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Abstract

In recent years, the problem of associating a sentence
with an image has gained a lot of attention. This work con-
tinues to push the envelope and makes further progress in
the performance of image annotation and image search by
a sentence tasks. In this work, we are using the Fisher Vec-
tor as a sentence representation by pooling the word2vec
embedding of each word in the sentence. The Fisher Vector
is typically taken as the gradients of the log-likelihood of
descriptors, with respect to the parameters of a Gaussian
Mixture Model (GMM). In this work we present two other
Mixture Models and derive their Expectation-Maximization
and Fisher Vector expressions. The first is a Laplacian Mix-
ture Model (LMM), which is based on the Laplacian dis-
tribution. The second Mixture Model presented is a Hy-
brid Gaussian-Laplacian Mixture Model (HGLMM) which
is based on a weighted geometric mean of the Gaussian and
Laplacian distribution. Finally, by using the new Fisher
Vectors derived from HGLMMs to represent sentences, we
achieve state-of-the-art results for both the image annota-
tion and the image search by a sentence tasks on four bench-
marks: Pascal1K, Flickr8K, Flickr30K, and COCO.

1. Introduction

The Fisher Vector [33] is an advanced pooling technique,

which provided state-of-the-art results on many different

applications in computer vision [38, 32, 2, 34]. In this

work, the Fisher Vector is used in order to represent sen-

tences by pooling the word2vec embedding [28] of each

word in the sentence. The Fisher Vector of a set of local

descriptors is obtained as a concatenation of gradients of

the log-likelihood of the descriptors in the set with respect

to the parameters of a Gaussian Mixture Model that was

fitted on a training set in an unsupervised manner. Many

different improvements were suggested for the Fisher Vec-

tor [35, 45, 39] but all of them are in the context of the Gaus-

sian Mixture Model. In [13], Jia et al. showed empirically

that the statistics of gradient based image descriptors, such

as SIFT [25], often follow a heavy-tailed distribution which

suggests that a Gaussian distribution does not capture well

the descriptors’ distribution, and that the Euclidean distance

is not a suitable distance. They advocate for the selection of

a distance measure according to the appropriate probabilis-

tic model that fits the distribution of the empirical data, and

show that for the application of SIFT feature matching, a

significant improvement is obtained by using the Laplacian

distribution and the L1 distance instead of the Euclidean

distance. Motivated by their findings, this paper presents

and evaluates new variants of Fisher Vectors that are based

on the Laplacian distribution.

By using the common assumption in the Fisher Vector

that the covariance matrix is a diagonal one, we define the

multivariate Laplacian distribution and the Laplacian Mix-

ture Model (LMM). We explain how to fit a LMM by de-

riving the Expectation-Maximization (EM) equations and

supply the Fisher Vector definition for this model. Similar

to [33], we approximate the diagonal of the Fisher Informa-

tion Matrix in order to normalize the dynamic range of the

different dimensions in the Fisher Vector variant presented.

In order to gain the benefits of the two distributions in

a single model, we define a new distribution, the Hybrid

Gaussian-Laplacian distribution, which can be seen as a

weighted geometric mean of the Gaussian and Laplacian

distributions. As before, we define the Hybrid Gaussian-

Laplacian Mixture Model (HGLMM), derive the EM equa-

tions for fitting a HGLMM model, derive the Fisher Vector

definition and approximate the diagonal of the Fisher Infor-

mation Matrix. Although the distribution of each dimen-

sion in each component is a weighted geometric mean of

a Gaussian and a Laplacian distribution, we show that in

the EM algorithm, there is a sharp binary choice between

the Gaussian and the Laplacian distributions that results di-

rectly from the Maximization-Step derivations.

We employ the new variants of the Fisher Vectors for

tasks that match texts with images. In our experiments,
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the images are represented by the VGG [40] Convolutional

Neural Network as a single vector. The text is represented

as a set of vectors obtained by the word2vec [28] method.

This set is converted to a Fisher Vector based on one of

the distributions: GMM, LMM, or HGLMM. Text to image

matching is done using the Canonical Correlations Analysis

algorithm [12]. This combination of methods proves to be

extremely potent.

2. Previous work

Fisher Vectors The Fisher Vector representation was first

introduced in [33] and has been used successfully in var-

ious contexts. Since its introduction, many improvements

have been suggested which have dramatically enhanced its

performance. Some of the most widely used improvements

were introduced by Perronnin et al. [34]. The first improve-

ment is to apply an element-wise power normalization func-

tion, f(z) = sign(z)|z|α where 0 ≤ α ≤ 1 is a parameter

of the normalization. The second improvement is to ap-

ply a L2 normalization on the Fisher Vector after applying

the power normalization function. By applying these two

operations [34] achieved state-of-the-art accuracy on Cal-

Tech 256 and showed superiority over the traditional Bag of

Words (BoW) model. Sydorov et. al [45] introduced Deep

Fisher Kernels which is a successful attempt of combining

two methods with a significant impact on object recogni-

tion - Fisher Kernels and Deep Learning. In the traditional

pipeline of object recognition, the first two steps (extract-

ing local descriptors and pooling) are done in an unsuper-

vised manner, independently of the task. Only in the last

step, when learning the classifier is the nature of the task

taken into account. One of the advantages of Deep Learn-

ing is that the entire pipeline is optimized for the task - in-

cluding the layers that are in charge of extracting descrip-

tors and pooling. Sydorov et. al formulated the traditional

pipeline of using Fisher kernel with a SVM classifier as a

single multi-layer feed forward network. Therefore, both

the GMM parameters and the weight vector of the classi-

fiers are tuned according to the nature of the specific task.

Simonyan et al. [39] were motivated by the recent success of

Convolutional Neural Networks (CNN) [21] and proposed a

version of the state-of-the-art Fisher Vector image encoding

that can be stacked in multiple layers. Their version ob-

tained competitive results with CNNs on the ILSVRC-2010

dataset. Furthermore, they demonstrated that their Fisher

Vector version and CNNs representations are complemen-

tary and by combining the two, they achieved a significantly

improved accuracy. Our method differs from previous work

in that previous work concentrated on Fisher Vectors de-

rived from the Gaussian Mixtue Model and in our work, we

are deriving the Fisher vector for other distributions.

Image Annotation and Image Search There has been a

recent growing interest in methods that can bridge between

the domains of vision and NLP. The works of [29, 19, 23]

have focused on generating novel descriptive sentences for

a query image. Kulkarni et al. [18] suggested a system that

generates a descriptive text (not from a fixed set) for a given

query image. Their pipeline contains the following steps;

First, object detectors find candidate objects in an input im-

age. The candidates objects are passed to a set of classi-

fiers that assign attributes to each candidate. In parallel,

each pair of candidate objects is processed by prepositional

relationship functions which provide spatial relationships.

A Conditional Random Field (CRF) is constructed that in-

corporates the unary image potentials computed in the pre-

vious steps and high order text based potentials computed

from large document corpora. Finally, a labeling of the

graph is predicted and a sentence is generated according

to it. Other works [48, 10, 42] have focused on develop-

ing bi-directional mappings. Farhadi et al. [7] developed a

method that can compute a score linking an image to a sen-

tence. By using this score, a descriptive sentence from a

fixed set can be given to a query image, or a relevant image

from a fixed set can be found for a given query sentence.

They suggested an intermediate space into which both the

images and the sentences are mapped. In [15], Karpathy et

al. introduce a model of bidirectional retrieval of images

and sentences. Unlike previous works, they do not map

images or sentences into a common space. Instead, their

model works at a finer scale and embeds fragments of im-

ages and fragments of sentences into a common space. The

sentence fragments are represented as dependency tree re-

lations that are based on the dependence tree [43] of the

sentence. The image fragments are represented by using a

CNN [21]. First, objects in the image are detected using Re-

gion Convolutional Neural Network (RCNN) [8]. The top

19 detected locations and the entire image are used as image

fragments. Each image fragment is embedded using a CNN

which takes the image inside a given bounding box and re-

turns the embedding. Finally, they suggest a similarity score

for any image-sentence pair. Their method achieved state-

of-the-art results on image-sentence retrieval tasks on Pas-

cal1K [36], Flickr8K [10] and Flickr30K [11] datasets. In

our method, we return to the paradigm in which the im-

ages and sentences are mapped into a common domain and

show significant improvement over the state-of-the-art for

these three datasets. Similar to the previous work, we are

using a CNN that takes an image as input and embeds it

into a single vector by taking the representation of the last

layer. The sentences are treated in a different way than in

the previous work. Specifically, we employ word2vec [28]

and map every word in the sentence to a vector. All of the

vectors that belong to a sentence are then pooled into a sin-

gle vector by using Fisher Vector with LMM and HGLMM



Image Correct Sentences Our Five nearest neighbors 
 

 

A brunette woman taking a big bite of some 
food. 
 

A young woman in black enjoys a bite to eat. 
 

A woman in a black top mugs for the 
camera. 
 

A woman wearing a black shirt is eating. 
 

A woman about to eat in a white room. 

A woman wearing a black shirt is eating. 
 

A brunette woman taking a big bite of some food. 
 

Two girls holding drinks and looking at something on a 
cellphone. 
 

Girls are preparing food to eat. 
 

A young woman in black enjoys a bite to eat. 

 

 
 

Black dog walking on the beach after 
swimming in the ocean. 
 

A black dog walks on the beach near the 
rocks. 
 

A black dog walks along an ocean front. 
 

A black dog walks on the sand. 
 

A black dog on a rocky beach. 

A black dog on a rocky beach. 
 

A black dog walks on the beach near the rocks. 
 

A black dog walks on the sand. 
 

A black dog walks along an ocean front. 
 

Three dogs run on beach, two playing with unknown 
object. 

 

Figure 1. Shown are two examples for our image annotation retrieval system. The sentences colored in green are correct results that were

associated with the queried image.

distributions. Finally, the representations of the images and

sentences are mapped into a common space by using the

CCA algorithm [12].

Representing text as vectors Word2vec [27] is a recently

developed technique for building a neural network (NN)

that maps words to real-number vectors, with the desider-

atum that words with similar meanings will map to simi-

lar vectors. This technique belongs to the class of meth-

ods called “neural language models”. Using a scheme

that is much simpler than previous work in this domain,

where neural networks with many hidden units and sev-

eral non-linear layers were normally constructed (e.g., [1]),

word2vec [27] constructs a simple log-linear classifica-

tion network [30]. Two such networks are proposed: the

Skip-gram architecture and the Continuous Bag-of-words

(CBOW) architecture. In our experiments, we employ the

Skip-gram architecture, which is considered preferable.

Recently, the attention has shifted from single words

into representing sentences and paragraphs. The classical

method in this domain is BoW [41]. Clinchant et al. [3]

also used Fisher Vector based on GMM for text. Socher et

al. [44] have analyzed sentences using a recursive parse tree.

A sentence is then represented by a matrix. In a recent con-

tribution [20] the NN learns to predict the following word

in a paragraph based on a representation that concatenates

the vector representation of the previous text and the vector

representations of a few words from the paragraph.

3. Laplacian Mixture Model (LMM)
The Laplacian Mixture Model (LMM) is a parametric

probability density function represented as a weighted sum

of multivariate Laplacians. The multivariate Laplacian it-

self represents a distribution over vectors in RD. Note

that unlike the multivariate Gaussian, it is not uniquely de-

fined [6]. In our formulation, similar to the underlying

GMM distributions of conventional Fisher Vectors [33], it

is assumed that each multivariate Laplacian has a diagonal

covariance matrix. Under this assumption, the probability

density function of a single multivariate Laplacian is:

f(x;m1, s1) =

D∏
d=1

1

2s1,d
exp

(
−|xd −m1,d|

s1,d

)
,

where m1 ∈ RD and s1 ∈ RD are called the location pa-

rameter vector and the scale parameter vector of the multi-

variate Laplacian, and the second index d is the index of the

vector coordinates. The LMM is defined by a set of param-

eters λ = {τk,mk, sk}k=1...K where τk ∈ R, mk ∈ RD,

and sk ∈ RD denote respectively the weight, location pa-

rameter vector and the scale parameter vector of the kth

component and where K is the number of components in

the mixture.

3.1. Fitting a LMM

Given a set of data points {x1, x2, . . . , xN} one would

like to estimate the parameters λ of a LMM. Similar to a



GMM, an expectation maximization [4] approach could be

taken here. Specifically:

Expectation Step Let Zi = k be the event of xi be-

ing associated with mixture component k. Let T
(t)
k,i =

P
(
Zi = k|X = xi;λ

(t)
)

be the conditional probability of

sample xi being associated with component k, given the

sample xi and the current estimation at iteration t of the

parameters λ(t). It is straightforward to show that:

T
(t)
k,i =

τ
(t)
k · f(xi;m

(t)
k , s

(t)
k )∑K

r=1 τ
(t+1)
r · f(xi;m

(t)
r , s

(t)
r )

where f(xi;m
(t)
k , s

(t)
k ) is the pdf of the kth multivariate

Laplacian evaluated at point xi according to the current es-

timation of parameters, λ(t).

Maximization Step Let Q
(
λ|λ(t)

)
be the expected value

of the log likelihood function, with respect to the condi-

tional distribution of Z given X under the current estimate

of the parameters λ(t).

Q
(
λ|λ(t)

)
= EZ|X,λ(t) [log (L (λ;X,Z))] .

By deriving Q
(
λ|λ(t)

)
according to λ and solving the

resulting equations (the full details are given in the sup-

plementary material), one gets the following maximization

step expressions:

τ
(t+1)
k =

∑N
i=1 T

(t)
k,i∑K

r=1

∑N
i=1 T

(t)
r,i

(1)

∑
m

(t+1)
k,d ≤xi,d

T
(t)
k,i =

∑
m

(t+1)
k,d >xi,d

T
(t)
k,i (2)

s
(t+1)
k,d =

∑N
i=1 T

(t)
k,i

∣∣∣xi,d −m
(t+1)
k,d

∣∣∣∑N
i=1 T

(t)
k,i

(3)

Unlike the EM for GMMs, where the mean is pro-

vided explicitly, the location parameter for LMMs is not

explicitly given. Rather it is defined as the weighted

median of equation 2. An efficient solution to equa-

tion 2 would be to sort the values of xi,d for all the

samples i and then to iterate over the sorted values and

to choose a value for m
(t+1)
k,d which minimizes the gap

between the expressions at both sides of the equation∣∣∣∑m
(t+1)
k,d ≤xi,d

T
(t)
k,i −

∑
m

(t+1)
k,d >xi,d

T
(t)
k,i

∣∣∣.

3.2. Fisher Vector of a LMM

The Fisher Vector that was introduced in [33] are the

gradients of the log-likelihood of the data with respect to

the parameters of the GMM. By following the same path,

a variant of the Fisher Vector can be derived for the LMM.

Let X = {x1, x2, . . . , xN} be a set of samples and λ are

the parameters of a LMM. Denote the log-likelihood of the

samples X with respect to the parameters λ by L (X|λ).
Then the Fisher Vector of the LMM is (see supplementary

material):

∂L (X|λ)
∂mk,d

=

N∑
i=1

Tk,i

sk,d
·
{

1 if xi,d > mk,d

−1 otherwise
(4)

∂L (X|λ)
∂sk,d

=

N∑
i=1

Tk,i

(
|xi,d −mk,d|

s2k,d
− 1

sk,d

)
(5)

As in [33], the diagonal of the Fisher Information Matrix

F is approximated in order to normalize the dynamic range

of the different dimensions of the gradient vectors. Denote

by fmk,d
and fsk,d

the terms of the diagonal of F which

correspond respectively to
∂L(X|λ)
∂mk,d

and
∂L(X|λ)
∂sk,d

. There-

fore, the normalized partial derivatives are f
−1/2
mk,d · ∂L(X|λ)

∂mk,d

and f
−1/2
sk,d · ∂L(X|λ)

∂sk,d
. It is shown in the supplementary that

fmk,d
and fsk,d

are approximately:

fmk,d
=

Nτk
s2k,d

, fsk,d
=

Nτk
s2k,d

3.3. LMM and ICA

In [37], Sanchez et al. state that applying the Princi-

pal Components Analysis (PCA) on the data before fitting

the GMM is key to make the Fisher Vector work. In ex-

periments on PASCAL VOC 2007, they show that accuracy

does not seem to be overly sensitive to the exact number

of PCA components. The explanation is that transforming

the descriptors by using PCA is a better fit to the diagonal

covariance matrix assumption.

Following this observation, a transformation that will

cause the transformed descriptors to be a better fit to the

diagonal covariance matrix assumption is sought for the

LMM. The optimal transformation will result with trans-

formed descriptors that are dimension independent and

are non-Gaussian signals. Therefore, and since PCA suf-

fers from the implicit assumption of underlying Gaussian

Distribution [16], the Independent Component Analysis

(ICA) [22] is chosen in our experiments. It seems that, for

the image-text matching experiments we run, ICA is not

only preferable when using LMM, but also preferable when

using GMM.



4. Hybrid Gaussian-Laplacian Mixture Model
By combining the Gaussian and the Laplacian distribu-

tions into one hybrid distribution model one can hope to

benefit from the properties of the two distributions. We de-

fine the Hybrid Gaussian-Laplacian unnormalized distribu-

tion, h(x;μ, σ,m, s, b), for the univariate case to be:

h(x;μ, σ,m, s, b) = l(x;m, s)b · g(x;μ, σ)1−b ,

where l(x;m, s) is the Laplacian distribution parameter-

ized with location parameter m and scale parameter s and

g(x;μ, σ) is the Gaussian distribution parameterized by the

mean μ and the standard deviation σ. The parameter b is

constrained to be in the range [0, 1]. According to these

definitions, the Hybrid Gaussian-Laplacian Mixture Model

is a weighted geometric mean of the Laplacian distribution

and the Gaussian distribution. Geometric means of distri-

butions are used, for example, to perform smooth transi-

tion between distributions in a simulated annealing frame-

work [31]. More recently, geometric means have emerged

as the distribution of the averaged predictions of multiple

neural networks employing a softmax layer [9].

As before in the case of LMM, the Hybrid Gaussian-

Laplacian can be defined for the multivariate case by as-

suming that the dimensions are independent. Under this as-

sumption, the probability density function of a single mul-

tivariate Hybrid Gaussian-Laplacian is:

D∏
d=1

h(xd;μd, σd,md, sd, bd)

The HGLMM is a mixture model of the Hybrid

Gaussian-Laplacian multivariate distribution. It is defined

by a set of parameters λ = {τk, μk, σk,mk, sk, bk}k=1...K ,

where τk ∈ R is the weight of the kth component and

μk, σk,mk, sk, bk ∈ RD are the parameters of the Gaussian

and Laplacian distributions and the weights of the geomet-

ric mean.

4.1. Fitting a HGLMM

Once again, the EM algorithm can be used in order to

estimate the parameters λ of the HGLMM given a set of

data points {x1, x2, . . . , xN}.

Expectation Step Let T
(t)
k,i = P

(
Zi = k|X = xi;λ

(t)
)

then for the HGLMM the following equation holds:

T
(t)
k,i =

τ
(t)
k · h(x;μt

k, σ
t
k,m

t
k, s

t
k, b

t
k)∑K

r=1 τ
(t)
r · h(x;μt

r, σ
t
r,m

t
r, s

t
r, b

t
r)

Note that, in essence, we sum multiple unnormalized dis-

tributions. However, as shown below, in practice the hybrid

distribution h is a normalized one.

Maximization Step As before, the expected value of the

log likelihood function, with respect to the conditional dis-

tribution of Z given X under then current estimate of the

parameters λ(t) is computed:

Q
(
λ|λ(t)

)
= EZ|X,λ(t) [log (L (λ;X,Z))]

.

Deriving Q
(
λ|λ(t)

)
according to the parameters

{τ, μ, σ,m, s} and solving the resulting equations yields

the same expressions that one would get for the maximiza-

tion step in the GMM and in the LMM, up to the values

of T t
k,i which are different and are defined in the Expecta-

tion Step. Specifically, the equations for τk, mk, and sk are

given above in equations 1, 2, 3, and the equations for μk

and σk are as follows:

μ
(t+1)
k,d =

∑N
i=1 T

(t)
k,i · xi,d∑N

i=1 T
(t)
k,i

(6)

(σ
(t+1)
k,d )2 =

∑N
i=1 T

(t)
k,i

(
xi,d − μ

(t+1)
k,d

)2

∑N
i=1 T

(t)
k,i

(7)

In order to maximize the log-likelihood of the data ac-

cording to the parameters b one can simply look at the con-

tribution of the parameter bk,d to the log-likelihood. Specif-

ically, omitting the iteration index, let:

Lbk,d
=

N∑
i=1

T
(t)
k,i

(
− log (2sk,d)− |xi,d −mk,d|

sk,d

)

Gbk,d
=

N∑
i=1

T
(t)
k,i

(
− log

(√
2πσk,d

)
− (xi,d − μk,d)

2

2σ2
k,d

)

Then the contribution of bk,d to the log-likelihood is:

bk,d · Lbk,d
+ (1− bk,d) ·Gbk,d

(8)

Therefore, under the constraint that 0 ≤ bk,d ≤ 1, the

value of b
(t+1)
k,d that maximizes the log-likelihood is:

b
(t+1)
k,d =

{
1 if L

(t+1)
bk,d

> G
(t+1)
bk,d

0 otherwise
(9)

Due to equation 9, after the maximization step, the

distribution of each dimension in each component of the

HGLMM is either a Gaussian or Laplacian. Therefore, the

final output of the EM algorithm also contains sharp selec-

tions between the two distributions, and the hybrid mixture

model is a normalized probability model.



Image search Image annotation Sentence

r@1 r@5 r@10 median mean r@1 r@5 r@10 median mean mean

rank rank rank rank rank

GCS [43] 6.1 18.5 29.0 29.0 NA 4.5 18.0 28.6 32.0 NA NA

SDT-RNN [43] 6.6 21.6 31.7 25.0 NA 6.0 22.7 34.0 23.0 NA NA

DFE [15] 9.7 29.6 42.5 15.0 NA 12.6 32.9 44.0 14.0 NA NA

BRNN [14] 11.8 32.1 44.7 12.4 NA 16.5 40.6 54.2 7.6 NA NA

SC-NLM [17] 12.5 37.0 51.5 10.0 NA 18.0 40.9 55.0 8.0 NA NA

NIC [47] 19.0 NA 64.0 5.0 NA 20.0 NA 61.0 6.0 NA NA

m-RNN [26] 11.5 31.0 42.4 15.0 NA 14.5 37.2 48.5 11.0 NA NA

Mean Vec 19.1 45.3 60.4 7.0 27.1 22.6 48.8 61.2 6.0 28.8 12.5

GMM 20.6 48.5 64.1 6.0 21.9 28.4 57.7 70.1 4.0 20.1 10.8

LMM 19.8 47.6 62.7 6.0 23.2 27.7 56.6 69.0 4.0 21.1 11.5

HGLMM 20.6 49.4 64.0 6.0 22.1 28.5 58.4 71.7 4.0 18.1 11.5

GMM+HGLMM 21.2 50.0 64.8 5.0 21.1 31.0 59.3 73.7 4.0 18.4 10.6

Table 1. Results on the Flickr8K benchmark [10]. Shown are the recall rates at 1, 5 and 10 retrieval results (higher is better). Also shown,

the mean and median rank of the first ground truth (lower is better). There are three tasks: image annotation, image search, and sentence

similarity. We compare the results of [43, 15, 14, 17, 47, 47, 26] to the mean vector baseline and to Fisher Vectors based on GMM, LMM

and HGLMM. In addition we report results for the combination of the GMM and HGLMM Fisher Vectors.

Image search Image annotation Sentence

r@1 r@5 r@10 median mean r@1 r@5 r@10 median mean mean

rank rank rank rank rank

DFE [15] 10.3 31.4 44.5 13.0 NA 16.4 40.2 54.7 8.0 NA NA

BRNN [14] 15.2 37.7 50.5 9.2 NA 22.2 48.2 61.4 4.8 NA NA

SC-NLM [17] 16.8 42.0 56.5 8.0 NA 23.0 50.7 62.9 5.0 NA NA

NIC [47] 17.0 NA 57.0 7 .0 NA 17.0 NA 56.0 7.0 NA NA

m-RNN [26] 12.6 31.2 41.5 16.0 NA 18.4 40.2 50.9 10.0 NA NA

LRCN [5] 14.0 34.9 47.0 11.0 NA NA NA NA NA NA NA

Mean Vec 20.5 46.3 59.3 6.8 32.4 24.8 52.5 64.3 5.0 27.3 16.3

GMM 23.9 51.6 64.9 5.0 24.8 33.0 60.7 71.9 3.0 19.0 15.1

LMM 23.6 51.2 64.4 5.0 25.2 32.5 59.9 71.5 3.2 19.2 15.6

HGLMM 24.4 52.1 65.6 5.0 24.5 34.4 61.0 72.3 3.0 18.1 14.7

GMM+HGLMM 25.0 52.7 66.0 5.0 23.7 35.0 62.0 73.8 3.0 17.4 14.2

Table 2. Mean results on the Flickr30K benchmark [11]. For details, see Table 1. GCS and SDT-RNN results [43] are not available for this

specific benchmark.

4.2. Fisher Vector of a HGLMM

A Fisher Vector variant can also be defined for the

HGLMM. Although the HGLMM has more parameters

than the GMM, the Fisher Vector of the HGLMM has the

same length as the Fisher Vector of the GMM which is

2KD. The reason is that according to equation 9, each

dimension d in each component k is either a Laplacian

univariate distribution or a Gaussian univariate distribu-

tion and therefore the contribution to the Fisher Vector is{
∂L(X|λ)
∂μk,d

, ∂L(X|λ)
∂σk,d

}
if bk,d = 0 and

{
∂L(X|λ)
∂mk,d

, ∂L(X|λ)
∂sk,d

}
if bk,d = 1. The values of the Fisher Vector for the

HGLMM are computed by taking the gradients of the log-

likelihood of the data with respect to the parameters of the

HGLMM. The resulting equations yields the same expres-

sions that one would get for the Fisher Vector of the GMM

and of the LMM, up to the values of Tk,i which are different

and have the same expressions as in the expectation step of

the HGLMM. Therefore the values of the Fisher Vector for

the HGLMM when bk,d = 0 are:

∂L (X|λ)
∂μk,d

=

N∑
i=1

Tk,i · xi,d − μk,d

σ2
k,d

(10)

∂L (X|λ)
∂σk,d

=

N∑
i=1

Tk,i

(
(xi,d − μk,d)

2

σ3
k,d

− 1

σj,d

)
(11)

When bk,d = 1, equations 4 and 5 provide the relevant

Fisher Vector coordinates.



Image search Image annotation Sentence

r@1 r@5 r@10 median mean r@1 r@5 r@10 median mean mean

rank rank rank rank rank

GCS [43] 16.4 46.6 65.6 NA 12.5 23.0 45.0 63.0 NA 16.9 10.5

SDT-RNN [43] 25.4 65.2 84.4 NA 7.0 25.0 56.0 70.0 NA 13.4 NA

DFE [15] 23.6 65.2 79.8 NA 7.6 39.0 68.0 79.0 NA 10.5 NA

Mean Vec 44.9 84.9 94.1 2.0 3.6 52.5 83.2 92.3 1.3 4.0 2.1

GMM 43.5 85.4 94.3 2.0 3.6 55.6 86.0 93.1 1.1 4.2 2.3

LMM 43.1 84.6 94.1 2.0 3.6 54.6 85.1 93.4 1.2 3.6 2.3

HGLMM 43.6 84.7 94.2 2.0 3.7 55.6 85.8 93.3 1.2 3.8 2.3

GMM+HGLMM 44.0 85.6 94.6 2.0 3.6 55.9 86.2 93.3 1.2 3.9 2.2

Table 3. Mean results on the Pascal1K benchmark [36]. For details, see Table 1. This dataset is rather small and the contribution of high

dimensional representations is less obvious than in the Flickr datasets.

As in the LMM, the diagonal of the Fisher Information

Matrix F is approximated in order to normalize the dynamic

range of the different dimensions of the gradient vectors.

Let fμk,d
, fσk,d

, fmk,d
and fsk,d

be the terms of the diago-

nal of F that correspond respectively to
∂L(X|λ)
∂μk,d

,
∂L(X|λ)
∂σk,d

,
∂L(X|λ)
∂mk,d

and
∂L(X|λ)
∂sk,d

. Then, the normalized partial deriva-

tives are f
−1/2
mk,d · ∂L(X|λ)

∂μk,d
, f

−1/2
sk,d · ∂L(X|λ)

∂σk,d
, f

−1/2
mk,d · ∂L(X|λ)

∂mk,d

and f
−1/2
sk,d · ∂L(X|λ)

∂sk,d
. It can be shown that the approximated

values of the terms of the diagonal are the same as the ap-

proximated values of the terms of the diagonal in the GMM

and LMM:

fμk,d
=

Nτk
σ2
k,d

, fσk,d
=

2Nτk
σ2
k,d

, fmk,d
=

Nτk
s2k,d

, fsk,d
=

Nτk
s2k,d

5. Results
We perform our image annotation experiments on four

benchmarks: Pascal1K [36], Flickr8K [10], Flickr30K [11],

and COCO [24]. The datasets contain 1,000, 8,000, 30,000,

and 123,000 images respectively. The annotation of the im-

ages was done using crowdsourcing via Amazon Mechani-

cal Turk, with five independent sentences provided by five

users to each image.

The Flickr8k dataset is provided with a training split of

size 6091, a validation split of 1000 images, and a test split

of size 1000. We use the same split. For Pascal1K, no train-

ing splits are given, and we use 20 splits of the same size

used to report results in previous work: 800 train, 100 val-

idation and 100 test images. The situation for Flickr30K

is similar, and following previous work, we use 5 random

splits of 1000 images for test, 1000 for validation, and the

rest for training. For COCO, we follow Karpathy et al. [14]

and use 5000 images for both validation and testing, and

also report results on a subset of 1000 testing images. 5

random splits were used here as well. The reduced number

of repeats on Flickr30K and COCO compared to Pascal1K

stems from the datasets size and the resulting computational

burden.

The word2vec [28] vectors used to represent words were

obtained from code.google.com/p/word2vec/.

We found that performing ICA without reducing the

dimensionality of the 300D word2vec vectors helps perfor-

mance in all methods, including the vanilla GMM based

Fisher Vectors. The original vectors and PCA provided

somewhat lower results. We therefore apply ICA to the

word2vec representation in all of our experiments below.

All images were resized to a fixed size of 221 by 221

pixels and encoded as a single vector using the VGG [40]

software. When employing the VGG [40] representation,

the recommended pipeline is used. Namely, the original

image is cropped in ten different ways into 224 by 224

pixel images: the four corners, the center, and their x-axis

mirror image. The mean intensity is then subtracted in each

color channel and the resulted images are encoded by the

network. The average of the resulting 10 feature vectors is

used as the single image representation.

Our system has two parameters: the number of compo-

nents in the mixture models used to describe the sentence,

and the regularization parameters of the regularized CCA

algorithm [46] that matches between the image represen-

tation and the sentence representation. The first parame-

ter was fixed to 30 throughout the experiments. This value

was selected once using the Flickr8K validation split. The

regularization parameter was selected in each repetition of

each experiment based on the validation data. We use lin-

ear CCA, which is presumably sub-optimal compared to the

Kernel CCA that [43] used as one of the baseline methods.

There are three tasks: image annotation, in which the

goal is to retrieve, given a query image, the five ground truth

sentences; image search, in which, given a query sentence,

the goal is to retrieve the ground truth image; and sentence

similarity, in which the goal is to retrieve given a query sen-

tence the other four sentences associated with the same im-

age. For the first two tasks, the results are reported as the



Image search Image annotation Sentence

r@1 r@5 r@10 median mean r@1 r@5 r@10 median mean mean

rank rank rank rank rank

1K test images:

BRNN [14] 20.9 52.8 69.2 4.0 NA 29.4 62.0 75.9 2.5 NA NA

Mean Vec 24.2 56.4 72.4 4.0 14.7 33.2 61.8 75.1 3.0 14.5 14.4

GMM 24.2 59.2 76.0 4.0 11.3 39.0 67.0 80.3 3.0 11.2 12.4

LMM 25.0 59.5 76.1 4.0 11.1 38.6 67.8 79.8 3.0 12.1 12.2

HGLMM 24.9 58.8 76.5 4.0 11.1 37.7 66.6 79.1 3.0 10.8 13.7

GMM+HGLMM 25.1 59.8 76.6 4.0 11.1 39.4 67.9 80.9 2.0 10.4 12.9

5K test images:

BRNN [14] 8.9 24.9 36.3 19.5 NA 11.8 32.5 45.4 12.2 NA NA

Mean Vec 10.2 27.2 38.3 18.0 64.8 12.7 32.0 44.6 14.0 62.3 63.7

GMM 10.2 27.7 39.4 17.0 51.1 16.7 37.8 49.6 11.0 47.4 52.1

LMM 10.5 28.0 40.0 17.0 51.3 16.4 37.8 50.3 10.0 48.1 52.5

HGLMM 10.4 27.7 39.7 17.0 50.7 16.6 37.0 49.5 11.0 47.6 55.0

GMM+HGLMM 10.8 28.3 40.1 17.0 49.3 17.3 39.0 50.2 10.0 46.4 52.4

Table 4. Mean results on the COCO benchmark [24]. For details, see Table 1.

recall rate at one result, at 5 results, or at the 10 first results.

Also reported is the mean rank and the median rank of the

first ground truth result. In the sentence similarity task, only

the mean rank of the first ground truth result is reported.

In all tasks, CCA is trained on the training set, its param-

eter is tuned on the validation set, and testing is performed

on the test set. For sentence similarity, the representations

of the test samples are used after projection to the CCA

space, however, the test images are not used. Note that all

the parameters of the sentence representations, prior to the

CCA computation, are learned in an unsupervised fashion

on the corpus of word2vec vectors, without employing the

three benchmark datasets.

Given a sentence, it is mapped to the set of word2vec

vectors that are associated with the sentence’s words. In

our experiments, we test the average vector of this set as a

simple baseline representation, three types of Fisher Vector

pooling (GMM, LMM, and HGLMM), and fusion of GMM

with HGLMM. This fusion is done by concatenating the

two Fisher Vector representations into a single vector. All

Fisher Vectors were normalized by the L2 norm after ap-

plying the power normalization function with α = 0.5, as

described in Sec. 2.

We compare our results to the current state of the

art, namely to the Grounded Compositional Semantics

(GCS) [43], Semantic Dependency Tree Recursive Neu-

ral Network (SDT-RNN) [43], Deep Fragment Embedding

Multi Instance Learning (DFE-MIL) [15], and the five con-

current technical reports described in Sec. 2: BRNN [14],

SC-NLM [17], NIC [47], m-RNN [26], LRCN [5].

The results are reported in Table 1, 2, 3, 4 for the

Flickr8K, Flickr30K, Pascal1K, and COCO benchmarks re-

spectively. As can be seen, the Fisher Vector methods out-

perform the existing state of the art and the mean vector

baseline. As a general trend, in all three benchmarks, Fisher

Vectors based on GMM outperform those based on LMM.

HGLMM based Fisher Vectors perform better than both,

and combining GMM with HGLMM outperforms the other

methods. Sample results can be seen in Figure 1.

6. Discussion

The Fisher Vector has proven to be useful in a variety

of object recognition applications. In all those applications,

it was derived according the Gaussian Mixture Model. In

this paper we show that using a Fisher Vector derived from

other distributions, namely, LMM and HGLMM, one can

obtain improved accuracy in central computer vision tasks.

We believe that these improvements would carry on to other

tasks as well.

The normalization improvements that were suggested by

Perronnin et al. [34] dramatically increased the performance

achieved by the Fisher Vector technique and contributed to

its success. It remains to be explored whether there are spe-

cific normalization techniques that are most suitable for the

Fisher Vectors that we derive from the LMM and HGLMM

distributions.

The Hybrid Gaussian-Laplacian Mixture Model

(HGLMM) that we presented, allowed us to gain benefits

from both underlying distributions by having the flexi-

bility that each dimension in each component would be

modeled according to the most suitable distribution. Such

geometric-mean mixtures could be generalized to any

two distributions and fit real world data of any distribu-

tion shape. It is also not limited to just two parametric

distributions.
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