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Abstract

The fact that image data samples lie on a manifold has
been successfully exploited in many learning and inference
problems. In this paper we leverage the specific structure
of data in order to improve recognition accuracies in gen-
eral recognition tasks. In particular we propose a novel
framework that allows to embed manifold priors into sparse
representation-based classification (SRC) approaches. We
also show that manifold constraints can be transferred from
the data to the optimized variables if these are linearly cor-
related. Using this new insight, we define an efficient al-
ternating direction method of multipliers (ADMM) that can
consistently integrate the manifold constraints during the
optimization process. This is based on the property that
we can recast the problem as the projection over the mani-
fold via a linear embedding method based on the Geodesic
distance. The proposed approach is successfully applied on
face, digit, action and objects recognition showing a consis-
tently increase on performance when compared to the state
of the art.

1. Introduction
A constrained learning model allows one to incorporate

domain-specific knowledge as constraints to balance the
learned model given the implicit structure of the data [7].
From a machine learning perspective, it is of high signif-
icance to simplify the learning stage while improving the
quality of the solutions. Imposing a data structure as a con-
straint is a new and flexible way to solve the optimization
problems [5], and it has shown a lot of promise in improving
performance of machine learning algorithms.

In this paper we revisit the Sparse Representation Classi-
fication (SRC) [29] framework by including the notion that
data often lies on a specific manifold. The SRC approach

Figure 1. A scheme of the MCT approach.

instantiates recognition as a sparse optimization problem
where the aim is to estimate an assignment matrix Z that as-
sociates each testing sample Hr to the corresponding train-
ing data Hd such that:

Hr = HdZ.

This inference is in general done through the use of a dictio-
nary computed directly from the training data. If such dic-
tionary has certain properties, namely being uncorrelated,
the theory of SRC has interesting links to the compres-
sive sensing framework. This makes the problem solvable
through a l1 relaxation that can be dealt with efficient opti-
mization techniques.

This paper provides new insights to the problem, in par-
ticular a relevant intuition that was neglected in previous
work. It is well known in fact that often data lies on spe-
cific manifolds, especially when one has to identify a well-
defined object category (e.g. faces, digits, animals, flowers,
etc.). To this end, any recognition framework taking advan-
tage of the implicit structure of the data can obtain improved
results. However, the main crux is to efficiently embed man-
ifold constraint in any optimization methods and, in the spe-
cific, in the SRC framework. Here we show that there exists
a solution with high practicability that can include manifold
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constraints in an alternating direction method of multipliers
(ADMM).

Figure 1 shows a scheme of our approach. Given a test-
ing sample and the training data, we can generate an aug-
mentation of the data (data generation) by simulating ge-
ometrical transformations, e.g. rotation and translation, or
by choosing k nearest neighbours from the training data.
Then the data is embedded to a manifold using a Linear Lo-
cal Embedding (LLE) approach. We then observe that, if
testing and training data are linearly correlated through the
assignment matrix Z, it is possible to transfer the manifold
constraints to the latter matrix (MCT proof). This simplifies
the inference mechanism of the algorithm and it provides an
efficient implementation through ADMM (optimization on
Z).

The rest of the paper is organized as follows. Sec. 2
presents the background on SRC methods and this paper
contributions with respect to the state of the art. Sec. 3 de-
tails how manifold constraints can be efficiently embedded
in a ADMM optimization framework while Sec. 4 shows
the theoretical insights of the approach. Finally experiments
over several datasets are discussed in Sec. 5 while Sec. 6
draws some conclusions.

2. Previous work and contributions
The SRC method was originally proposed for face recog-

nition problems showing remarkable robustness to data cor-
ruptions such as occlusions and strong photometric vari-
ations [29]. If the signals in each class lie in a low-
dimensional subspace and the different classes subspaces
satisfy certain incoherence conditions, it is shown in [29]
that all the non-zero coefficients in sparse coding will be
associated with the dictionary atoms that belong to the
same class as the test sample. Many variants of SRC have
been proposed to increase performance. For example, the
work in [26] presents a simply but effective coding scheme
called Locality-constrained Linear Coding (LLC) in place
of the coding scheme of traditional sparse representation. In
[25], Wagner et al. proposed a sparse representation based
method that could deal with face misalignment and illumi-
nation variation. In [17], they aim to minimize the distribu-
tion divergence between the labeled and unlabeled images,
and incorporate this criterion into the objective function of
sparse coding to make the new representations robust to the
distribution differences. Another variation of SRC [19] has
improved the fidelity term on the recovery process.

A key feature of many learning approaches is indeed the
careful design of the dictionary [6]. Originally, a SRC dic-
tionary was constructed by directly including all the train-
ing samples [29]. Traditional dictionary learning methods
have been specialized for sparse representation such as the
Method of Optimal Direction (MOD) [13] and K-SVD [22].
In order to promote the discriminative power of dictionar-

ies, recent works have augmented the reconstruction ob-
jective function with additional discrimination terms; e.g.,
maximum margin [28]. The latest classification scheme
was proposed as a Fisher discrimination dictionary learn-
ing (FDDL) model [30] and it exploits the discriminative
information in both the representation residual and the rep-
resentation coefficients.

Given this review of SRC based method, to the best of
our knowledge, this is the first attempt to perform sparse
coding on data embedded into a manifold. The proposed
method has two significant contributions:

• If data is distributed on a manifold, we obtain a frame-
work based on alternating direction method of multi-
pliers (ADMM) for several recognition problems.

• Given a linear (matrix) correlation between the op-
timized variables and the data from a manifold, we
present a novel and general theory to transfer the man-
ifold constraints from the data to the variables.

3. Manifold constraints in multipliers opti-
mization methods

In this section, we present how manifold constraints can
be used into a sparse representation framework for classi-
fication. First we show how to formulate the optimization
problem in terms of an Augmented Lagrange Multipliers
(ALM) minimization. Then a relaxed and more efficient
solution can be obtained using the method of ADMM (Al-
ternating Direction Method of Multipliers) that will lead
finally to our solution using manifold constraints transfer
(MCT).

3.1. SRC reformulation using manifold constraints

SRC defines the problem of recognition as the optimiza-
tion of a matrix Z of size N × F which describe the input
data matrix Hr of size M ×F given a dictionary Hd of size
M×N whereN and F are respectively the training and test
samples while M is the feature dimensionality. This can be
formalized as:

minimize
Z

‖Z‖1

subject to Hr = HdZ,
(P1)

where ‖Z‖1 corresponds to the sum of the l1-norm of each
vector of Z, i.e., if Z = [z1, · · · , zF ], the value of ‖Z‖1
is given by

∑F
i=1 |zi|1. In the SRC framework, the matrix

Z represents an assignment of each data samples to the re-
spective elements in Hd. The solution of (P1) allows to
solve for the identity of the test sample given the feature
descriptors, as stored in Hd. Data samples in Hr and Hd

are represented by feature descriptors of length M , which



are custom for each application. Moreover, given the speci-
ficity of the data, Hr contains samples that are lying on a
specific and unknown manifoldM, i.e. Hr ∈M.

In this paper, to solve problem (P1), we exploit the fact
that input data lies on a manifold. More specifically, we
propose to consider Hr as an unknown variable of the opti-
mization by performing variable cloning i.e., Hr → Ĥr ∈
M and to explicitly enforce manifold constraints over the
cloned variables Ĥr. This aims to introduce explicitly the
manifold constraints at the expenses of replicating a set of
variables.

To reformulate the problem, we first rewrite the tradi-
tional sparse representation as a new optimization problem
giving

F(Z,Hr) = ||Z||1 + λ · (Hr −HdZ),

with λ as a Lagrange factor. It is important to note that the
objective function F(Z,Hr) can be customized for differ-
ent problems thus assuring the generality of the approach.
Now, the original problem can be rewritten as:

minimize
Z,Ĥr

F(Z, Ĥr)

subject to Hr = Ĥr

Ĥr ∈M,

(P2)

Differently from traditional sparse optimisation, problem
(P2) is not easily solvable because of the additional man-
ifold constraint. To this end, we introduce here a generic
method based on the Augmented Lagrange Multipliers
(ALM). More formally we define:

Lσ(Z,Hr, Ĥr;R) = (1)

F(Z, Ĥr)−
F∑
i=1

r>i
(

hr,i − ĥr,i
)

+
σ

2

F∑
i=1

∥∥∥hr,i − ĥr,i
∥∥∥2

The scalar σ > 0 is the weight of the penalty term, R =[
r1 . . . rN

]
denotes the Lagrange multipliers and the

sub-matrix Ĥr is given by

Ĥr =
[
ĥr,1, . . . , ĥr,i, . . . , ĥr,F

]
.

The optimization algorithm for the function in Eq. (1) is
presented in Alg. 1 where we show the iterative steps of the
method.

Eq. (2) in Alg. 1 requires a minimization over ĥr,i ∈ M
with i = 1, . . . , F . In [10, 33] the manifold constraints are
enforced in an ALM strategy by using a matrix projection
which efficiently computes the solution over several given
manifold (e.g. Stiefel, unit sphere). Differently, in our case,
data is embedded into a manifold, not known a priori (i.e.

Algorithm 1 - ALM solution with manifold constraints
1: Set l = 0 and εbest = +∞
2: Initialize σ[0], R[0], γ > 1 and 0 < η < 1

3: Initialize Z(0) and H(0)
r

4: repeat
5: (

Z̃ [l+1], H̃ [l+1]
r

)
=

argmin Lσ[l](Z,Hr, Ĥr;R
[l])

subject to ĥr,i ∈M, i = 1, . . . , F,

(2)

6: ε =
∥∥∥H [l+1]

r − Ĥ [l+1]
r

∥∥∥2
7: if ε < η εbest

8: R[l+1] = R[l] − σ[l]
(
H

[l+1]
r − Ĥ [l+1]

r

)
9: σ[l+1] = σ[l]

10: εbest = ε
10: else
10: R[l+1] = R[l]

11: σ[l+1] = γ · σ[l]

12: endif
13: l← l + 1
14: until Some stopping criterion

Hr), and thus it is customized to the specific recognition
problem at hand.

Now we formalise the manifold following the notation
of [4, 9] by introducing a neighbour-preserving embedding
which we use to find an estimation on a sub-manifold (a
subset of a manifold). Such formalisation is similar to [9, 8]
that first calculates the weights in the process of dimension
reduction by LLE [23]. In particular, the embedding gener-
ated by [9, 8] is exactly based on a sub-manifold given by a
small set of samples. Therefore, instead of finding a whole
manifold (LLE) to the data, we alternatively construct a sub-
manifold (check Sec. 5 for details). We just consider the
Geodesic distance information as in [8] contained in a sub-
manifold to find a projection based on its “true” neighbours
so to avoid perturbations from samples far from the input
data.

3.2. Neighbour-preserving embedding based on the
Geodesic distance

LetM be the sample set representing a manifold and let
m′ be the embedding ofM via a mapping function Φ(·).

Definition 1. The map function Φ : m′ → M in
the neighbour-preserving embedding method based on the
Geodesic distance is defined as follows:

1. Φ(m′,M) =
∑K
j=1 (1 − Wj)Mj where Wj is the

Geodesic distance of the samplem′ and the jth sample



in a sub-manifold set.

2. As shown in [8], the map Φ is a linear embedding
based on the Geodesic distance. For a given point
onto the sub-manifold, the bigger weights are reason-
ably set to its nearest points in the recovery process as
defined in the previous point of the definition.

From Definition 1 the input sample can be projected onto
a well-designed sub-manifold via an embedding function
by fully exploiting the neighbour structure information [9].
As shown in LLE [23, 27], a local point on a sub-manifold
can be represented by a small and compact set of nearest
neighbours (i.e. K) to approximate ISOMAP. Later in [4],
it has been shown that Geodesic distance used in ISOMAP
is another effective way to locate the neighbours for a lin-
ear embedding. Our idea has similarities to [9] with the
main difference being its simplicity, suitable for recogni-
tion problems. The manifold structure later is, for the first
time, exploited to find a reasonable constraint for the origi-
nal sparse representation problem.

This is the only part of the algorithm where the constraint
manifold Ĥr plays a role and replacing Ĥr amounts to
compute the proposed manifold embedding. Finally, ALM
adds an extra computational cost to (P2) because variables
are added given the cloning mechanism. Based on the Def-
inition 1, ADMM can be alternatively used to solve our
problem and in the following we give details about the for-
malization of the this optimization procedure.

3.3. Alternating Direction Method of Multipliers
(solving for Eq. 2)

The ADMM algorithm allows to solve the optimization
problem of Eq. (2) iteratively for one of the variables while
keeping the others fixed. More in detail, we solve first over
Z [l+1] given (Ĥ [l]

r ,Z [l]) and then for Ĥ [l+1]
r given Z [l+1].

For (P1), Ĥr is solved following Def. 1, giving

Ĥ [l]
r = Φ(HdZ

[l],M) =

K∑
j=1

(1−Wj)Mj , (3)

whereM is specific given the test data. Then Z [l+1] is fur-
ther solved by letting Z = Z [l+1], Ĥr = Ĥ

[l]
r , σ = σ[l]

and R = R[l]. Solving Eq. (2) in Algorithm 1 corresponds
to solve for

Lσ(Z,Hr, Ĥr;R) =

F(Z, Ĥr) + σ
2

∑F
i=1

∥∥∥hr,i −
(

ĥr,i + 1
σ[l] ri

)∥∥∥2 (4)

whereR = R[l−1]−σ
(
Hr − Ĥ [l−1]

r

)
and with the column

vector ri given by

R =
[
r1, . . . , ri, . . . , rF

]
.

At iteration l, r[l−1]i can be considered as a constant so that
the objective can be accordingly changed with a smaller set
of variables as:

Lσ(Z,Hr, Ĥr) = F(Z, Ĥr)+

+σ′
∑F
i=1

∥∥∥hr,i − ĥr,i
∥∥∥ , (5)

where σ′ = σ
2 (1 + 1

λ ) or σ′ = σ. Considering σ′ ≤ σ, we
still use σ to balance the original objective and the recovery
error. In the next section, we also show that the l2 norm is
can be replaced by the l1 norm. Then the solution for Ĥ [l+1]

r

(given Z [l+1]) is exactly Φ(HdZ
[l+1],M).

4. Manifold Constraint Transfer (MCT) for
sparse representation

Given the solution presented in the previous section, we
argue that the original objective is still complex to solve
for a recognition problem due to the dimensionality of the
cloned variables involved. However, by considering the re-
lationship between the optimized variable and the input data
from a manifold, we can further relax the minimization ob-
jective to be extremely efficient. In particular, the relation-
ship between Hr and Z is a basic part of our optimization
problem. To do that, we provide a solution which can guar-
antee that a new optimization method can solve (P2) by tak-
ing advantage of the linear relation between Z and the in-
volved data Hr.

Given the previous problem solved with the ADMM al-
gorithm, we demonstrate that the minimized objective func-
tion can be reformulated as:

minimize
Z

‖Z‖1

subject to Hr = HdZ

Z ∈M.

(P3)

This last optimization problem (P3) provides the same solu-
tion of (P2) but it is characterized by a simpler cost function
given by

Lσ(Z) = ||Z||1 + σ

F∑
i=1

‖zi − z′i‖1 , (6)

where Z ′ is a cloned variable from Z for which Z ′ ∈ M
and the vector zi is given by

Z =
[
z1, . . . , zi, . . . , zF

]
.

In this way we detach the optimization of the l1 norm cost
from the manifold constraints that are effecting the cloned
variable only. The manifold is defined again as a linear em-
bedding as shown in Def. 1. Moving from (P2) to (P3), we
can observe that the manifold constraint is transferred from
the data to the variable, if there exists a linear correlation
(Hr = HdZ), which is the main theoretical contribution of
MCT. Details about the proof are reported in the following.



Proof. Considering that the following inequality always
holds true:

||hr,i − ĥr,i||2 ≤ ||hr,i − ĥr,i||1,

we change the previous minimization to the optimization of
the upper bound of the original objective giving:

Lσ(Z,Hr, Ĥr) = F(Z,Hr) + σ

F∑
i=1

∥∥∥hr,i − ĥr,i
∥∥∥
1

(7)

Here, we also replaced F(Z, Ĥr) with F(Z,Hr), because
Hr = Ĥr. We can further prove that the variable Z should
be constrained by the same manifold as the data samples, if
there is a linear relationship between Z and Hr. As Ĥr =

HdZ, then Ĥ [l+1]
r is spanned by HdZ

[0:l]. Thus, based on
Def. 1, ĥr,i can be estimated by linear embedding given by

ĥr,i =

K∑
j=1

Hdz[0:l]i (1−Wj), (8)

where K is the number of samples. The manifold space
is spanned by HdZ

[0:l] and iteratively the structure in the
original space HdZ

[0] can be fully exploited in the process
mentioned above. We now define a new variable Z ′ with
z
′

i =
∑K
j=1 z[0:l]i (1−Wj) , which is calculated based on the

same manifold embedding as that of Ĥr.
From the definition, we can say that Z ′, given each vector in
Z, is a linear embedding of the variable Z [0:l], considering
that Hr and Z are linearly related and the geodesic distance
on Ĥr is equal to the one in Z.

Again using the constraint Ĥr = Hr, we have that:

Hr − Ĥr = Hd(Z − Z ′), (9)

where the minimization on ||Hr − Ĥr||1 is solved by
||Hd(Z − Z ′)||1. According to Lemma 1, as shown in the
Appendix, the following relation holds:

||Hr−Ĥr||1 = ||Hd(Z−Z ′)||1 ≤ ||Hd||1||Z−Z ′||1, (10)

and we alternatively minimize the upper bound of ||Hr −
Ĥr||1. Given that ||Hd||1 is a constant, we can simplify the
expression as:

min ||Hd||1||Z − Z ′||1

The above equation is equal to minimizing the upper bound
of ||Hd||1||Z − Z ′||1 giving:

min ||Z − Z ′||1

Consequently, the final objective for (P3) is as:

Lσ(Z) = F(Z,Hr) + σ

F∑
i=1

‖zr,i − z′i‖1 (11)

where Z ′ ∈ M. From above, the cloned variable Z ′ is
given by a projection on a manifold spanned by Z and the
structure of the original space is preserved in the projection.

Thus for each sample from a given class (manifold), we
can optimize the above objective separately just based on
a initialized manifold sample space. The details about the
formulation of each step are shown in Algorithm 2.

Algorithm 2 Manifold Constraint Transfer (MCT) based on
ADMM

1: set k = 0 and εbest = +∞
2: Initialize σ[0] = 0.25
3: Initialize Z [0] based on [29].
4: repeat
5: (

Z [k+1]
)

= argmin Lσ[k](Z [k], Z ′[k]) (12)

As solved in the appendix
6: ε =

∥∥Z [k+1] − Z [k]
∥∥2

7: if ε < η εbest
8: σ[k+1] = σ[k]

9: εbest = ε
9: else

10: σ[k+1] = kσ[k]

11: endif
12: k ← k + 1
13: until some stopping criterion

Summarising, our method is based on a sparse optimiza-
tion process that is minimizing ||Z||1 with the constraints
Hr = HdZ and Z ∈M. The manifold constraint on sparse
representation comes from the fact that:

1. input samples are assumed to lie on a manifold;

2. the optimized variable lies on a manifold as well.

Solving for (P3) requires to initialize the sub-manifold
space first, which we will discuss in the next section.

For what concern the computational complexity, the
computation of Geodesic distance is based on the Dijkstra’s
algorithm, whose complexity is O(V log(V ) + E) where
V,E represent the number of the samples and edges respec-
tively. Also, the added pair of distances can be updated
online. The number of the neighbours in the Geodesic dis-
tance calculation is empirically set to K = 7. For each
testing face in the AR database, MCT can be run within 1
second on the Intel Xeon E5 2.0GHz DualCore with 8 GB
RAM.



5. Experiments
We test our approach with several recognition problems

in the literature in order to demonstrate the flexibility of
the method. In details, experiments are related to face (AR
database, Yale B), digits (USPS), objects (Oxford flowers)
and action (UCF50, UCF sport) recognition problems. The
experimental validation of the proposed method follows the
one defined in [30]. Given the different recognition prob-
lems, there is the need to initialise the sub-manifold with
respect to each dataset. In particular we augmented the data
Hr for the testing images by:

Scheme 1 translating (1 and 2 pixels in each of the four
directions) and rotating the images (1 and 2 degrees)
for the problem of face and digit recognition.

Scheme 2 finding the 10 nearest neighbors from the vali-
dation set for the flower recognition and from the un-
labelled test set in the case of face recognition.

Scheme 3 For action recognition problems, we add 20 dif-
ferent Gaussian noises [32] with 0 mean and increasing
standard deviations (i.e. 0.0010, 0.0015, . . . ). Then
we choose the 10 samples closer to the input to gen-
erate a sub-manifold. Although our procedure is not
exactly the same as that in [32], ours is specially de-
signed for a classification problem.

After obtaining the samples with one of the above schemes,
we computed the sub-manifold space for the unsolved orig-
inal variable using SRC [14] with the very same features of
[30].

5.1. Face recognition.

Several algorithms in the literature leverage the fact that
images of faces lie on a manifold. This provides an exem-
plar recognition problem since we explicitly use manifold
constraints. For this task, we considered three datasets: the
AR database [20], the extended Yale Face database B [2]
and the LFW database [36, 38]. All these datasets are very
challenging, due to their severe illumination and occlusion
variations. We compare our method with other state-of-
the-art sparsity face reconstruction methods, including SRC
[14] and its latest variants FDDL [30]. We also compared
two baselines methods, namely nearest subspace classifier
(NSC) and linear support vector machine (SVM) imple-
mented by [30].

The AR database consists of over 4, 000 frontal images
from 126 individuals. For each individual, 26 pictures were
taken in two separated sessions. As in [30], we chose a sub-
set consisting of 50 male subjects and 50 female subjects.
For each subject, 7 images with illumination and expres-
sion changes from Session 1 were used for training, and the
other 7 images with the same condition from Session 2 are
used for testing.
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Figure 2. Performance over the sub-manifold initialization and it-
eration on the AR database

The Extended Yale B database consists of 2, 414 frontal-
face images from 38 individuals (about 64 images per sub-
ject) captured under various laboratory-controlled lighting
conditions. For each subject, we randomly selected 20 im-
ages for training with the remaining images for testing.

The LFW database has 5749 images of different indi-
viduals in an unconstrained environment. LFW-a is specifi-
cally designed for face recognition problem, which is a ver-
sion of LFW after alignment using a face alignment soft-
ware. Given the protocol in [38, 39], we used the subjects
in LFW-a having no less than ten samples thus obtaining
adataset with 158 subjects. For validating the results, af-
ter cropping the images to 121 × 121 and then resized to
32 × 32, we randomly selected 5 samples for training and
another 2 samples were used for testing .

Comparative results, reported in Table 1, show that the
proposed method achieves higher performance than com-
peting methods (SRC and other variants). We also investi-
gated the performance of the three different sub-manifold
initialization methods, across the iterations, on the AR
dataset. Fig. 2 reports our findings and shows that best re-
sult is achieved for 5-6 iterations in all the cases. Despite all
the data augmentation improved the performance in the AR
database, Schema 1 should be preferred among the others.
In the same figure, we also reported the standard Euclidean
distance (minus 1) as the weight measure in Def. 1, which
shows that it can also be used to improve the performance.
However when the sample size is increased, MCT is sig-
nificantly better. From an optimization viewpoint, the true
neighbours could help our algorithm to converge to a “true”
point, since the samples far from the input are given smaller
weights in the process of embedding generation based on
the Geodesic distance. On the other hand the Euclidean dis-
tance maybe lead to bigger weights for the samples actually



far from the inputs [4].

Dataset SRC NN SVM FDDL MCT
AR 88.0 71.0 87.0 92.0 97.0

Yale-B 90.0 61.0 88.0 91.9 96.1
LFW 44.1 44.2 43.3 42.0 44.9

Table 1. Accuracy (%) for the face recognition task. All the results
use the same parameters as in [30]

5.2. Digit recognition.

We performed handwritten digit recognition on the
widely used USPS database [12]. It is composed by 7291
training images and 2007 test images. We compared our
method with FDDL, SRC, DLSI [11], and LLC [26]. In
addition, as baselines, the results of some problem-specific
methods (i.e., the standard Euclidean KNN and SVM with
a Gaussian kernel) are also listed. Again, the proposed
method achieves the better performance as shown in Table
2.

SRC LLC DLSI SVM FDDL MCT
4.48 6.05 3.98 4.2 3.69 2.99

Table 2. Error rates (%) for the digit recognition task on the USPS
dataset

5.3. Action recognition

We then considered the UCF sport and the larger UCF50
datasets1. The 140 videos clips in the UCF sport ac-
tion dataset were collected from various broadcast sports
channels, covering 10 sport action classes: driving, golf-
ing, kicking, lifting, horse riding, running, skateboarding,
swinging-(prommel horse and floor). The UCF50 dataset
has 50 action categories for a total of 6680 realistic videos
collected from YouTube. For both datasets we used action
bank features as in [24].

We followed the experimental settings of [21, 1, 30]
when testing UCF sport and we compared our method with
FDDL, SRC [21], [1, 24]. The recognition rates are listed
in Table 3 showing that our method provides better perfor-
mance than all the other competing methods. We then eval-
uated the proposed method on the UCF50 action dataset by
replicating the experimental settings of [24]. The results are
shown in Table 3 where our method provides a better per-
formance than SRC but slightly worst then FDDL.

5.4. Object categorization.

The last test performed is the multi-class object catego-
rization problem on the 17 Oxford Flowers dataset [18] and

1ttp://crcv.ucf.edu/data/

Dataset [21] [1] [24] SRC FDDL MCT

UCF Sport 83.6 86.6 90.7 92.9 94.3 95.1
UCF50 - - 57.9 59.6 61.1 60.9

Table 3. The comparative results (accuracies %) on the action
recognition tasks

we adopted the default experimental settings as pointed out
by the authors2, including training, validation, test splits
and the provided features. For a fair comparison with the
state-of-the-art methods such as MTJSRC [31], we also ex-
tended the original features as done in their experiments.
We used the histogram intersection similarity of the re-
cently proposed Frequent Local Histogram (FLH [3]) fea-
ture to generate new features. Table 4 lists the best results of
NSC, SVM, MTJSRC-CG, SRC and FDDL. The proposed
method could always improve the original SRC (which di-
rectly uses training samples as the dictionary) and compared
similarly to FDDL.

NSC SVM MTJSRC-CG SRC FDDL MCT

79.3 88.6 88.4 88.4 91.7 91.73

Table 4. The comparative results (accuracies %) for the Oxford
flowers dataset using the FLH features.

6. Discussions and future work

This paper focuses on a new insight into sparse represen-
tation from the perspective of manifold constraint. Based
on a simple neighbour-preserving embedding method, an
ADMM scheme is proposed to solve our problem. Finally,
based on a novel and general result, we transfer the data
manifold constraints to the optimized variables. This paper
actually proposes a new problem: “how to transfer the data
structure into the optimization process”, and we show that
the manifold constraints can be transferred from the data to
the optimized variables if these are linearly correlated. The
proposed approach is successfully applied on face, digit, ac-
tion and general objects recognition showing a consistently
increase on performance compared to the state of the art.
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Appendix
To solve the optimization problem constrained by a man-

ifold, the ADMM method for Eq. (12) is described as:

1. Based on Z
′[t], we solve the following problem based

on the inner point method [16]:

(Z [t+1]) = arg minLσ(Z
′[t])

2. After (Z [t+1]) is solved, we do

Z
′[t+1] = Φ(Z [t+1], Z [0:t])

Lemma 1: If T is a matrix, the vector x is transformed by
T , and have :

||Tx||1 ≤ ||T ||1||x||1
Lemma 1 is actually easy to be proven, and a simple proof
is described here.
Firstly, we define the matrix 1-norm as follows:

‖T‖1 =

n∑
i=1

|ti|1 ≤ max{|ti|1}ni=1 (13)

where T = [t1, · · · , tn].
Tx is defined as:

Tx =

n∑
i

tixi

and we have:

||
n∑
i

tixi||1 ≤
n∑
i

||ti||1||xi||1

Thus, based on Eq. (13), we have that:

||Tx||1 ≤ ||T ||1
n∑
i

||xi||1 ≤ ||T ||1||x||1.
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