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Recognizing 3D objects from 2D images is a central problem in computer
vision. In recent years, there has been an emerging trend towards analyzing
3D geometry of objects instead of merely providing bounding boxes. Esti-
mating the 3D configuration of an object from a single view is an ill-posed
problem. But it is a possible task for a human observer, since human can
leverage visual memory of object shapes. Inspired by this idea, more and
more efforts have been made towards 3D model-based analysis leveraging
the increasing availability of online 3D models.

A popular approach is the “active shape model" [3], where each shape
is defined by a set of landmarks and the shape to be estimated is assumed
to be a linear combination of predefined basis shapes. Given 3D-2D corre-
spondences, the 3D deformable model is fitted to the landmarks annotated
or detected in images. While this approach has proven to be successful in
various applications [4, 6], a challenging issue remains, i.e., the joint esti-
mation of shape parameters and camera-pose parameters requires to solve
a nonconvex optimization problem. The existing methods often adopt an
alternating minimization scheme to locally update the variables, and conse-
quently the solution is sensitive to initialization as illustrated in Figure 1.

In this paper, we propose a convex formulation to address this problem.
We use an augmented shape-space model, where a shape is represented as
a linear combination of rotatable basis shapes giving a linear representation
of both shape and viewpoint variability. Then, we use the convex relaxation
of the orthogonality constraint to convert the entire problem into a convex
program. Finally, we develop an efficient algorithm to solve the problem.

With the weak-perspective camera model and the sparse representation
of shapes, the following problem is considered to estimate a shape:

min
c,R̄

1
2

∥∥∥∥∥W − R̄
k

∑
i=1

ciBi

∥∥∥∥∥
2

F

+λ‖c‖1,

s.t. R̄R̄T = I2, (1)

where W ∈ R2×p denotes the 2D landmarks, R̄ ∈ R2×3 represents the first
two rows of a rotation matrix, B1, · · · ,Bk ∈ R3×p are basis shapes learned
from training data and c = [c1, · · · ,ck]

T is the coefficient vector to repre-
sent the unknown shape S, such that S = ∑

k
i=1 ciBi. The optimization in (1)

is nonconvex and there is an orthogonality constraint. A commonly-used
strategy is to alternate between the updates of R̄ or c while fixing the other
one, which only gives a locally-optimal solution.

We propose to use the shape model S = ∑
k
i=1 ciRiBi, in which there is a

rotation for each basis shape, and the corresponding 2D model is
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where Mi ∈ R2×3 is the product of ci and the first two rows of Ri, which
satisfies MiMT

i = c2
i I2. The motivation of using this model is to achieve a

linear representation of shape and viewpoint variability, such that we can get
rid of the bilinear form in (1).

Next, we replace the orthogonality constraint on Mis by its convex coun-
terpart. The following lemma has been proven in literature [5, Section 3.4]
and Proposition 1 can be derived from it.

Lemma 1. The convex hull of Q=
{

X ∈ Rm×n| XT X = In
}

equals the unit
spectral-norm ball conv(Q) =

{
X ∈ Rm×n| ‖X‖2 ≤ 1

}
. ‖X‖2 denotes the

spectral norm, which is defined as the largest singular value of X.

Proposition 1. The convex hull of S =
{

Y ∈ Rm×n| Y TY = s2In
}

equals
conv(S) =

{
Y ∈ Rm×n| ‖Y‖2 ≤ |s|

}
.
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Figure 1: An example of 3D human pose recovery. The columns from left
to right correspond to the input 2D landmarks, the reconstructions from the
proposed method and from the alternating minimization, respectively.

With Proposition 1 and the shape model in (2), the original problem in
(1) is relaxed to:
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s.t. ‖Mi‖2 ≤ |ci|, ∀i ∈ [1,k] (3)

which is apparently equivalent to
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The problem in (4) is a penalized least-squares problem, where we es-
timate a set of orthogonal matrices by minimizing their spectral norms. We
provide an efficient algorithm based on ADMM [1] to solve it.

Notice that ‖ · ‖2 denotes the spectral norm of a matrix instead of the
`2-norm of a vector. As we show in the paper, minimizing the spectral norm
of a matrix is equivalent to minimizing the `∞-norm of the vector of singu-
lar values, which will simultaneously shrink the norm of the matrix towards
zero and enforce its singular values to be equal. Therefore, by spectral-
norm minimization, we can not only minimize the number of activated basis
shapes but also enforce each transformation matrix Mi to be orthogonal (an
orthogonal matrix has equal singular values). Interestingly, the conditions
for exact recovery using spectral-norm relaxation has been theoretically an-
alyzed in [2]. We provide numerical results in the paper.

[1] S. Boyd. Distributed optimization and statistical learning via the al-
ternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1):1–122, 2010.

[2] Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S
Willsky. The convex geometry of linear inverse problems. Foundations
of Computational Mathematics, 12(6):805–849, 2012.

[3] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape
models – their training and application. Computer Vision and Image
Understanding, 61(1):38–59, 1995.

[4] Mohsen Hejrati and Deva Ramanan. Analyzing 3d objects in cluttered
images. In Advances in Neural Information Processing Systems, 2012.

[5] Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepul-
chre. Generalized power method for sparse principal component analy-
sis. The Journal of Machine Learning Research, 11:517–553, 2010.

[6] Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Reconstructing
3d human pose from 2d image landmarks. In European conference on
Computer Vision, 2012.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

