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Geometric optimization algorithms on matrix manifolds have been applied
to the low-rank matrix completion problem in machine learning. Various
geometric optimization algorithms, such as LRGeomCG [5], RTRMC [2],
ScGrass-CG [4], and R3MC [3], are available for solving this problem.
R3MC, the Riemannian three-factor matrix completion algorithm, is one
of the state-of-the-art geometric optimization methods for the low-rank ma-
trix completion problem. This paper improves the performance of R3MC by
proposing a new retraction with a minimizing property. Accelerated R3MC,
which is R3MC equipped with this new retraction, outperforms the origi-
nal algorithm and other geometric algorithms for matrix completion in our
empirical study.

The formulation of the matrix completion problem in this paper is to
find a rank-r matrix X such that

min
X∈Rn×m

r

f (X) :=
1
|Ω|
‖PΩ(X)−PΩ(X

∗)‖2
F , (1)

where X∗ is the partially known matrix to be completed, Ω is the set of
indices for known entries of X∗ and |Ω| the cardinality of Ω. Rn×m

r is the
set of rank-r matrices of size n×m, ‖A‖F is the Frobenius norm of matrix
A, and PΩ is the orthogonal sampling operator.

The manifold M in R3MC is one that is homeomorphic to the manifold
of rank-r matrices Rn×m

r ,

M := (St(r,n)×GL(r)×St(r,m))/(O(r)×O(r)), (2)

where St(r,n) := {X ∈ Rn×r|XT X = Ir} is a Stiefel manifold, GL(r) :=
{X ∈Rr×r||X | 6= 0} is a general linear group and O(r) := {X ∈Rr×r|XT X =
Ir} is an orthogonal group. |X | is the determinant of matrix X and Ir is the
identity matrix of size r× r. The quotient originates from the following
group action

(O(r)×O(r))×M→M

((O1,O2),(U,R,V )) 7→ (UO1,OT
1 RO2,VO2),

(3)

where (U,R,V )∈M, (O1,O2)∈O(r)×O(r) and M := St(r,n)×GL(r)×
St(r,m) . M is the total space of the quotient manifold M. It is convenient
to describe the algorithm using various lifted objects (often with ‘bar’ nota-
tions) in the total space because they are more concrete to manipulate. One
example is the lifted cost function f̄ for Equation (1),

f̄ (U,R,V ) :=
1
|Ω|
‖PΩ(URV T )−PΩ(X

∗)‖2
F , (4)

where (U,R,V ) ∈M.
Retraction [1, Definition 4.1.1] is one of the most important ingredients

for geometric optimization algorithms. It provides a mechanism to move
along a direction while constrained to the manifold. We first define the new
retraction R̃ on the total space M as as

R̃x̄ : Tx̄M→M

ξ̄x̄ 7→ (P1,Q1(R+ ξ̄R)QT
2 ,P2),

(5)

where x̄ = (U,R,V ) ∈M, ξ̄x̄ = (ξ̄U , ξ̄R, ξ̄V ) is the given direction and P1,
Q1, P2 and Q2 are defined by polar decompositions U + ξ̄U = P1Q1 and
V + ξ̄V = P2Q2, respectively. This retraction can induce a retracion R on
the quotient space M. Illustration of the new retraction and the original one
is shown in Figure 1(a).
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Figure 1: (a) The new retraction R̃ and the original retraction R on the
cylinder M+

0 . x̄ is a point on the cylinder, γ(t) a line passing through x̄
with direction ξ̄x̄. The upper red curve φ(t) is the retracted curve φ(t) :=
R̃x̄(tξ̄x̄) under retraction R̃, and the lower green curve is the one generated
by the retraction R. (b) Comparisons of A-R3MC1/A-R3MC2 with R3MC,
LRGeomCG [5], RTRMC [2], ScGrassMC [4] and LMaFit [6]. A-R3MC1
and A-R3MC2 are two variants of the accelerated R3MC.

A special property of R̃ can be observed in Figure 1(a). In fact, points
on the blue dashed curve ψ(t) connecting γ(t) and φ(t) share the same func-
tion value of f̄ . The invariance of the cost function on curve ψ establishes a
correspondence between points on γ and points on φ . This correspondence
can induce an minimizing property that allows exact minimizations for the
line-search steps of R3MC. This minimizing property is stated as follows:

Proposition 1. Suppose that x̄ ∈M and η̄x̄ ∈ Hx̄, where Hx̄ is the hori-
zontal space. Let φ(t) := R̃x̄(tη̄x̄) be the retracted curve of line t 7→ tη̄x̄
and γ(t) : t 7→ x̄+ tη̄x̄ be the tangent line passing through x̄. If the solution
of mint f̄ (γ(t)) is t∗, then the minimum point of f̄ restricted on curve φ is
R̃x̄(t∗η̄x̄).

Equipped with this new retraction, R3MC is able to find an optimal step
length for the line search step. We call this modified version A-R3MC. The
performance comparisons of various algorithms are shown in Figure 1(b).
We can see that the new retraction with minimizing property performs well
in the experiment.
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