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The fact that image data samples lie on a manifold has been successfully
exploited in many learning and inference problems. In this paper we lever-
age the specific structure of data in order to improve recognition accuracy.
In particular we propose a novel framework that allows to embed manifold
priors into sparse representation-based classification (SRC) approaches [1].

SRC based methods define the problem of recognition as the optimiza-
tion of a matrix Z of size N×F which describes the input data matrix Hr
of size M× F given a dictionary Hd of size M×N where N and F are
respectively the training and test samples while M represents the feature
dimensionality. This is formalized as:

minimize
Z

‖Z‖1

subject to Hr = HdZ.
(P1)

Our intuition is that manifold constraints can be transferred from the data
to the optimized variables if these are linearly correlated. Using this new
insight, we define an efficient alternating direction method of multipliers
(ADMM) that can consistently integrate the manifold constraints during the
optimization process. This is based on the fact that we can recast the prob-
lem as the projection over the manifold via a linear embedding method based
on the Geodesic distance.

Figure 1 shows a scheme of our approach. At first, in the data gener-
ation step, given a test sample and the training samples, we augment the
data by simulating geometrical transformations, e.g. rotation and transla-
tion, or by choosing k nearest neighbors from the training set. the Manifold
embedding step process the augmented data and it finds an embedding to
the manifold using Linear Local Embedding (LLE). Then we proved that,
if testing and training data are linearly correlated through the assignment
matrix Z, it is possible to transfer the manifold constraints to the latter ma-
trix (MCT proof stage). This result simplifies the inference mechanism of
the algorithm and it provides an efficient implementation through ADMM
which we employed in the last step, called optimization on Z.

From an optimization point of view, we can write the original SRC prob-
lem (P1) to include manifold constraints on the data such that:

minimize
Z,Ĥr

F(Z, Ĥr)

subject to Hr = Ĥr

Ĥr ∈M,

(P2)

Then, we formalize the manifold using the notation of [3] by introducing
a neighbour-preserving embedding which we use to find an estimate on a
sub-manifold (a subset of a manifold). Such formalization is similar to the
one of [2, 3] that first calculates the weights in the process of dimension
reduction by LLE [4].

In particular, the embedding generated by [2, 3] is exactly based on a
sub-manifold given by a small set of samples. Therefore, instead of find-
ing a whole manifold (LLE) to the data, we alternatively construct a sub-
manifold. We just consider the Geodesic distance information as in [2] con-
tained in a sub-manifold to find a projection based on its “true” neighbours,
and thus avoiding the use of perturbations of samples far from the input data.

Let M be the sample set representing a manifold and let m′ be the em-
bedding of M via a mapping function Φ(·).

Definition 1 The map function Φ : m′ →M in the neighbour-preserving
embedding method based on the Geodesic distance is defined as follows:

Φ(m′,M) = ∑
K
j=1 (1−W j)M j where W j is the Geodesic distance of the

sample m′ and the jth sample in a sub-manifold set.
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Figure 1: A scheme of the MCT approach.

Given the solution presented to (P2), we argue that the original objective is
still complex to optimize because of the cloned variables involved. However
by considering the relationship between the optimized variable and the input
data from a manifold, we can further relax the minimization objective to
become extremely efficient. Our solution guarantees that a new optimization
method can solve (P2) by taking advantage of the linear relation between Z
and the involved data Hr and Ĥr ∈M.

Given the previous problem, a practical solution can be obtained with
the ADMM algorithm where the optimization with manifold constraints can
be solved with a simpler projection to the manifold (as similarly done in [5]).
We then show that the minimized objective function can be reformulated as:

minimize
Z

‖Z‖1

subject to Hr = HdZ

Z ∈M.

(P3)

where the last problem provides the same solution of (P2) but it is charac-
terized by a simpler cost function given by

Lσ (Z) = ||Z||1 +σ

F

∑
i=1

∥∥zr,i− z′i
∥∥

1 , (1)

where Z′ is the variable cloned from Z, for which Z′ ∈M. In this way we
detach the optimization of the l1 norm cost from the manifold constraints
that are affecting the cloned variable only. The manifold is defined again as
a linear embedding as shown in Definition 1. Moving from (P2) to (P3), we
can observe that the manifold constraint can be transferred from the data to
the variable in the case of linear correlation, e.g., Hr = HdZ. Thus for each
sample from a given class (manifold), one can optimize the above objective
separately just based on a initialized manifold sample space. This represents
the main theoretical contribution of MCT.
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