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Abstract

Automatically describing an image with a sentence is
a long-standing challenge in computer vision and natu-
ral language processing. Due to recent progress in object
detection, attribute classification, action recognition, etc.,
there is renewed interest in this area. However, evaluat-
ing the quality of descriptions has proven to be challeng-
ing. We propose a novel paradigm for evaluating image
descriptions that uses human consensus. This paradigm
consists of three main parts: a new triplet-based method
of collecting human annotations to measure consensus, a
new automated metric that captures consensus, and two
new datasets: PASCAL-50S and ABSTRACT-50S that con-
tain 50 sentences describing each image. Our simple metric
captures human judgment of consensus better than exist-
ing metrics across sentences generated by various sources.
We also evaluate five state-of-the-art image description ap-
proaches using this new protocol and provide a benchmark
for future comparisons. A version of CIDEr named CIDEr-
D is available as a part of MS COCO evaluation server to
enable systematic evaluation and benchmarking.

1. Introduction

Recent advances in object recognition [15], attribute
classification [23], action classification [26, 9] and crowd-
sourcing [40] have increased the interest in solving higher
level scene understanding problems. One such problem is
generating human-like descriptions of an image. In spite
of the growing interest in this area, the evaluation of novel
sentences generated by automatic approaches remains chal-
lenging. Evaluation is critical for measuring progress and
spurring improvements in the state of the art. This has
already been shown in various problems in computer vi-
sion, such as detection [13, 7], segmentation [13, 28], and
stereo [39].

Existing evaluation metrics for image description at-
tempt to measure several desirable properties. These in-
clude grammaticality, saliency (covering main aspects), cor-
rectness/truthfulness, etc. Using human studies, these prop-

erties may be measured, e.g. on separate one to five [29, 37,
44, 11] or pairwise scales [45]. Unfortunately, combining
these various results into one measure of sentence quality is
difficult. Alternatively, other works [22, 18] ask subjects to
judge the overall quality of a sentence.

An important yet non-obvious property exists when im-
age descriptions are judged by humans: What humans like
often does not correspond to what is human-like.1 We in-
troduce a novel consensus-based evaluation protocol, which
measures the similarity of a sentence to the majority, or con-
sensus of how most people describe the image (Fig. 1). One
realization of this evaluation protocol uses human subjects
to judge sentence similarity between a candidate sentence
and human-provided ground truth sentences. The question
“Which of two sentences is more similar to this other sen-
tence?” is posed to the subjects. The resulting quality score
is based on how often a sentence is labeled as being more
similar to a human-generated sentence. The relative nature
of the question helps make the task objective. We encour-
age the reader to review how a similar protocol has been
used in [41] to capture human perception of image similar-
ity. These annotation protocols for similarity may be un-
derstood as instantiations of 2AFC (two alternative forced
choice) [3], a popular modality in psychophysics.

Since human studies are expensive, hard to reproduce,
and slow to evaluate, automatic evaluation measures are
commonly desired. To be useful in practice, automated
metrics should agree well with human judgment. Some
popular metrics used for image description evaluation are
BLEU [33] (precision-based) from the machine transla-
tion community and ROUGE [46] (recall-based) from the
summarization community. Unfortunately, these metrics
have been shown to correlate weakly with human judg-
ment [22, 11, 4, 18]. For the task of judging the overall qual-
ity of a description, the METEOR [11] metric has shown
better correlation with human subjects. Other metrics rely
on the ranking of captions [18] and cannot evaluate novel

1This is a subtle but important distinction. We show qualitative exam-
ples of this in [42]. That is, the sentence that is most similar to a typical
human generated description is often not judged to be the “best” descrip-
tion. In this paper, we propose to directly measure the “human-likeness”
of automatically generated sentences.
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Mike has a baseball and Jenny has 
a basketball.!
!
Jenny is holding a basketball and 
Mike is holding a baseball.!
!
Jenny is playing with a basketball 
and Mike is playing with a baseball.!
!
Jenny brought a bigger ball than Mike. 
!
Mike is sad that Jenny is leaving in 
five days.

. 

A cow is standing in a field.!
!
A cow with horns and long hair 
covering its face stands in a field.!
!
A cow with hair over its eyes stands 
in a field.!
!
This horned creature is getting his 
picture taken. 
!
A furry animal with horns roams on the 
range.

Figure 1: Images from our PASCAL-50S (left) and ABSTRACT-50S (right) datasets with a subset of corresponding (human)
sentences. Sentences shown in bold are representative of the consensus descriptions for these images. We propose to capture
such descriptions with our evaluation protocol.

image descriptions.
We propose a new automatic consensus metric of image

description quality – CIDEr (Consensus-based Image De-
scription Evaluation). Our metric measures the similarity of
a generated sentence against a set of ground truth sentences
written by humans. Our metric shows high agreement with
consensus as assessed by humans. Using sentence similar-
ity, the notions of grammaticality, saliency, importance and
accuracy (precision and recall) are inherently captured by
our metric.

Existing datasets popularly used to evaluate image de-
scription approaches have a maximum of only five descrip-
tions per image [35, 18, 32]. However, we find that five
sentences are not sufficient for measuring how a “majority”
of humans would describe an image. Thus, to accurately
measure consensus, we collect two new evaluation datasets
containing 50 descriptions per image – PASCAL-50S and
ABSTRACT-50S. The PASCAL-50S dataset is based on the
popular UIUC Pascal Sentence Dataset, which has 5 de-
scriptions per image. This dataset has been used for both
training and testing in numerous works [29, 22, 14, 37]. The
ABSTRACT-50S dataset is based on the dataset of Zitnick
and Parikh [47]. While previous methods have only evalu-
ated using 5 sentences, we explore the use of 1 to ∼50 ref-
erence sentences. Interestingly, we find that most metrics
improve in performance with more sentences.2 Inspired by
this finding, the MS COCO testing dataset now contains 5K
images with 40 reference sentences to boost the accuracy of
automatic measures [5].

Contributions: In this work, we propose a consensus-
based evaluation protocol for image descriptions. We in-
troduce a new annotation modality for human judgment,
a new automated metric, and two new datasets. We com-
pare the performance of five state-of-the-art machine gen-
eration approaches [29, 22, 14, 37]. Our code and datasets
are available on the author’s webpages. Finally, to facilitate
the adoption of this protocol, we have made CIDEr avail-
able as a metric on the newly released MS COCO caption
evaluation server [5].

2Except BLEU computed on unigrams

2. Related Work

Vision and Language: Numerous papers have stud-
ied the relationship between language constructs and im-
age content. Berg et al. [2] characterize the relative im-
portance of objects (nouns). Zitnick and Parikh [47] study
relationships between visual and textual features by creat-
ing a synthetic Abstract Scenes Dataset. Other works have
modeled prepositional relationships [16], attributes (adjec-
tives) [23, 34], and visual phrases (i.e. visual elements that
co-occur) [38]. Recent works have utilized techniques in
deep learning to learn joint embeddings of text and image
fragments [20].

Image Description Generation: Various methods have
been explored for generating full descriptions for images.
Broadly, the techniques are either retrieval- [14, 32, 18] or
generation-based [29, 22, 45, 37]. While some retrieval-
based approaches use global retrieval [14], others retrieve
text phrases and stitch them together in an approach in-
spired by extractive summarization [32]. Recently, gener-
ative approaches based on combination of Convolutional
and Recurrent Neural Networks [19, 6, 10, 43, 27, 21] have
created a lot of excitement. Other generative approaches
have explored creating sentences by inference over image
detections and text-based priors [22] or exploiting word co-
occurrences using syntactic trees [29]. Rohrbach et al. [37]
propose a machine translation approach that goes from an
intermediate semantic representation to sentences. Some
other approaches include [17, 24, 44, 45]. Most of the ap-
proaches use the UIUC Pascal Sentence [14, 22, 29, 37, 17]
and the MS COCO datasets [19, 6, 10, 43, 27, 21] for eval-
uation. In this work we focus on the problem of evaluating
image captioning approaches.

Automated Evaluation: Automated evaluation metrics
have been used in many domains within Artificial Intel-
ligence (AI), such as statistical machine translation and
text summarization. Some of the popular metrics in ma-
chine translation include those based on precision, such as
BLEU [33] and those based on precision as well as recall,
such as METEOR [1]. While BLEU (BiLingual Evaluation
Understudy) has been the most popular metric, its effective-



(a)

Reference Sentences!

R1: A bald eagle sits on a perch. 

R2: An american bald eagle sitting on 
a branch in the zoo. 

R3: Bald eagle perched on piece of 
lumber. 

…!

R50: A large bird standing on a tree 
branch.

(b)

Candidate Sentences!

C1: An eagle is perched among trees. 

C2: A picture of a bald eagle on a 
rope stem. 

Triplet Annotation!
Which of the sentences, B or C, is 

more similar to sentence A? 
Sentence A : Anyone from R1 to R50!
Sentence B : C1!
Sentence C : C2 

(c)
Figure 2: Illustration of our triplet annotation modality. Given an image (a), with reference sentences (b) and a pair of
candidate sentences (c, top), we match them with a reference sentence one by one to form triplets (c, bottom). Subjects are
shown these 50 triplets on Amazon Mechanical Turk and asked to pick which sentence (B or C) is more similar to sentence
A.

ness has been repeatedly questioned [22, 11, 4, 18]. A popu-
lar metric in the summarization community is ROUGE [46]
(Recall Oriented Understudy of Gisting Evaluation). This
metric is primarily recall-based and thus has a tendency to
reward long sentences with high recall. These metrics have
been shown to have weak to moderate correlation with hu-
man judgment [11]. Recently, METEOR has been used
for image description evaluation with more promising re-
sults [12]. Another metric proposed by Hodosh et al. [18]
can only evaluate ranking-based approaches, it cannot eval-
uate novel sentences. We propose a consensus-based met-
ric that rewards a sentence for being similar to the major-
ity of human written descriptions. Interestingly, similar
ideas have been used previously to evaluate text summa-
rization [31].

Datasets: Numerous datasets have been proposed for
studying the problem of generating image descriptions.
The most popular dataset is the UIUC Pascal Sentence
Dataset [35]. This dataset contains 5 human written de-
scriptions for 1,000 images. This dataset has been used
by a number of approaches for training and testing. The
SBU captioned photo dataset [32] contains one descrip-
tion per image for a million images, mined from the web.
These are commonly used for training image description
approaches. Approaches are then tested on a query set of
500 images with one sentence each. The Abstract Scenes
dataset [47] contains cartoon-like images with two descrip-
tions. The recently released MS COCO dataset [25] con-
tains five sentences for a collection of over 100K im-
ages. This dataset is gaining traction with recent im-
age description approaches [19, 6, 10, 43, 27, 21]. Other
datasets of images and associated descriptions include Im-
ageClef [30] and Flickr8K [18]. In this work, we intro-
duce two new datasets. First is the PASCAL-50S dataset
where we collected 50 sentences per image for the 1,000

images from UIUC Pascal Sentence dataset. The second
is the ABSTRACT-50S dataset where we collected 50 sen-
tences for a subset of 500 images from the Abstract Scenes
dataset. We demonstrate that more sentences per image are
essential for reliable automatic evaluation.

The rest of this paper is organized as follows. We
first give details of our triplet human annotation modality
(Sec. 3). Then we provide the details of our consensus-
based automated metric, CIDEr (Sec. 4). In Sec. 5 we pro-
vide the details of our two new image-sentence datasets,
PASCAL-50S and ABSTRACT-50S. Our contributions of
triplet annotation, metric and dataset make consensus-based
image description evaluation feasible. Our results (Sec. 7)
demonstrate that our automated metric and our proposed
datasets capture consensus better than existing choices.

All our human studies are performed on the Amazon Me-
chanical Turk (AMT). Subjects are restricted to the United
States, and other qualification criteria are imposed based on
worker history.3

3. Consensus Interface
Given an image and a collection of human generated ref-

erence sentences describing it, the goal of our consensus-
based protocol is to measure the similarity of a candidate
sentence to a majority of how most people describe the
image (i.e. the reference sentences). In this section, we
describe our human study protocol for generating ground
truth consensus scores. In Sec. 7, these ground truth scores
are used to evaluate several automatic metrics including our
proposed CIDEr metric.

An illustration of our human study interface is shown in
Fig. 2. Subjects are shown three sentences: A, B and C.
They are asked to pick which of two sentences (B or C)

3Approval rate greater than 95%, minimum 500 HITs approved



is most similar to sentence A. Sentences B and C are two
candidate sentences, while sentence A is a reference sen-
tence. For each choice of B and C, we form triplets using
all the reference sentences for an image. We provide no ex-
plicit concept of “similarity”. Interestingly, even though we
do not say that the sentences are image descriptions, some
workers commented that they were imagining the scene to
make the choice. The relative nature of the task – “Which
of the two sentences, B or C, is more similar to A?” – helps
make the assessment more objective. That is, it is easier to
judge if one sentence is more similar than another to a sen-
tence, than to provide an absolute rating from 1 to 5 of the
similarity between two sentences [3].

We collect three human judgments for each triplet. For
every triplet, we take the majority vote of the three judg-
ments. For each pair of candidate sentences (B, C), we as-
sign B the winner if it is chosen as more similar by a major-
ity of triplets, and similarly for C. These pairwise relative
rankings are used to evaluate the performance of the auto-
mated metrics. That is, when automatic metrics give both
sentences B and C a score, we check whether B received
a higher score or C. Accuracy is computed as the propor-
tion of candidate pairs on which humans and the automatic
metric agree on which of the two sentences is the winner.

4. CIDEr Metric

Our goal is to automatically evaluate for image Ii how
well a candidate sentence ci matches the consensus of a
set of image descriptions Si = {si1, . . . , sim}. All words
in the sentences (both candidate and references) are first
mapped to their stem or root forms. That is, “fishes”, “fish-
ing” and “fished” all get reduced to “fish.” We represent
each sentence using the set of n-grams present in it. An n-
gram ωk is a set of one or more ordered words. In this paper
we use n-grams containing one to four words.

Intuitively, a measure of consensus would encode how
often n-grams in the candidate sentence are present in the
reference sentences. Similarly, n-grams not present in the
reference sentences should not be in the candidate sentence.
Finally, n-grams that commonly occur across all images in
the dataset should be given lower weight, since they are
likely to be less informative. To encode this intuition, we
perform a Term Frequency Inverse Document Frequency
(TF-IDF) weighting for each n-gram [36]. The number of
times an n-gram ωk occurs in a reference sentence sij is de-
noted by hk(sij) or hk(ci) for the candidate sentence ci. We
compute the TF-IDF weighting gk(sij) for each n-gram ωk

using:

gk(sij) =

hk(sij)∑
ωl∈Ω hl(sij)

log

(
|I|∑

Ip∈I min(1,
∑

q hk(spq))

)
, (1)

where Ω is the vocabulary of all n-grams and I is the set
of all images in the dataset. The first term measures the TF
of each n-gram ωk, and the second term measures the rar-
ity of ωk using its IDF. Intuitively, TF places higher weight
on n-grams that frequently occur in the reference sentence
describing an image, while IDF reduces the weight of n-
grams that commonly occur across all images in the dataset.
That is, the IDF provides a measure of word saliency by
discounting popular words that are likely to be less visually
informative. The IDF is computed using the logarithm of
the number of images in the dataset |I| divided by the num-
ber of images for which ωk occurs in any of its reference
sentences.

Our CIDErn score for n-grams of length n is computed
using the average cosine similarity between the candidate
sentence and the reference sentences, which accounts for
both precision and recall:

CIDErn(ci, Si) =
1

m

∑
j

gn(ci) · gn(sij)

‖gn(ci)‖‖gn(sij)‖
, (2)

where gn(ci) is a vector formed by gk(ci) corresponding to
all n-grams of length n and ‖gn(ci)‖ is the magnitude of
the vector gn(ci). Similarly for gn(sij).

We use higher order (longer) n-grams to capture gram-
matical properties as well as richer semantics. We combine
the scores from n-grams of varying lengths as follows:

CIDEr(ci, Si) =

N∑
n=1

wnCIDErn(ci, Si), (3)

Empirically, we found that uniform weights wn = 1/N
work the best. We use N = 4.

5. New Datasets
We propose two new datasets – PASCAL-50S and

ABSTRACT-50S – for evaluating image caption genera-
tion methods. Both the datasets have 50 reference sen-
tences per image for 1,000 and 500 images respectively.
These are intended as “testing” datasets, crafted to enable
consensus-based evaluation. For a list of training datasets,
we encourage the reader to explore [25, 32]. The PASCAL-
50S dataset uses all 1,000 images from the UIUC Pas-
cal Sentence Dataset [35] whereas the ABSTRACT-50S
dataset uses 500 random images from the Abstract Scenes
Dataset [47]. The Abstract Scenes Dataset contains scenes
made from clipart objects. Our two new datasets are differ-
ent from each other both visually and in the type of image
descriptions produced.

Our goal was to collect image descriptions that are objec-
tive and representative of the image content. Subjects were
shown an image and a text box, and were asked to “De-
scribe what is going on in the image”. We asked subjects to



capture the main aspects of the scene and provide descrip-
tions that others are also likely to provide. This includes
writing descriptions rather than “dialogs” or overly descrip-
tive sentences. Workers were told that a good description
should help others recognize the image from a collection
of similar images. Instructions also mentioned that work
with poor grammar would be rejected. Snapshots of our
interface can be found in [42]. Overall, we had 465 sub-
jects for ABSTRACT-50S and 683 subjects for PASCAL-
50S datasets. We ensure that each sentence for an image is
written by a different subject. The average sentence length
for the ABSTRACT-50S dataset is 10.59 words compared
to 8.8 words for PASCAL-50S.

6. Experimental Setup
The goals of our experiments are two-fold:

• Evaluating how well our proposed metric CIDEr cap-
tures human judgement of consensus, as compared to
existing metrics.
• Comparing existing state-of-the-art automatic image

description approaches in terms of how well the de-
scriptions they produce match human consensus of im-
age descriptions.

We first describe how we select candidate sentences for
evaluation and the metrics we use for comparison to CIDEr.
Finally, we list the various automatic image description ap-
proaches and our experimental set up.

Candidate Sentences: On ABSTRACT-50S, we use 48
of our 50 sentences as reference sentences (sentence A in
our triplet annotation). The remaining 2 sentences per im-
age can be used as candidate sentences. We form 400 pairs
of candidate sentences (B and C in our triplet annotation).
These include two kinds of pairs. The first are 200 human–
human correct pairs (HC), where we pick two human sen-
tences describing the same image. The second kind are 200
human–human incorrect pairs (HI), where one of the sen-
tences is a human description for the image and the other
is also a human sentence but describing some other image
from the dataset picked at random.

For PASCAL-50S, our candidate sentences come from
a diverse set of sources: human sentences from the UIUC
Pascal Sentence Dataset as well as machine-generated sen-
tences from five automatic image description methods.
These span both retrieval-based and generation-based meth-
ods: Midge [29], Babytalk [22], Story [14], and two ver-
sions of Translating Video Content to Natural Language De-
scriptions [37] (Video and Video+).4 We form 4,000 pairs
of candidate sentences (again, B and C for our triplet an-
notation). These include four types of pairs (1,000 each).

4We thank the authors of these approaches for making their outputs
available to us.

The first two are human–human correct (HC) and human–
human incorrect (HI) similar to ABSTRACT-50S. The third
are human–machine (HM) pairs formed by pairing a hu-
man sentence describing an image with a machine gener-
ated sentence describing the same image. Finally, the fourth
are machine–machine (MM) pairs, where we compare two
machine generated sentences describing the same image.
We pick the machine generated sentences randomly, so that
each method participates in roughly equal number of pairs,
on a diverse set of images. Ours is the first work to perform
a comprehensive evaluation across these different kinds of
sentences.

For consistency, we drop two reference sentences for
the PASCAL-50S evaluations so that we evaluate on both
datasets (ABSTRACT-50S and PASCAL-50S) with a max-
imum of 48 reference sentences.

Metrics: The existing metrics used in the community for
evaluation of image description approaches are BLEU [33],
ROUGE [46] and METEOR [1]. BLEU is precision-based
and ROUGE is recall-based. More specifically, image
description methods have used versions of BLEU called
BLEU1 and BLEU4, and a version of ROUGE called
ROUGE1. A recent survey paper [12] has used a different
version of ROUGE called ROUGES , as well as the machine
translation metric called METEOR [1]. We now briefly de-
scribe these metrics. More details can be found in [42].
BLEU (BiLingual Evaluation Understudy) [33] is a popu-
lar metric for Machine Translation (MT) evaluation. It com-
putes an n-gram based precision for the candidate sentence
with respect to the references. The key idea of BLEU is to
compute precision by clipping. Clipping computes preci-
sion for a word, based on the maximum number of times
it occurs in any reference sentence. Thus, a candidate sen-
tence saying “The The The”, would get credit for saying
only one “The”, if the word occurs at most once across in-
dividual references. BLEU computes the geometric mean
of the n-gram precisions and adds a brevity-penalty to dis-
courage overly short sentences. The most common formu-
lation of BLEU is BLEU4, which uses 1-grams up to 4-
grams, though lower-order variations such as BLEU1 (uni-
gram BLEU) and BLEU2 (unigram and bigram BLEU) are
also used. Similar to [12, 18] for evaluating image descrip-
tions, we compute BLEU at the sentence level. For machine
translation BLEU is most often computed at the corpus level
where correlation with human judgment is high; the correla-
tion is poor at the level of individual sentences. In this paper
we are specifically interested in the evaluation of accuracies
on individual sentences. ROUGE stands for Recall Ori-
ented Understudy of Gisting Evaluation [46]. It computes
n-gram based recall for the candidate sentence with respect
to the references. It is a popular metric for summarization
evaluation. Similar to BLEU, versions of ROUGE can be
computed by varying the n-gram count. Two other versions



of ROUGE are ROUGES and ROUGEL. These compute an
F-measure with a recall bias using skip-bigrams and longest
common subsequence respectively, between the candidate
and each reference sentence. Skip-bigrams are all pairs of
ordered words in a sentence, sampled non-consecutively.
Given these scores, they return the maximum score across
the set of references as the judgment of quality. METEOR
stands for Metric for Evaluation of Translation with Ex-
plicit ORdering [1]. Similar to ROUGEL and ROUGES ,
it also computes the F-measure based on matches, and re-
turns the maximum score over a set of references as its
judgment of quality. However, it resolves word-level cor-
respondences in a more sophisticated manner, using exact
matches, stemming and semantic similarity. It optimizes
over matches minimizing chunkiness. Minimizing chunki-
ness implies that matches should be consecutive, wherever
possible. It also sets parameters favoring recall over pre-
cision in its F-measure computation. We implement all the
metrics, except for METEOR, for which we use [8] (version
1.5). Similar to BLEU, we also aggregate METEOR scores
at the sentence level.

Machine Approaches: We comprehensively evaluate
which machine generation methods are best at matching
consensus sentences. For this experiment, we select a subset
of 100 images from the UIUC Pascal Sentence Dataset for
which we have outputs for all the five machine description
methods used in our evaluation: Midge [29], Babytalk [22],
Story [14], and two versions of Translating Video Content
to Natural Language Descriptions [37] (Video and Video+).
For each image, we form all 5C2 pairs of machine–machine
sentences. This ensures that each machine approach gets
compared to all other machine approaches on each image.
This gives us 1,000 pairs. We form triplets by “tripling”
each pair with 20 random reference sentences. We collect
human judgement of consensus using our triplet annotation
modality as well as evaluate our proposed automatic con-
sensus metric CIDEr using the same reference sentences.
In both cases, we count the fraction of times a machine de-
scription method beats another method in terms of being
more similar to the reference sentences. To the best of our
knowledge, we are the first work to perform an exhaustive
evaluation of automated image captioning, across retrieval-
and generation-based methods.

7. Results
In this section we evaluate the effectiveness of our

consensus-based metric CIDEr on the PASCAL-50S and
ABSTRACT-50S datasets. We begin by exploring how
many sentences are sufficient for reliably evaluating our
consensus metric. Next, we compare our metric against sev-
eral other commonly used metrics on the task of matching
human consensus. Then, using CIDEr we evaluate several
existing automatic image description approaches. Finally,

we compare performance of humans and CIDEr at predict-
ing consensus.

7.1. How many sentences are enough?

We begin by analyzing how the number of reference
sentences affects the accuracy of automated metrics. To
quantify this, we collect 120 sentences for a subset of 50
randomly sampled images from the UIUC Pascal Sentence
Dataset. We then pool human–human correct, human–
machine, machine–machine and human–human incorrect
sentence pairs (179 in total) and get triplet annotations. This
gives us the ground truth consensus score for all pairs. We
evaluate BLEU1, ROUGE1 and CIDEr1 with up to 100
reference sentences used to score the candidate sentences.
We find that the accuracy improves for the first 10 sen-
tences (Fig. 3a) for all metrics. From 1 to 5 sentences, the
agreement for ROUGE1 improves from 0.63 to 0.77. Both
ROUGE1 and CIDEr1 continue to improve until reaching
50 sentences, after which the results begin to saturate some-
what. Curiously, BLEU1 shows a decrease in performance
with more sentences. BLEU does a max operation over sen-
tence level matches, and thus as more sentences are used,
the likelihood of matching a lower quality reference sen-
tence increases. Based on this pilot, we collect 50 sen-
tences per image for our ABSTRACT-50S and PASCAL-
50S datasets. For the remaining experiments we report re-
sults using 1 to 50 sentences.

7.2. Accuracy of Automated Metrics

We evaluate the performance of CIDEr, BLEU, ROUGE
and METEOR at matching the human consensus scores in
Fig. 3. That is, for each metric we compute the scores for
two candidate sentences. The metric is correct if the sen-
tence with higher score is the same as the sentence chosen
by our human studies as being more similar to the reference
sentences. The candidate sentences are both human and ma-
chine generated. For BLEU and ROUGE we show both
their popular versions and the version we found to give best
performance. We sample METEOR at fewer points due to
high run-time. For a more comprehensive evaluation across
different versions of each metric, please see [42].

At 48 sentences, we find that CIDEr is the best perform-
ing metric, on both ABSTRACT-50S as well as PASCAL-
50S. It is followed by METEOR on each dataset. Even us-
ing only 5 sentences, both CIDEr and METEOR perform
well in comparison to BLEU and ROUGE. CIDEr beats
METEOR at 5 sentences on ABSTRACT-50S, whereas
METEOR does better at five sentences on PASCAL-
50S. This is because METEOR incorporates soft-similarity,
which helps when using fewer sentences. However, ME-
TEOR, despite its sophistication does a max across ref-
erence scores, which limits its ability to utilize larger
numbers of reference sentences. Popular metrics like
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Figure 3: (a): We show accuracy (y-axis) versus log number of sentences (x-axis) for our pilot study. We note that the
gains saturate after 50 sentences. (b) and (c): Accuracy of automated metrics (y-axis) plotted against number of reference
sentences (x-axis) for PASCAL-50S (b) and ABSTRACT-50S (c). Metrics currently used for evaluating image descriptions
are shown in dashed lines. Other existing metrics and our proposed metric are in solid lines. CIDEr is the best performing
metric on both datasets followed by METEOR. METEOR is sampled at fewer points, due to high run-time. Note that more
reference sentences that we collect clearly help.

ROUGE1 and BLEU1 are not as good at capturing consen-
sus. CIDEr provides consistent performance across both the
datasets, giving 84% and 84% accuracy on PASCAL-50S
and ABSTRACT-50S respectively.

Considering previous papers only used 5 reference sen-
tences per image for evaluation, the relative boost in perfor-
mance is substantial. Using BLEU1 or ROUGE1 at 5 sen-
tences, we obtained 76% and 74% accuracy on PASCAL-
50S. With CIDEr at 48 sentences, we achieve 84% ac-
curacy. This brings automated evaluation much closer to
human performance (90%, details in Sec. 7.4). On the
Flickr8K dataset [18] with human judgments on 1-5 ratings,
METEOR has a correlation (Spearman’s ρ) of 0.56 [12],
whereas CIDEr achieves a correlation of 0.58 with human
judgments.5

We next show the best performing versions of the met-
rics CIDEr, BLEU, ROUGE and METEOR on PASCAL-
50S and ABSTRACT-50S, respectively, for different kinds
of candidate pairs (Table 1). As discussed in Sec. 5 we
have four kinds of pairs: (human–human correct) HC,
(human–human incorrect) HI, (human–machine) HM, and
(machine–machine) MM. We find that out of six cases, our
proposed automated metric is best in five. We show sig-
nificant gains on the challenging MM and HC tasks that
involve differentiating between fine-grained differences be-
tween sentences (two machine generated sentences and two
human generated sentences). This result is encouraging be-
cause it indicates that the CIDEr metric will continue to
perform well as image description methods continue to im-
prove. On the easier tasks of judging consensus on HI and
HM pairs, all methods perform well.

5We thank Desmond Elliot for the result.

Metric PASCAL-50S ABSTRACT-50S

HC HI HM MM HC HI
BLEU4 64.8 97.7 93.8 63.6 65.5 93.0
ROUGE 66.3 98.5 95.8 64.4 71.5 91.0

METEOR 65.2 99.3 96.4 67.7 69.5 94.0
CIDEr 71.8 99.7 92.1 72.2 71.5 96.0

Table 1: Results on four kinds of pairs for PASCAL-50S
and two kinds of pairs for ABSTRACT-50S. The best per-
forming method is shown in bold. Note: we use ROUGEL

for PASCAL-50S and ROUGE1 for ABSTRACT-50S
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Figure 4: Fraction of times a machine generation approach
wins against the other four (y-axis), plotted for human an-
notations and our automated metric, CIDEr.

7.3. Which automatic image description ap-
proaches produce consensus descriptions?

We have shown that CIDEr and our new datasets contain-
ing 50 sentences per image provide a more accurate met-
ric over previous approaches. We now use it to evaluate
some existing automatic image description approaches. Our
methodology for conducting this experiment is described in
Sec. 6. Our results are shown in Fig. 4. We show the
fraction of times an approach is rated better than other ap-



proaches on the y-axis. We note that Midge [29] is rated as
having the best consensus by both humans and CIDEr, fol-
lowed by Babytalk [22]. Story [14] is the lowest ranked,
by both humans and CIDEr. Humans and CIDEr differ
on the ranking of the two video approaches (Video and
Video+) [37]. We calcuate the Pearson’s correlation be-
tween the fraction of wins for a method on human anno-
tations and using CIDEr. We find that humans and CIDEr
agree with a high correlation (0.98).

7.4. Human Performance

In our final set of experiments we measure human perfor-
mance at predicting which of two candidate sentences better
matches the consensus. Human performance puts into con-
text how clearly consensus is defined, and provides a loose
bound on how well we can expect automated metrics to per-
form. We evaluate both human and machine performance at
predicting consensus on all 4,000 pairs from PASCAL-50S
dataset and 400 pairs from the ABSTRACT-50S dataset de-
scribed in Sec. 6. To create the same experimental set up
for both humans and machines, we obtain ground truth con-
sensus for each of the pairs using our triplet annotation on
24 references out of 48. For predicting consensus, humans
(via triplet annotations) and machines both use the remain-
ing 24 sentences as reference sentences. We find that the
best machine performance is 82% on PASCAL-50S using
CIDEr, in contrast to human performance which is at 90%.
On the ABSTRACT-50S dataset, CIDEr is at 82% accuracy,
whereas human performance is at 83%.

8. Gameability and Evaluation Server
Gameability When optimizing an algorithm for a specific
metric undesirable results may be achieved. The “gaming”
of a metric may result in sentences with high scores, yet
produce poor results when judged by a human. To help de-
fend against the future gaming of the CIDEr metric, we pro-
pose several modifications to the basic CIDEr metric called
CIDEr-D.

First, we propose the removal of stemming. When per-
forming stemming the singular and plural forms of nouns
and different tenses of verbs are mapped to the same to-
ken. The removal of stemming ensures the correct forms
of words are used. Second, in some cases the basic CIDEr
metric produces higher scores when words of higher con-
fidence are repeated over long sentences. To reduce this
effect, we introduce a Gaussian penalty based on the differ-
ence between candidate and reference sentence lengths. Fi-
nally, the sentence length penalty may be gamed by repeat-
ing confident words or phrases until the desired sentence
length is achieved. We combat this by adding clipping to the
n-gram counts in the CIDErn numerator. That is, for a spe-
cific n-gram we clip the number of candidate occurrences
to the number of reference occurrences. This penalizes the

repetition of specific n-grams beyond the number of times
they occur in the reference sentence. These changes result
in the following equation (analogous to Equation 2):

CIDEr-Dn(ci, Si) =
10

m

∑
j

e
−(l(ci)−l(sij))

2

2σ2 ∗

min(gn(ci), g
n(sij)) · gn(sij)

‖gn(ci)‖‖gn(sij)‖
, (4)

Where l(ci) and l(sij) denote the lengths of candidate
and reference sentences respectively. We use σ = 6. A fac-
tor of 10 is added to make the CIDEr-D scores numerically
similar to other metrics.

The final CIDEr-D metric is computed in a similar man-
ner to CIDEr (analogous to Equation 3):

CIDEr-D(ci, Si) =

N∑
n=1

wnCIDEr-Dn(ci, Si), (5)

Similar to CIDEr, uniform weights are used. We found that
this version of the metric has a rank correlation (Spearman’s
ρ) of 0.94 with the original CIDEr metric while being more
robust to gaming. Qualitative Examples of ranking can be
found in [42].

Evaluation Server To enable systematic evaluation and
benchmarking of image description approaches based on
consensus, we have made CIDEr-D available as a metric
in the MS COCO caption evaluation server [5].

9. Conclusion
In this work we proposed a consensus-based evaluation

protocol for image description evaluation. Our protocol en-
ables an objective comparison of machine generation ap-
proaches based on their “human-likeness”, without hav-
ing to make arbitrary calls on weighing content, grammar,
saliency, etc. with respect to each other. We introduce
an annotation modality for measuring consensus, a met-
ric CIDEr for automatically computing consensus, and two
datasets, PASCAL-50S and ABSTRACT-50S with 50 sen-
tences per image. We demonstrate CIDEr has improved ac-
curacy over existing metrics for measuring consensus.

Acknowledgements: We thank Chris Quirk, Margaret
Mitchell and Michel Galley for helpful discussions in for-
mulating CIDEr-D. This work was supported in part by The
Paul G. Allen Family Foundation Allen Distinguished In-
vestigator award to D.P.
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