
Fast Randomized Singular Value Thresholding for Nuclear Norm Minimization

Tae-Hyun Oh∗

KAIST
thoh.kaist.ac.kr

@gmail.com

Yasuyuki Matsushita
Microsoft Research Asia

/ Osaka University
yasumat@ist.osaka-u.ac.jp

Yu-Wing Tai
KAIST

yuwing@gmail.com

In So Kweon
KAIST

iskweon77
@kaist.ac.kr

Abstract

Rank minimization problem can be boiled down to
either Nuclear Norm Minimization (NNM) or Weighted
NNM (WNNM) problem. The problems related to NNM
(or WNNM) can be solved iteratively by applying a closed-
form proximal operator, called Singular Value Threshold-
ing (SVT) (or Weighted SVT), but they suffer from high com-
putational cost to compute a Singular Value Decomposi-
tion (SVD) at each iteration. In this paper, we propose an
accurate and fast approximation method for SVT, called fast
randomized SVT (FRSVT), where we avoid direct computa-
tion of SVD. The key idea is to extract an approximate ba-
sis for the range of a matrix from its compressed matrix.
Given the basis, we compute the partial singular values of
the original matrix from a small factored matrix. While the
basis approximation is the bottleneck, our method is already
severalfold faster than thin SVD. By adopting a range prop-
agation technique, we can further avoid one of the bottle-
neck at each iteration. Our theoretical analysis provides
a stepping stone between the approximation bound of SVD
and its effect to NNM via SVT. Along with the analysis, our
empirical results on both quantitative and qualitative stud-
ies show our approximation rarely harms the convergence
behavior of the host algorithms. We apply it and validate
the efficiency of our method on various vision problems,
e.g. subspace clustering, weather artifact removal, simul-
taneous multi-image alignment and rectification.

1. Introduction

Low-rank matrix recovery problems arise in many engi-

neering and applied science problems, and rank minimiza-

tion techniques have attracted tremendous interests. Rank

minimization is a crucial regularizer to derive a low-rank

solution, and is required in many mathematical models in

computer vision and machine learning [4, 9, 13, 20, 22, 26,

∗This work was done while the first author was an intern at Microsoft

Research Asia.

29, 28, 31, 36, 38]. As rank minimization using the l0-norm

is an NP-hard problem, it is typically relaxed using the nu-

clear norm (i.e., ‖ · ‖∗, the sum of all the singular values),

which is the convex envelope of the rank function.

As a simple example, a nuclear norm minimization

(NNM) problem is expressed as:

X∗ = argminX f(X) + τ‖X‖∗, (1)

where X ∈ R
m×n, and τ > 0 is a regularization parameter.

The function f(X) can be defined according to different

applications, e.g., f(X) = ‖O−X‖1 in robust principal

component analysis (RPCA) [3], f(X) = 1
2‖AX−B‖2F

in multivariate regression and multi-class learning [25], and

f(X) = 1
2‖πΨ(O)− πΨ(X)‖2F in matrix completion [3].

Here, O is measured data, ‖ · ‖1 and ‖ · ‖F denote the

l1 and the Frobenius norms, and πΨ(·) is an orthogonal

projection operator setting [πΨ(X)]i,j = [X]i,j for (i, j) ∈
Ψ and 0 otherwise. Also, weighted nuclear norm mini-

mization (WNNM), which can be non-convex according to

weights [9, 13, 27], is used to better approximate rank(·).
Unless the loss function f(X) is a proximity term, most

previous works use first-order optimization algorithms,

e.g., dual method [7], accelerated proximal gradient [14],

augmented Lagrange multiplier [17], alternating direction

method [17, 18], and iterative reweighted least squares [23].

All these approaches, NNM, WNNM and their regularized

versions, iteratively solve the simple NNM subproblem de-

fined as the following nuclear norm plus the proximity term:

Problem (Nuclear norm minimization). For τ ≥ 0 and
A ∈ R

m×n,

X∗ = argminX τ‖X‖∗ + 1

2
‖X−A‖2F , (2)

where the optimal X∗ can be obtained by the singular value

thresholding operator defined as:

Definition 1 (Singular value thresholding1 [1]). The
problem (2) has a closed form solution by the singular value

1A similar result for WNNM can be found in [9], called WSVT.
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thresholding (SVT) operator Sτ (·) as

X∗ = Sτ (A) = UASτ (ΣA)V�
A, (3)

where Sτ (x) = sgn(x) ·max(|x| − τ, 0) is the soft shrink-
age operator [10], and UAΣAV�

A is the SVD of A.

The major computational bottleneck for NNM and

WNNM problems is the necessity of solving Eq. (2) mul-

tiple times, where SVD computation occupies the largest

computation cost (e.g., O(mn min(m,n)) for a SVD [8].

In this paper, we propose a fast SVT technique to accel-

erate general NNM and WNNM methods. Our method is

motivated by the previous study of a randomized SVD pro-

posed by Halko et al. [11], and we extend the original gen-

eral method in several respects for better solving the NNM

and WNNM problems that we focus in this paper. As a re-

sult, we propose an algorithm that we call fast randomized
SVT (FRSVT). We present the connection between FRSVT

and low-rank approximation with both theoretical and em-

pirical analyses, and show the effectiveness of the proposed

method via simulations and a few applications. Specifically,

this paper makes the following contributions:

• We develop a successive truncated low-rank decompo-

sition that can be generally applied to NNM and WNNM

problems. Our method achieves high speed and rarely

harms the convergence behavior of the host algorithms

without loss of accuracy.

• By exploiting the proximity of the range space over it-

erations, our method propagates the estimated basis of the

previous iteration to the next iteration for acceleration. We

call the proposed technique range propagation (RP).

• We provide theoretical analysis between the low-rank ap-

proximation and our FRSVT method. In addition, we show

the empirical stability and behavior of our method with re-

spect to varying parameters.

• We apply FRSVT to various computer vision applications

and show the performance gain in comparison with previ-

ous methods.

2. Related Works
Candès et al. [3] showed that, under some mild con-

dition, the solution of NNM is equivalent to the solution

of rank minimization in conjunction with sparse outlier

model [3]. Inspired by the success of the convex surro-

gate for the rank minimization, low-rank observation is ex-

ploited by various computer vision applications, such as

rain removal [4], de-noising [9], inpainting [13], motion

segmentation by subspace clustering [20], structure from

motion [22], background subtraction [26], tag transduction

[26], high dynamic range imaging [29], batch image align-

ment [31], photometric stereo [36], image rectification [38],

and nuclear norm regularized learning models [25].

Due to the high computational complexity of SVD in

the SVT operator, a fast SVT is always necessary for both

small- and large-scale problems for real-timeness and scal-

ability, and there have been continued efforts to improve

the speed of low-rank algorithms. Liu et al. [21] efficiently

solve the NNM on a small matrix by factorizing a matrix

into two small matrices. Although the work achieved signif-

icant speed-up, global optimum cannot be guaranteed, be-

cause the factorization introduces non-convexity like other

factorization methods [39, 6].

With retaining the advantage of convexity, Liu et al. [22]

exactly solve RPCA on a small sub-sampled matrix and

propagate the seed solution to other parts via �1 filtering

in a linear time. Since the work only focuses on RPCA, a

fast SVT method is still needed as a tool for NNM to be

applied to large-scale problems. Cai et al. [2] avoid ex-

plicit SVD computation using the dual of SVT. Since their

method uses Newton iterations with an inverse matrix, the

input matrix should be preprocessed by the complete or-

thogonal decomposition [8] (COD) to ensure a non-singular

square matrix. The standard COD consists of twice of QR

decompositions with column/row pivoting, which requires

O(mn min(m,n)), so the reduction of computation com-

plexity is still limited.

In other thread of works, it has been shown that the exact

SVD computation is unnecessary in the inner loop of NNM.

Mu et al. [26] proposed a compressed optimization by ran-

dom projection. Ma et al. [25] solved NNM related prob-

lems with a linear-time approximate SVD [5]. However,

these methods are occasionally unstable, because the in-

put matrix itself is approximated by sampling or projection,

where the original information is impaired and the random-

ness leads to unstable incorrect results. In contrast to these

methods, our method only approximates subspace bases to

guarantee that most spectrum information is retained.

3. Fast Randomized Singular Value Threshold-
ing (FRSVT)

The basic idea of our method shares the idea of Liu et
al. [22] and Ma et al. [25], in that the solution of Eq. (2)

can be found by applying SVT to a small matrix instead of

the original large matrix. Instead of sampling columns or

rows of a matrix as in [22, 25], our method extracts a small

core matrix by finding orthonormal bases with the unitary

invariant property. Specifically, since the NNM defined in

Eq. (2) consists of unitary invariant norms, the following

equality holds:

Proposition 1. Let A = QB ∈ R
m×n, where Q ∈ R

m×n

has orthonormal columns. Then,

Sτ (A) = Q Sτ (B), (4)

where Sτ (·) is the SVT operator.



Algorithm 1 Fast Randomized Singular Value Threshold-

ing (FRSVT) algorithm

Input : A ∈ Rm×n, τ > 0, l = k + p > 0 and q ≥ 0. For

range propagation, the orthonormal column matrix Q̃ of the previous

iteration.

if not Range propagation then
Sample Gaussian random matrix Ω ∈ Rn×l

Y = AΩ
Q = QR CP(Y)

else
Sample Gaussian random matrix Ω ∈ Rn×p

Y = AΩ
QY = PartialOrthogonalization(Q̃,Y)
Q = [Q̃,QY]

end if
repeat

Q = QR(AA�Q)
until η times

[H,C] = QR(A�Q)
[W,P] = PolarDecomposition(C)
[V,D] = EigenDecomposition(P)
Sτ (A) = (QV) Sτ (D) (HWV)�

Output : Sτ (A), Q̃ = QV

Proof. For the derivation, refer to the supplementary mate-

rial. This also holds for most of the WSVT cases.

In general, SVT requires SVD computation, and its com-

plexity is O(mn2)2. Based on Proposition 1, we can avoid

expensive computation by instead computing SVT on a

smaller matrix B ∈ R
n×n, when Q ∈ R

m×n is available.

Given Q ∈ R
m×k that best approximates A by a rank-

k matrix, the complexity of SVD of B ∈ R
k×n becomes

O(nk2). Therefore, when k � n, the computation speed

can be significantly improved.

Our SVT computation iterates the following two steps:

1) Estimating an orthonormal column matrix Q, and 2)

Computing SVD of B for SVT. For SVT computation, a

partial (or truncated) SVD is frequently used to reduce the

complexity in many prior arts. Our method similarly finds

a rank-k approximation (k < n) of the original matrix A as

A ≈ Âk = QB. It saves the computation of the first step

as well as the second step, because the size of matrices Q
and B are reduced to m× k and k×n, respectively. By ex-

ploiting the observation that the major orthonormal k bases

evolve slowly over iterations, our method efficiently initial-

izes matrix Q at each iteration by bypassing expensive ran-

dom range estimation (Range propagation in Sec. 3.1). In

addition, by avoiding direct SVD computation, we can fur-

ther reduce the computation as described in Sec. 3.2. Also,

we describe a target rank prediction technique for further

improving speed in Sec. 3.3.

2Without loss of generality, we assume m ≥ n in this paper. In the

case m < n, the proposed method is analogous.

3.1. Finding Approximate Range

Inspired by Halko et al. [11], we first estimate the or-

thonormal bases Q = [q1, · · · ,ql] (where l ≥ k) such that

span(Q) ⊆ Range(A) from a matrix compressed by ran-

dom projection. Intuition of their randomized range finding

algorithm is as follows. By multiplying a random vector ωj ,

a random linear combination yj of the column vectors of A
is generated, which encodes the partial range of A. Suppose

A = Ak +E, where Ak is the rank-k projection of A, of

which range is the target to capture, and E represents small

perturbation, then sample vector yj can be obtained by

yj = Akωj +Eωj . (5)

Even though unwanted E may be included in {yj}, since

the action of Ak (i.e., magnitudes of spectrum) is larger

than E, the range of Ak is dominant to be captured in {yj}.

However, if only k vectors {yj} are sampled, {yj} could

not span the entire Range(Ak). By increasing the sam-

pling rate, most of Range(Ak) can be captured; therefore,

we oversample l sample vectors, so that Range(Ak) can be

captured as much as possible.

Given the sample matrix Y = [y1, · · ·yl], where

l = k + p, Q can be obtained by orthonormalizing Y.

When r = rank(A) < l, r bases are enough to span the

entire Range(A). Indeed, when rank(A) < l, the range

finding algorithm is fairly accurate and close to the exact

method as we will see the theoretical analysis in Sec. 4.

Thus, we can reduce the dimension of Q for almost free

by estimating the rank and dominant bases by the QR de-

composition with Column Pivoting (QR-CP) to Y. While

Halko et al. also proposed a complex algorithm to adap-

tively and approximately determine the number of bases

by different randomization for sampling, orthogonalization,

and re-orthogonalization, our method is based on an ex-

act method with the same complexity using QR-CP, and

we adaptively predict the sampling rate in a simpler man-

ner (we will see in Sec. 3.3). Fortunately, in LAPACK, an

efficient QR-CP routine using level-3 BLAS (dgeqp3) is

available. Moreover, our method does not require the up-

per triangle matrix from QR, but only the orthonormal basis

Q; therefore, we can avoid extracting the whole triangu-

lar matrix but only compute rank and Q with dgeqp3 and

orgqr routines, respectively. After obtaining Q ∈ R
m×s,

where s = min(l, r), we can compute a small matrix B by

B = Q�A ∈ R
s×n.

Range Propagation (RP) for Fast Range Finding
Based on the observation that Range(A(i)) at the i-th it-

eration of NNM related problems is similar to the one at

the (i − 1)-th iteration, our method uses the singular vec-

tors at the (i − 1)-th step as an initial approximation of

range bases Q(i) at the i-th step. To capture the change of

the range space more, additional p sample vectors {y} are
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Figure 1. Illustration of singular value decaying. [Left] Gaussian

random, video and image samples. [Right] Decaying graphs of

singular values. The Red, Green, Blue lines represent the graphs

of a Gaussian random matrix, video, and image, respectively. The

spectrum of visual data decays significantly fast.

newly sampled. We append {y} to the previous singular

vector matrix Q̃(i−1) as Q(i) = [Q̃(i−1),y1, · · · ,yp], and

apply partial orthogonalization only for newly added {y}
by the modified Gram-Schmidt procedure [8]. The number

of bases can subsequently be reduced by checking the rank

with QR-CP in the first step of the power iteration.

Power Iteration Among the overall process in our al-

gorithm, since the only approximation step is to estimate

the orthonormal column matrix Q only, the accuracy of

our algorithm depends only on this step. In Eq. (5), if

the magnitude of the action (i.e., spectrum) of Ak is not

dominant against E, the directions of sample vectors are

biased and may be included in Range(Ak)
⊥. This intro-

duces accuracy degradation to the rest of the process. To

resolve this issue, Halko et al. [11] proposed the power it-

eration scheme, which makes the spectrum difference be-

tween Ak and E larger by estimating Q on (AA�)ηA. It

improves the chance of better capturing the range of Ak

from Y = (AA�)ηAΩ, while the singular vectors remain

unchanged. Halko et al. also showed that η = 2 or 4 power

iterations are sufficient for usual data of interest, and highly

accurate range finding can be achieved. As shown in Fig. 1,

decaying singular values of visual data is much faster than

Gaussian random matrix. Our empirical tests also show that

η = 2 is enough and it is used in all our experiments.

3.2. Computing the Singular Values (Vectors)

The NNM problem is now reduced to SVT on a smaller

matrix B. In this section, we further reduce the compu-

tation time of SVT on B. The SVT operator can be com-

puted by SVD and shrinkage on its singular values. For pos-

itive semi-definite matrices, SVD can be more efficiently

computed by Eigen decomposition (ED), which is generally

faster than SVD at least twice in our empirical tests. To ap-

ply ED to a general matrix, we form a positive semi-definite

matrix by the following decomposition:

Definition 2 (Polar decomposition [12]). Let X ∈ C
m×n,

m ≥ n. There exists a matrix W ∈ C
m×n and a unique

Hermitian positive semi-definite matrix P ∈ C
n×n such

that
X = WP, W∗W = I,

where I is the identity matrix. If rank(X) = n, then P is
positive definite and W is uniquely determined.

Note that the existence of polar decomposition is equiv-

alent to the existence of SVD.

We use a Newton based polar decomposition suggested

by Higham et al. [12], which has a quadratic convergence

behavior. In our experiment, it converges at a small num-

ber of iterations (typically 7) with various different data,

which is consistent with the result of [2, 12]. Due to the

requirement of the inverse operator in Newton iterations,

it is only applicable to non-singular square matrix. Since

B� ∈ R
n×s is a full column rank matrix, the non-singular

square matrix can be simply obtained from B� = HC by

QR decomposition, where we call C ∈ R
s×s a core matrix

that is always non-singular and square. Contrary to Sec. 3.1,

no column pivoting is required.

We sequentially apply the polar decomposition and ED

on the core matrix to be C = WP = WVDV�, where D
and V are the eigenvalue and eigenvector matrices of P, re-

spectively. Since the matrices H, W, and V are orthonor-

mal column matrices, the diagonal matrix D is equivalent

to the singular value matrix of B. Finally, Sτ (A) can be

approximated by

Sτ (A) ≈ Sτ (Âs) = (QV) Sτ (D) (HWV)�. (6)

For the range propagation, the singular vector matrix Q̃ is

stored as Q̃ = QV or HWV (according to either side of

random matrix multiplication). Overall algorithm is sum-

marized in Algorithm 1.

3.3. Adaptive Rank Prediction (AP) Heuristic

For SVT, only singular vectors corresponding to the sin-

gular values that are greater than a certain threshold are

needed, and full SVD is unnecessary. Since the rank of

A(i) is unknown before SVD, predicting its rank can avoid

unnecessary computation. We observe that, in many NNM

related problems, the rank of A(i) is monotonically increas-

ing or decreasing over iterations, and the rank is stabilized

as the number of iteration increases. As we shall see in the

theorem of error bound in Sec. 4, over-sampling is always

useful to reduce the expected error bound of FRSVT. Thus,

optimistically predicting rank allows to achieve both com-

putational efficiency and stability.

The speed advantage of our method will be lost with a

higher sampling rate. In such a case, we resort to the trun-

cated SVT by upper bounding the target rank. As shown in

natural image statistics of Fig. 1, the rank of A(i) is gener-

ally stabilized at low-rank in many computer vision appli-

cation. Usually, the final accuracy is not harmed, as seen



in the successes of the truncated SVD in the NNM related

problems [17, 18, 19, 21].

Based on these observations, we define over-sampling

rate p as:

pi+1 =

{
a, if ri < li,
�ρn�, otherwise,

(7)

where m ≥ n is assumed, a is a constant (set to a = 2),

ρ ∈ (0, 1] is a constant parameter to rapidly follow the real

rank ri (set to ρ = 0.05), and �·	 denotes the ceil oper-

ation. The prediction rule for sampling rate is defined as

li+1 = min(ri + pi+1, b), where b = �γn	 is the maximum

bound of sampling rate, γ ∈ (0, 1] is the proportion param-

eter. The sampling rate li can be regarded as the predicted

rank at the i-th iteration, and ri is the number of singular

values of A(i) that are larger than the threshold, i.e., the

estimated rank of Sτ (A(i)). Initially, we set l0 = 0.1b. In

the case of the range propagation, the number of columns in

Q̃(i−1) becomes ri, and pi = li − ri.
When ri < li, Eq. (7) slightly over-samples, otherwise

it optimistically predicts the rank of the next iteration by

the a larger over-sampling rate. By virtue of low-rankness

of visual data shown in Fig. 1, the optimistic rule leads to

accurate estimate.

3.4. Computational Complexity

The computation of the sample matrix Y by random pro-

jection requires O(mnl), but we can reduce it to O(mn) by

the range propagation technique. The random matrix can be

multiplied to either left or right hand side of A. We mul-

tiply the random matrix to the longer side (left side, when

n < m) of A, so that the complexity of power iteration can

be further reduced. Under m ≥ n, the power scheme con-

sists of O(mns) matrix multiplication and O(ns2) QR. The

polar decomposition and ED takes O(s3). Finally, the so-

lution matrix composition takes O(mns). Most expensive

computations with O(mns) are simple matrix multiplica-

tions, so it can be easily parallelized.

4. Approximation Bound
To analyze the behavior of the proposed algorithm, it is

meaningful to see the approximation error bound. Except

for the randomized step in sampling Y, the other steps of

our algorithm is based on exact methods. Thus, the ac-

curacy is only affected by the randomized range estima-

tion, which computes a rank-k approximation of a matrix.

Since there is the only one approximation step, the proposed

method shares the same theorems with Halko et al. [11] as:

Theorem 1 (Average Frobenius3 error bounds by ran-
domization [11]). Let Âk be a rank-k approximation ma-

3For easy derivation, we provide the squared versions (the square of

the Frobenius norm) for Theorems 1 and 2. The original error bound (the

Frobenius norm) can be obtained by taking the square root.

trix A ∈ R
m×n. For a target rank k ≥ 2 and an over-

sampling parameter p ≥ 2, where k + p ≤ min(m,n),
draw an standard Gaussian matrix Ω ∈ R

n×(k+p). Then,
the theoretical minimum error and the upper bound satisfy
∑

j>k
σ2
j (A) ≤ E‖A−Âk‖2F ≤ poly(v)·

∑
j>k

σ2
j (A),

where E denotes expectation with respect to the random
matrix, poly(v) is a function for v = {k, p} (without the
power iteration) or {k, p, η} (with the power iteration).

Halko et al. show that the upper bound of the error is

close to theoretical minimum error with high probability

in conjunction with some improving techniques (e.g., over-

sampling, power iteration), and the bound is pessimistic.

From Theorem 1, the following theorem is our main re-

sult for the bound of the approximate SVT.

Theorem 2 (Average error bound of the approximate
SVT). Let Sτ (·) be the SVT operator. Then, the average
error satisfies the following inequality.

E‖Sτ (A)−Sτ (Âk)‖2F ≤ poly(v)·
(∑

j>k
σ2
j (A)

)
−G(A),

where G(A) =
∑

j>k min(σj(A), τ)2 ≥ 0.

Proof. The proof can be found in the appendix.

In Theorems 1 and 2, in the case without power iteration,

poly(·) is defined as poly(k, p) = (1 + k/(p− 1)). The

polynomial bound with power iteration with the Frobenius

norm representation has no simple form, so instead we can

observe the behavior of the error bound with power iteration

by referring to the spectral bound of Halko et al.
Consequently, our Theorem 2 asserts that the bound of

the approximate SVT is tighter than the error by rank-k ap-

proximation in Theorem 1 on average. Thus, we can see

that FRSVT can be safely used in practice. From Theorem

2, we see the following properties:

• σk+1(A) → ε and ‖Sτ (A)− Sτ (Âk)‖2F may approach

to close to zero when k ≥ rank(A), which means it is al-

most exact.

• Fortunately, the bound becomes rapidly tighten as p or η
increase in both practice and theory, similar to Halko et al..
• The bound is independent of the size of the matrix.

5. Experimental Results
In this section, we first evaluate the efficiency of the pro-

posed method in comparison with other methods using sim-

ulation data. The evaluation is conducted by examining the

performance of a single SVT computation and also by as-

sessing the performance of RPCA computation, which is

arguably the most relevant NNM problem in computer vi-

sion today. We then show NNM applications in computer



vision using real-world data: subspace clustering, semi-

online weather artifact removal, and simultaneous multi-

image alignment and rectification. All the experiments are

conducted on a PC with Intel i7-3.4GHz and 16GB RAM.

The same shared parameters were used among algorithms.

5.1. Evaluation using Simulation Data

We quantitatively evaluate our method in comparison to

other methods with synthetic matrices sampled from a stan-

dard Gaussian distribution. We evaluate the computational

times on Matlab 2010a and 2014a 64bits. Since the re-

cent Matlab has been intensively optimized on Intel CPU

(mainly due to improvement of Intel MKL), the computa-

tion efficiency has been noticeably improved. Therefore,

it is worth reporting performance difference on these two

versions of Matlab, because most related works have been

assessed with Matlab older than 2011a [2, 19, 21, 22, 26].

For a fair comparison, we turn off multi-threading functions

including maxNumCompThreads(1) in Matlab. We de-

scribe the implementation details of each method in the

supplementary material. Also, more complete testings and

comparisons can be found in the supplementary material.

Single SVT test Figure 2 compares speed and accu-

racy of SVT computation using SVT methods, such as

Matlab built-in SVD4 (baseline), Lanczos [16], FSVT [2],

LTSVD [5] and our FRSVT (with / without RP). Except for

the baseline SVD, the others produce the truncated SVD of

the input matrix, and it is used for SVT computation. For a

rank-k approximation, we compute rank-(k+p) approxima-

tions by setting the over-sampling rate p to 2 for Lanczos,

5 for LTSVD, 5 for FRSVT. While LTSVD in Fig. 2-(e)

is faster than ours, the approximation error is significantly

higher than other truncated SVD, and it results in slower

convergence in RPCA as we will see in the following.

Robust PCA test To see the convergence behavior of the

SVT methods for RPCA [3], in Table 1, we compare our

method to various SVT methods, such as SVD, LTSVD,

BLWS [19], FSVT, RSVD [11], using an inexact aug-

mented Lagrange multiplier method [17] (iALM, or called

alternating directional multiplier method)5. We apply the

proposed adaptive rank prediction in Sec. 3.3 to LTSVD,

RSVD and our FRSVT. LTSVD shows convergence degra-

dation to achieve comparable accuracy with others due to

rough approximation on both bases and singular values.

Other methods including our FRSVT show similar numbers

of iterations and accuracy, but our method has a consider-

ably lower computation time for a single iteration.

4We apply either the economic size or full SVD according to the matrix

shape and report faster one, but we denote them as econSVD only.
5We report the result of Mu et al. [26] in the supplementary material as

we could not reproduce their result.

Algorithms #NM SIT TT SPG ERR

iALMeconSVD10 23 947.9 21668 – 1.8e-7

iALMeconSVD14 23 46.5 1069 20× 1.8e-7

iALMLTSVD [5] 41 1.7 70 312× 4.6e-7

iALMBLWS [19] 24 2.2 53 405× 4.8e-7

iALMFSVT [2] 23 110.0 2527 9× 1.8e-7

iALMRSVD [11] 23 3.6 81 268× 1.8e-7

iALMFRSVT (ours) 23 1.5 33 665× 1.8e-7

iALMFRSVT-RP (ours) 23 1.3 30 716× 1.8e-7

- #NM: The number of NNM, - SIT: Elapsed time (sec) of a single iteration,
- TT: Total elapsed time (sec), - SPG: Speed-up gain against the baseline,

- ERR: ‖AGT − Â‖F /‖AGT ‖F .

Table 1. Quantitative Comparisons on RPCA. 4000× 4000 matri-

ces are used. The results of other sizes and convergence graphs are

shown in the supplementary material. In iALM procedure, #NM

is the number of iteration to solve the NNM subproblem, which

corresponds to the total number of iterations.

Type Objective function Constraint

A argmin
L,S

‖L‖∗ + λ‖S‖2,1 O = ZL+ S

B argmin
L,S

∑n
i=k+1 σi(L) + λ‖S‖1 O = L+ S

C argmin
L,E,Γ

3∑

i=1
αi‖L(i)‖∗ + λ‖E‖1 O ◦ Γ = L+ E

Table 2. Examples of NNM related objective functions. (a) Low-

rank representation. (b) RPCA based on the non-convex trun-

cated nuclear norm, where k is the target rank to be encouraged.

(c) Low-rank and sparse 3-order tensor decomposition with align-

ment. Here, ‖ · ‖2,1 is l2,1 norm, {αi} are the balance parameters

among the unfolding matrices L(i) and
∑

αi = 1 is assumed. We

refer the basic tensor algebra notations denoted in [37].

5.2. More Applications

We show more general applications of our FRSVT

method to various types of low-rank optimization problems

summarized in Table 2, such as affine constrained NNM

(Type A), non-convex truncated NNM (Type B) and NNM

on tensor structure (Type C). We show them with typical

computer vision applications in the following.

Type A - Robust Subspace Clustering by Low-Rank
Representation (LRR) Many visual data is often char-

acterized by a mixture of multiple subspaces. One of the

recent promising methods is LRR, which effectively per-

forms subspace clustering and noise correction simultane-

ously. While both noise correction and subspace clustering

are known to be challenging, LRR has been shown robust

against large corruptions. The robust LRR can be formu-

lated by Type A, which can be efficiently solved by iALM.

In this experiment, we use the same parameter settings and

evaluation metrics suggested in [20].

We apply FRSVT to the robust LRR for motion segmen-

tation on Hopkins155 [35] and for face recognition on a part

of Extended Yale Database B [15] respectively. We use all

156 sequences in Hopkins155, and only the first 10 classes

in Yale, in which each class contains 64 face images cap-

tured under various illumination conditions – given 42× 48
resized images, we construct a 2016 × 640 data matrix by
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Figure 2. SVT comparisons across SVD methods. [Left] X-axis: Target rank, Y-axis: Elapsed time (Sec). [Right] X-axis: Target rank,

Y-axis: ‖A∗ − Âk‖F /‖A∗‖F , where A∗ = Sτ (DGT ), Âk = Sτ (Dk), DGT is the input data, and Dk is approximated by each method.

For the low-rank matrix test, we generate input data matrices of which rank correspond to the target rank by multiplying two Gaussian

random matrices with m × r and r × n, while in other tests full rank matrices are used. In (b,d,f), the theoretical minimum error bound

by the rank truncation in Sτ (Dk) is provided for guidance, and it is defined as
∑

j>k σi(A
∗), where σi(A

∗) is computed by the built-in

SVD of Matlab with the assumption that the SVD is exact. For the low-rank case in (d), the theoretical minimum error is 0, so we omit the

theoretical bound. For other results with other sizes, refer to the supplementary material.

Computational Time (s)
LRR+SVD LRR+SVD LRR+Ours

Matlab 2010a Matlab 2014a

Time per Motion 1.230 1.016 0.452

Time for 640 Faces 419.440 75.216 44.590

Table 3. Comparisons of the subspace segmentation algorithms on

Hopkins155 [35] (Motion) and Extended Yale Database B [15]

(Face). Motion Segmentation Errors on the Hopkins155 of both

LRR and LRR+Ours are 1.59%. The segmentation accuracies (%)

on the Yale data are 79.06 for both LRR and LRR+Ours. These

results show the improvement of the computation time with re-

taining the same accuracy. Details on the computational time are

shown in the supplementary material.

vectorizing each image. While Hopkins155 is only weakly

corrupted, Yale data is heavily corrupted by shadows, spec-

ularity and noise. As shown in Table 3, our method speeds

up LRR without degrading of the accuracy.

Type B - Semi-Online Weather Artifact Removal We

consider a weather artifacts (e.g. snow or rain) removal

problem in a video sequence. Since the weather artifacts

have non-deterministic appearance and sparse yet random

distribution in the spatio-temporal domain, we model the

artifacts as sparse outlier and the scene as low-rank, while

we want to retain moving objects. We apply the low-rank

and sparsity decomposition to n frames in a sliding window

manner to leave moving objects in the latent images.

Unfortunately, since finding low-rank solution by the nu-

clear norm is based on the blessing of high dimensional-

ity [3], it could be degenerated with small n frames as re-

ported in Oh et al. [30]. With the assumption that the ob-

ject motions are small during few frames, we can encourage

the low-rank solution to be rank-1 and decompose sparse

corruptions by Type B optimization with k = 1, where O
is constructed by stacking vectorized n images. It can be

effectively solved by alternating Partial SVT (PSVT) [30]

and l1 minimization based on iALM. We replace PSVT by

(a)

(b)

Figure 3. Qualitative results for the weather artifact removal. (a)

Sample input images O. (b) Low-rank images Z.

FRSVT with the partial thresholding. We transfer the pre-

vious basis estimation to the next n frame optimization, so

it can be regarded as semi-online algorithm.

Our algorithm produces n results simultaneously for n
images. With an n = 5 sliding window, the method based

on SVD takes 158.9ms per a single channel of a 384×288

image on Matlab 2014a (318.3ms on Matlab 2010a), while

our method only takes 65.52ms. The qualitative results of

our method can be found in Fig. 3, which shows plausible

snow removal effects.

Type C - Simultaneous Multi-Image Alignment and Rec-
tification Simultaneous multi-image alignment and rec-

tification problem is Type C optimization suggested by

Zhang et al. [37] (called SRALT). The method combines

the ideas of TILT [38] and RASL [37] on the 3rd-order ten-

sor structure, which exploits low-rank texture property and

nuclear norm-based misalignment error respectively. With

showing the applicability of FRSVT to NNM on a 3rd-order
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Figure 4. Qualitative comparison with RASL [31] and SRALT [37]

+ Our FRSVT. (a) Samples of input images. (b) Results obtained

by RASL [31]. (c) Results obtained by SRALT [37] + Our FRSVT.

(d) The average images. (Top: for all input images, Middle: for

RASL, Bottom: for SRALT+Ours). Due to the angular bias shown

in (a), RASL aligns the samples to be consistent at the biased an-

gle, while the SRALT based method in (c) not only align the im-

ages, but also correct upright poses.

tensor, we present a new application of SRALT to gait data.

Since gait is a biometric signal spanned on not only spa-

tial domain (2D), but also temporal domain, so it is natural

to represent the data by 3rd-order tensor [24]. In gait recog-

nition, the exact alignment of acquired data is frequently as-

sumed, but in real situation, the accuracy of the gait recogni-

tion could be varied according to the pivot angle of the cam-

era and locations of moving persons of both training and test

data. Therefore, SRALT framework is useful to align many

gait data and to find vertical angles as a preprocessing step.

We observe that the human silhouettes have the low-rank

texture property, and as observed in Lu et al. [24], cyclic

gait motions are spanned by a few number of bases.

We conduct the experiments on the Gait Challenge data

sets6 [34], whose size is O ∈ R
32×22×3000 (3000 unaligned

images with the size 22 × 32). The set of the geometric

transformations Γ = {g1, · · · , g3000}, where gj ∈ R
p is a

p-group parameterization, and is parameterized by a 3-DoF

Euclidean transformation in our experiments. We randomly

apply translation and rotation to introduce misalignments.

Our method is implemented on the top of [37] by replacing

their SVT method with FRSVT. While the method of [37]

is converged at the objective value 206.69 and takes about

6 hours 51 min. (24652s), our method takes only about 1

hour 45 min. (6280s) and reaches the even smaller objective

score 206.46. The qualitative and the detailed computation

time comparisons are reported in Figs. 4 and 5, respectively.

6. Conclusions

We have presented a fast approximate SVT method that

exploits the property of iterative NNM procedures by range

propagation and adaptive rank prediction. The approxima-

tion error bound shows our method can produce reliable ap-

proximation. The proposed method has been assessed using

the problems of affine constrained NNM, non-convex NNM

6The dataset is described in the supplementary material.

0 100 200 300 400 500 600 700 800 900

Ours

SRALT

Computational Time (Seconds)

SVT1 SVT2 SVT3 Others

Figure 5. Computational time comparison on the registration and

rectification application [37]. The NNM for tensor consists of 3-

way SVTs. Computational times are measured for a single outer

iteration (almost 100 inner iterations).

and NNM on tensor structure as well as the original NNM.

The empirical evaluations showed the consistent result with

the theoretical analysis, and our approach can reduce the

computational time of low-rank applications without losing

accuracy and hurting convergence behavior. The major bot-

tleneck of our method is in the power scheme, and we are

interested in further reducing the computational complexity

by effectively relaxing this computation block in the future.

Appendices – Proof of Theorem 2
The following propositions are useful for deriving the approx-

imation bound.

Proposition 2 (Dual pseudo-contraction). Let Pτ (·) is a dual
operator of Sτ (·), such that X = Sτ (X) + Pτ (X). Then,

‖Sτ (A)− Sτ (B)‖2F ≤ ‖A−B‖2F − ‖Pτ (A)− Pτ (B)‖2F .
Proof. Since the derivation is straightforward based on the

pseudo-contraction [32], we omit the details.

Proposition 3. Let Âk be a rank-k approximation of A.

min ‖Pτ (A)− Pτ (Âk)‖2F =
∑

j>k min(σj(A), τ)2.

Proof. This can be directly reached from Proposition 2.

Proof of Theorem 2. By Propositions 2 and 3,

‖Sτ (A)− Sτ (Âk)‖2F
≤‖A− Âk‖2F − ‖Pτ (A)− Pτ (Âk)‖2F
≤‖A− Âk‖2F −

∑
j>k

min(σj(A), τ)2.

Take the expectation to the both sides,

E‖Sτ (A)− Sτ (Âk)‖2F
≤E‖A− Âk‖2F −

∑
j>k

min(σj(A), τ)2

≤ poly(v) ·
∑

j>k
σ2
j (A)−

∑
j>k

min(σj(A), τ)2,

(by Theorem 1)

=poly(v) ·
∑

j>k
σ2
j (A)−G(A)

(
G(A) =

∑
j>k

min(σj(A), τ)2
)

Obviously, G(A) ≥ 0 by the definition. �
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