The distributed framework DFC-LRR [17] involves three

steps. Firstly, the columns of X are randomly partitioned in-
to q submatrices {Xi ∈ Rd×ni}qi=1, where ni’s are approx-
imately equal, and

∑q
i=1 ni = n. After that, we obtain the

minimizers {Z∗
i }

q
i=1 by solving q subproblems, with each

in the following form:

min
Zi∈Rn×ni ,Ei∈Rd×ni

∥Zi∥∗ + λi∥Ei∥2,1 (14)

s.t. Xi = XZi +Ei (15)

where λi = λ
√
n/ni is a rescaled parameter. Finally, we

calculate Z∗
DFC ∈ Rn×n based on {Z∗

i }
q
i=1 via column

projection (see [17] for the details), so that Z∗
DFC is an ap-

proximated solution of the LRR problem in (1).
Interestingly, the problem in (14) can be rewritten in the

form of (3), and thus can be solved using the proposed Al-
gorithm 1. To be exact, we can replace Xi ∈ Rd×ni in (15)
with XDi, where each Di ∈ {0, 1}n×ni is a column sub-
matrix of Î (in other words, [D1, . . . ,Dq] = Î), in which
Î is obtained by randomly reordering the columns of an i-
dentity matrix In. Algorithm 2 details how Algorithm 1 is
incorporated into DFC-LRR, where the second step can be
implemented in parallel.

7. Experiments
In the experiments, we compare our FaLRR with the ex-

isting LRR solvers in [12, 13] for exactly solving the LRR
problem. Moreover, we compare the efficiency of Algorith-
m 2 with that of the original DFC-LRR proposed in [17].

All the experiments are conducted on a desktop with
Intel Xeon CPU (3.2GHz), 16GB memory and MATLAB
R2012b, and we record the running time for each algorithm.
For [13], [12] and [17], we use the codes which are available
online [13, 12] or provided by the authors [17]. We prepro-
cess the data by orthogonalizing the columns of X′ for the
LRR solver in [13] and DFC-LRR [17], or by performing1

skinny SVD on X for FaLRR and Algorithm 2. The time of
preprocessing is not counted into the running time of these

1On the real-world datasets, namely the ExtYaleB, NH, LFW100+,
LFW50+ and HARUS datasets, it takes 0.13, 19.64, 0.07, 0.09 and 0.99
seconds, respectively.

Table 1: The running time (in seconds) and subspace clustering accuracies (%) for solving the LRR problem on the ExtYaleB,
NH, LFW 100+, LFW 50+ datasets and the HARUS dataset. “SPEEDUP” denotes the ratio between the running time of a
baseline method and that of our FaLRR.

DATASET d n r
RUNNING TIME (SEC) / CLUSTERING ACCURACY (%) SPEEDUP

FALRR [12] [13] VS. [12] VS. [13]
EXTYALEB 2016 640 640 1.56/79.22 557.20/79.53 56.50/79.22 357 36
NH 6608 4660 4660 126.68/99.94 4506.52/99.81 11033.27/99.98 36 87
LFW 100 + 1000 500 500 0.77/99.40 149.61/99.40 21.36/99.40 194 28
LFW 50 + 1000 600 600 0.95/98.00 13.89/98.00 29.60/98.00 15 31
HARUS 561 10299 471 8.64/82.93 4924.40/71.57 662.78/51.37 570 77

10
−4

10
−2

10
0

1

10

100

1000

10000

λ

ru
n

n
in

g
 t

im
e

 (
s
e

c
)

[13]

[12]

FaLRR

(a) ExtYaleB

10
−4

10
−2

10
0

10

100

1000

10000

λ

ru
n

n
in

g
 t

im
e

 (
s
e

c
)

[13]

[12]

FaLRR

(b) NH

10
−2

10
0

1

10

100

1000

λ

ru
n

n
in

g
 t

im
e

 (
s
e

c
)

[13]

[12]

FaLRR

(c) LFW 100+

10
−2

10
0

1

10

100

1000

λ

ru
n

n
in

g
 t

im
e

 (
s
e

c
)

[13]

[12]

FaLRR

(d) LFW 50+

10
−4

10
−2

10
0

10

100

1000

10000

λ

ru
n

n
in

g
 t

im
e

 (
s
e

c
)

[13]

[12]

FaLRR

(e) HARUS

Figure 1: The running time (in seconds) w.r.t. λ, for solving the LRR problem on the real-world datasets. The positions of
markers indicate the optimal parameters for the three LRR solvers, respectively.

algorithms, because it only needs to be conducted once on
each dataset and the computation is fast. Following [17],
for DFC-LRR and our Algorithm 2, we report the parallel
running time, namely the longest one of running times for
solving the subproblems in DFC-LRR plus the running time
for combining the minimizers of subproblems via column
projection.

To obtain the clustering results, we follow [13] to build
the affinity matrix based on the resultant solution of LRR,
and then perform spectral clustering on it. To evaluate the
clustering performance, we calculate the clustering accura-
cy (also called segmentation accuracy) [14, 13, 17]. Follow-
ing [14, 13], we tune the parameter λ for each LRR solver
and report the best clustering performance.

7.1. Experiments on realworld datasets

Datasets: In this experiment, we compare differen-
t methods for solving the LRR problem for clustering face
images or human activities. To this end, we use the follow-
ing datasets:

The Extended Yale Face Database B (ExtYaleB) con-
tains 2, 414 frontal face images of 38 subjects, with differ-
ent lighting, poses and illumination conditions. There are
about 64 faces for each subject. In the experiment, we fol-
low [14, 17] to use 640 faces corresponding to the first 10
subjects. We resize each face image to 48 × 42 pixels and
extract the 2016-dimensional gray-level intensity feature for
representing each face image.

The Notting-Hill (NH) dataset [22, 23, 5] consists of
4, 660 face images of 5 main casts detected in a movie
called “Notting Hill”. The face images in this dataset are
taken in the unconstrained environments, with variations in
poses, facial expressions, illumination and occlusions. We
resize each face image to 48 × 42 pixels, and uniformly
divide it into 16× 7 non-overlapping blocks. Then, we ex-
tract 59-dimensional Local Binary Patterns (LBP) [16, 11]
descriptor from each block and concatenate them to form a
6, 608-dimensional feature vector.

The Labeled Faces in the Wild (LFW) dataset [10, 6] is
a benchmark face database. It contains more than 10, 000
in-the-wild faces from 5, 749 subjects, with large variation-
s in poses, facial expressions, illumination and occlusions.
Note that in this database, many subjects have only a few
faces. To guarantee that we have sufficient faces per subjec-
t, we use two subsets of this database. Each subset consists
of the subjects with at least nface faces, where nface is 100
or 50. Accordingly, the two subsets are referred to as “LFW
100+” and “LFW 50+”, respectively. The first nface faces
for each subject are used in each subset. To represent each
face, we use the 1000-dimensional deep learning based fea-
ture [8] provided by Face++2, because of the excellent face
recognition performance on the LFW benchmark.

The Human Activity Recognition Using Smartphones
(HARUS) dataset [1] is a large dataset with data collected

2http://www.faceplusplus.com/

10
−4

10
−2

10
0

1

10

100

1000

λ

o
b

je
c
ti
v
e

 v
a

lu
e

[13]

[12]

FaLRR

(a) ExtYaleB

10
−4

10
−2

10
0

10

100

1000

10000

λ

o
b

je
c
ti
v
e

 v
a

lu
e

[13]

[12]

FaLRR

(b) NH

10
−2

10
0

1

10

100

1000

λ

o
b

je
c
ti
v
e

 v
a

lu
e

[13]

[12]

FaLRR

(c) LFW 100+

10
−2

10
0

1

10

100

1000

λ

o
b

je
c
ti
v
e

 v
a

lu
e

[13]

[12]

FaLRR

(d) LFW 50+

10
−4

10
−2

10
0

1

10

100

1000

λ

o
b

je
c
ti
v
e

 v
a

lu
e

[13]

[12]

FaLRR

(e) HARUS

Figure 2: The resultant objective value w.r.t. λ, for solving the LRR problem on the real-world datasets. The positions of
markers indicate the optimal parameters for the three LRR solvers, respectively. Note the curves may overlap when different
LRR solvers achieve the same objective values.

10
−4

10
−2

10
0

10

100

300

λ

#
 i
te

ra
ti
o

n
s

[13]

[12]

FaLRR

(a) ExtYaleB

10
−4

10
−2

10
0

10

100

300

λ

#
 i
te

ra
ti
o

n
s

[13]

[12]

FaLRR

(b) NH

10
−2

10
0

10

100

300

λ

#
 i
te

ra
ti
o

n
s

[13]

[12]

FaLRR

(c) LFW 100+

10
−2

10
0

10

100

300

λ

#
 i
te

ra
ti
o

n
s

[13]

[12]

FaLRR

(d) LFW 50+

10
−4

10
−2

10
0

10

100

300

λ

#
 i
te

ra
ti
o

n
s

[13]

[12]

FaLRR

(e) HARUS

Figure 3: The total number of iterations w.r.t. λ, for solving the LRR problem on the real-world datasets. The positions of
markers indicate the optimal parameters for the three LRR solvers, respectively. “# iterations” denotes the total number of
iterations.

using embedded sensors (i.e. accelerometer and gyroscope)
on the smartphones. To collect such data, the smartphones
with embedded sensors are carried by volunteers on their
waists, when they are conducting daily activities (e.g., walk-
ing, sitting, laying). After that, the captured sensor signal-
s (3-axial linear acceleration and 3-axial angular velocity)
are pre-processed to filter noise and post-processed (e.g., by
sampling). Finally, for each signal, a 561-dimensional fea-
ture vector with time and frequency domain variables is ex-
tracted. In our experiment, we use the whole dataset with
10,299 signals w.r.t. 6 activities.

Experimental results: For the face datasets and the hu-
man activity dataset, the running times and clustering ac-
curacies of LRR solvers in [12] and [13] as well as our
FaLRR are reported in Table 1, where the running time and
clustering accuracy for each method are obtained by using
the optimal parameter from the best clustering performance.
Moreover, Figure 1, Figure 2 and Figure 3 show the running
time, the resultant objective value and the total number of
iterations w.r.t. λ, for solving the LRR problem on those
datasets3, respectively. Based on these results, we have the
following observations:

According to Table 1, our FaLRR consistently achieves
order-of-magnitude speedup over the LRR solvers in [13]
and [12] on all datasets, when all of the methods use their
optimal parameter values.

3For λ with relatively large values, some results of the LRR solver
in [12] are not available since it takes too long time.

Based on Figure 1, our FaLRR tends to be more efficien-
t when the parameter is relatively large or small, because
either the number of iterations is generally smaller (see Fig-
ure 3) or W in Algorithm 1 can be updated efficiently based
on truncated SVD according to our tentative strategy. More-
over, the running time of the LRR solver in [13] is usually
large for all values of λ, since its total number of iterations
is often large (see Figure 3), and it frequently uses matrix-
matrix multiplication (such as XZ) and skinny SVD oper-
ations in its optimization. In addition, the running time of
the LRR solver in [12] heavily depends on λ, possibly be-
cause its number of iterations is relatively sensitive to λ (see
Figure 3). Moreover, it always adopts truncated SVD when
solving its nuclear norm related subproblem, which may be
time-consuming when λ is large.

Comparing the clustering performance of the three LR-
R solvers, we observe that they achieve comparable results
on the first four datasets listed in Table 1, but there is obvi-
ous difference between their results on the HARUS dataset.
Such difference may be related to the corresponding objec-
tive values in Figure 2. On the LFW 50+ and LFW 100+
datasets, these three LRR solvers usually achieve the same
objective value and they also achieve the same best cluster-
ing accuracy (see Table 1) when using the same value of λ
(see Figure 2). However, the LRR solvers in [13, 12] cannot
result in a low objective value as our FaLRR on the HARUS
dataset (see Figure 2), which provides a possible explana-
tion of their lower clustering accuracies than ours.

Regarding the resultant objective value, our FaLRR usu-
ally achieves the minimum value. The other LRR solvers
may not always arrive at a global optimum, possibly be-
cause of inappropriate rank prediction or the lack of theo-
retical guarantee.

7.2. Experiments on synthetic datasets

In the previous experiments, we have shown the efficien-
cy of our FaLRR for solving the LRR problem on several
real-world datasets. In this experiment, we perform a more
comprehensive evaluation of its efficiency by using synthet-
ic datasets with different sizes and ranks of data. The syn-
thetic datasets are constructed similarly as those in [14, 12].
Considering that the time complexity of Algorithm 1 de-
pends on {n, r} and is irrelevant of d, we generate synthetic
data X ∈ Rd×n with rank(X) = r, where we fix d to 4000
and set {n, r} to various values.

To generate the synthetic dataset, we firstly generate the
bases {Bi}si=1 for s independent subspaces, where s is set
to 10. Specifically, we generate B1 ∈ Rd× r

s as a random
orthogonal matrix. Then, we generate T ∈ Rd×d as a ran-
dom rotation matrix, and produce the rest (s − 1) bases by
Bi+1 = TBi, i = 1, . . . , s−1. After that, we obtain BiQi

as data points sampled from each subspace ∀i = 1, . . . , s,
where each Qi ∈ R r

s×
n
s is a matrix of independent en-

tries with each distributed uniformly in [0, 1]. Since the
experiments on the synthetic datasets are used for efficien-
cy evaluation of FaLRR, we simply use clean data without
adding outliers. Finally, we obtain the matrix X ∈ Rd×n as
X = [B1Q1, . . . ,BsQs].

For solving the LRR problem on each X whose scale is
characterized by {n, r}, we set the parameter λ in the form
of λ = a × 10κ, where a ∈ {1, . . . , 9}, κ ∈ Z lies in a
sufficiently large range. After running FaLRR with λ set to
these values, we report the running time corresponding to
the parameter value that leads to the longest time.

Figure 4a and Figure 4b show the running times of our
FaLRR w.r.t. n and r, respectively, for solving the LRR
problem on the synthetic datasets. It is observed that, even
for data with relatively large size and rank, e.g., n = 10000
and r = 3000, FaLRR is still efficient, with its running time
around 2 minutes. According to Figure 4a and Figure 4b,
the running time of FaLRR is approximately linear w.r.t. n
and quadratic w.r.t. r.

7.3. Experiment with DFCLRR

In this experiment, we compare the efficiency of Algo-
rithm 2, the original DFC-LRR in [17], FaLRR and the L-
RR solver in [13]. We conduct this experiment on the NH
dataset, since solving the LRR problem on this real-world
dataset is relatively time-consuming for the LRR solvers
(see Table 1 and Figure 1). For Algorithm 2 and the o-
riginal DFC-LRR, the number of submatrices is set to 10.

(a) Running time w.r.t. n (b) Running time w.r.t. r

Figure 4: The running time of FaLRR w.r.t. n and r, for
solving the LRR problem on the synthetic datasets .

10
−4

10
−3

10
−2

10
−1

10
0

1

10

100

1000

10000

λ

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

LRR [13]

DFC−LRR [17]

Algorithm 1 (FaLRR)

Algorithm 2

Figure 5: The running time of different algorithms w.r.t. λ,
on the NH dataset.

Figure 5 shows the running times of these algorithms on the
NH dataset.

It is observed that, Algorithm 2 is consistently faster
than FaLRR, with the longest running time reduced from
over 100 seconds to less than 10 seconds. Similarly,
DFC-LRR proposed in [17] usually achieves more than
10 times speedup over the LRR solver in [13]. More-
over, we also observe that our FaLRR already outperforms
DFC-LRR in [17] in terms of the running time, which a-
gain demonstrates the efficiency of our FaLRR. Last but
not least, by incorporating Algorithm 1 into the distribut-
ed framework DFC-LRR, our Algorithm 2 achieves an im-
pressive speedup (about 1000 times speedup) over the LRR
solver in [13], with the running time reduced from about 3
hours to less than 10 seconds.

8. Conclusion
In this paper, we have developed a fast LRR solver called

FaLRR which is guaranteed to result in a global optimum,
based on our new reformulation of the LRR problem. More-
over, our theoretical study shows the influence of the pa-
rameter in LRR. In addition, our proposed algorithm can
be easily incorporated into the distributed framework called
DFC-LRR. The extensive experiments have demonstrated
that our FaLRR is usually much faster than existing solvers
[12, 13] for solving the LRR problem, and that incorporat-
ing our algorithm into the distributed framework DFC-LRR
can further improve the efficiency.

Acknowledgement
This research is supported in part by the Singapore Na-

tional Research Foundation under its IDM Futures Funding
Initiative and administered by the Interactive & Digital Me-
dia Programme Office, Media Development Authority, the
Singapore MoE Tier 2 Grant (ARC42/13), as well as Aus-
tralian Research Council Projects (FT-130101457 and DP-
140102164).

References
[1] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-

Ortiz. Human activity recognition on smartphones using a
multiclass hardware-friendly support vector machine. In Am-
bient assisted living and home care, pages 216–223. 2012.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1):1–122, 2011.

[3] R. Burden and J. Faires. Numerical analysis. Cengage
Learning, 2011.

[4] J. Cai, C. Emmanuel, and Z. Shen. A singular value thresh-
olding algorithm for matrix completion. SIAM Journal on
Optimization, 20(4):1956–1982, 2010.

[5] X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang. Diversity-
induced multi-view subspace clustering. In CVPR, 2015.

[6] Z. Cui, W. Li, D. Xu, S. Shan, and X. Chen. Fusing robust
face region descriptors via multiple metric learning for face
recognition in the wild. In CVPR, pages 3554–3561, 2013.

[7] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algo-
rithm, theory, and applications. T-PAMI, 35(11):2765–2781,
2013.

[8] H. Fan, Z. Cao, Y. Jiang, Q. Yin, and C. Doudou. Learning
deep face representation. arXiv preprint arXiv:1403.2802,
2014.

[9] H. Fu, D. Xu, S. Lin, D. W. K. Wong, and J. Liu. Automatic
optic disc detection in oct slices via low-rank reconstruction.
T-BME, 62(4):1151–1158, 2015.

[10] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Re-
port 07-49, University of Massachusetts, Amherst, October
2007.

[11] M. Kan, D. Xu, S. Shan, W. Li, and X. Chen. Learning
prototype hyperplanes for face verification in the wild. T-IP,
22(8):3310–3316, 2013.

[12] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction
method with adaptive penalty for low-rank representation. In
NIPS, pages 612–620, 2011.

[13] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust
recovery of subspace structures by low-rank representation.
T-PAMI, 35(1):171–184, 2013.

[14] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by
low-rank representation. In ICML, pages 663–670, 2010.

[15] A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering:
Analysis and an algorithm. In NIPS, pages 849–856, 2002.

[16] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. T-PAMI, 24(7):971–987, 2002.

[17] A. Talwalkar, L. Mackey, Y. Mu, S.-F. Chang, and M. I. Jor-
dan. Distributed low-rank subspace segmentation. In ICCV,
pages 3543–3550, 2013.

[18] M. Tan, Q. Shi, A. van den Hengel, C. Shen, J. Gao, F. Hu,
and Z. Zhang. Learning graph structure for multi-label image
classification via clique generation. In CVPR, 2015.

[19] M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. J.
Pan. Riemannian pursuit for big matrix recovery. In ICML,
pages 1539–1547, 2014.

[20] R. Vidal, Y. Ma, and S. Sastry. Generalized principal com-
ponent analysis (GPCA). T-PAMI, 27(12):1945–1959, 2005.

[21] U. Von Luxburg. A tutorial on spectral clustering. Statistics
and computing, 17(4):395–416, 2007.

[22] B. Wu, Y. Zhang, B.-G. Hu, and Q. Ji. Constrained clustering
and its application to face clustering in videos. In CVPR,
pages 3507–3514, 2013.

[23] S. Xiao, M. Tan, and D. Xu. Weighted block-sparse low rank
representation for face clustering in videos. In ECCV, pages
123–138, 2014.

[24] Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting low-rank struc-
ture from latent domains for domain generalization. In EC-
CV, pages 628–643, 2014.

[25] Z. Zeng, S. Xiao, K. Jia, T. Chan, S. Gao, D. Xu, and Y. Ma.
Learning by associating ambiguously labeled images. In
CVPR, pages 708–715, 2013.

[26] H. Zhang, Z. Yi, and X. Peng. fLRR: fast low-rank
representation using Frobenius-norm. Electronics Letters,
50(13):936–938, 2014.

[27] X. Zhang, F. Sun, G. Liu, and Y. Ma. Fast low-rank subspace
segmentation. T-KDE, 26(5):1293–1297, 2014.

[28] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu.
Non-negative low rank and sparse graph for semi-supervised
learning. In CVPR, pages 2328–2335, 2012.

