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Much recent progress has been made in the development of real-time, dense
surface reconstruction algorithms that work with a single depth camera,
such as the Microsoft Kinect. KinectFusion [3] demonstrated high-quality
scanning of small environments, subsequently extended to large-scale re-
constructions [2, 4]. A major barrier to complete reconstruction is error
accumulation during sequential camera pose estimation. When exploring
large environments, this sensor “drift” often corrupts the final reconstruc-
tion with artifacts and clear misalignments (see center of Fig. 1). Current
solutions usually require either RGB data [5, 6], explicit loop closure [5]
or an expensive off-line global optimization step [6]. We propose a novel
approach which performs real-time camera tracking while performing online
model correction, uses depth data only, avoids explicit loop closure detec-
tion and executes a full global surface alignment to facilitate fast dense 3D
reconstruction.

A key component of our method is the use of the Truncated Signed
Distance Function (TSDF) representation. This is expressed as a pair of
functions (F,W ) such that, for every u ∈ R3, F (u) is the distance from u to
the zero level set of F , while the weighting function W (u) encodes a measure
of confidence in the value of F at u. Given a depth image Dt at time t, first
we estimate the corresponding camera pose Tt as proposed in [1], then depth
measurements are integrated in the GPU memory as

Fnew (u) =
F (u)W (u)+min(1,∆z(u,t)/δ)

W (u)+1
, (1)

W new (u) =W (u)+1 , (2)

where ∆z is the difference between the voxel position in camera space and
the measured depth, while δ is the truncation distance. However, dense
estimation of the TSDF requires a large amount of memory which is practical
only for small workspaces. Though moving volume approaches [2, 4] allow
for virtually unbounded reconstruction, large exploratory sequences introduce
drift error in the estimated camera trajectory, leading to gross misalignments
and artifacts. In our approach, camera tracking is always performed against
a low-drift, high quality, local TSDF produced by the fusion of the last K
tracked frames. Specifically, the current tracked frame Dt is integrated into
the TSDF and then pushed into a FIFO queue, while the Kth oldest frame
Dt−K gets popped and eroded by applying

Fnew (u) =
F (u)W (u)−min(1,∆z(u,t−K)/δ)

W (u)−1
, (3)

W new (u) =W (u)−1 . (4)

At the same time, every K frames the current TSDF is frozen and copied
into main memory as a subvolume. Camera tracking continues on the GPU,
while drift is reduced on the host side through global bundle adjustment and
surface alignment of all subvolumes hitherto available.

Global surface alignment is addressed by finding the best rigid-body
pose for each subvolume, encoded as a transform V j for the j’th subvolume
(see Fig. 1). Purposely, a cost function is built by establishing a set of
correspondences as follows. For each point p( j)

i on the zero level set of
subvolume

(
Fj,W j

)
, we define a match q ji

k with overlapping subvolume
(Fk,Wk) by following the direction of the normalized gradient ∇̂Fk to obtain
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k V jp
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i

)
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. (5)

The cost function is then the sum of point-to-plane distances

∑
jik
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, (6)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Figure 1: Locally-accumulated TSDFs (left) are shipped from GPU to host,
effectively representing the true scene by a set of overlapping individually
reconstructed subvolumes (center). Noise and drift are reduced by estimating
an optimized 6-DOF pose for each subvolume (right).

Figure 2: Reconstruction of a bookshop.

and is minimized through non-linear least squares. Given the refined subvol-
umes’ poses, another set of matches is found and a new cost function is built
and optimized. This process is repeated until convergence.

At the end of this procedure, we have estimated a 6-DOF pose for
each subvolume, but non-rigid deformations still show up as artifacts when
extracting surfaces. Instead of computing a global volume by re-sampling
subvolumes, we deploy a faster volume blending approach. Accordingly,
for each point u in subvolume

(
Fj,W j

)
we consider the set of overlapping

subvolumes {(Fk,Wk)} and update the distance function as

Fnew
j (u) =

Fj (u)W j (u)+∑k Fk

(
V−1

k V ju
)

Wk

(
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)

W j (u)+∑k Wk

(
V−1

k V ju
) . (7)

An exemplar reconstruction of a large environment achieved by our
method is shown in Fig. 2). Finally, it is worth pointing out that volume
blending is not required by either camera tracking or subvolume registration.
Likewise, the result of subvolume optimization is not needed by the camera
tracking process, which can thus keep operating in real-time.
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