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Texture provides important information for many computer vision applica-
tions, such as material classification and scene and object recognition. Ac-
curate classification of texture images is however quite challenging. Some of
the main challenges include the wide variety of natural texture patterns and
large intra-class variation caused by illumination and geometric changes,
and relatively low inter-class distinction.

Different from the current studies in texture classification, which mostly
focus on designing new texture feature descriptors, our aim is to improve
the classification accuracy with a new classification model using existing
features. In this paper, we propose a sub-categorization model for tex-
ture classification. We first design a locality-constrained subspace clus-
tering method to efficiently generate subcategories of individual classes.
At the subcategory-level, two probability measures are computed based on
between-subcategory distinctiveness and within-subcategory representative-
ness, to quantify the probability of a test data belonging to each subcategory.
The subcategory probabilities are then fused weighted by contribution level
and cluster quality together with class-level probabilities to classify the test
data. An overview of our method flow is shown in Figure 1.

Subcategory generation. We modify the sparse subspace clustering
(SSC) [3] algorithm with locality constraints to enhance the efficiency for
obtaining the sparse representation coefficient matrix Z:
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Here the second term is adopted from the locality-constrained linear coding
(LLC) [7] to encourage smaller coefficients to be assigned to samples that
are more different from x;. In our formulation, the dataset X contains the
training data of one class. The clustering outputs of X correspond to the
subcategories of that class.

Subcategory probabilities. We design two types of probability esti-
mates: the between-subcategory distinctiveness and within-subcategory rep-
resentativeness. The between-subcategory distinctiveness is obtained based
on binary classification between a subcategory S of class ¢ and all subcat-
egories {S.y } of the other classes V¢’ # ¢ and k' = 1,..., K, using linear-
kernel support vector machine (SVM). The within-subcategory metric uti-
lizes the training data of a certain subcategory S.; only and describes how
well this subcategory represents the test data x. We first obtain an approx-
imated x/, by averaging the M-nearest neighbors of x from S. Next, the
center of S, i.e. fr € RY, is derived based on the support vector data de-
scription (SVDD) [6]. The Euclidean distance between xi,k and f; then
describes the representativeness of x by the subcategory S.

Subcategory fusion. We define the probability of test data x belonging
to class ¢ as:
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The first term P, (x,¢) is the probability of x belonging to class ¢ obtained
using multiclass linear-kernel SVM. The second term is the class-level prob-
ability fused from the subcategory-level probabilities. The weight factor w
represents the contribution level of subcategory S, and is obtained by find-
ing a sparse representation of x from the various subcategories in an LLC
construct. The weight factor g quantifies the cluster quality, and is com-
puted based on the Dunn index.

Experimental results. For texture descriptors, we use the improved
feature vector (IFV) [5] and convolutional architecture for fast feature em-
bedding (Caffe) [4]. The combination of IFV and deep convolutional net-
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Figure 1: Overview of our proposed method. During testing, the between-
and within-subcategory probabilities are computed, then fused based on the
contribution levels, cluster qualities and multiclass probability to classify
the test image. During training, the training images of each class are sub-
categorized, subcategory-level models exploring between-subcategory dis-
tinctiveness and within-subcategory representativeness are built, the cluster
qualities are computed, and multiclass SVM is trained.
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Table 1: The classification accuracies (%) compared to the state-of-the-art.

Dataset IFV+Caffe State-of-the-art
SVM Ours
KTH-TIPS2 | 75.4+3.0 79.3+2.7 76.0+£2.9 [1]
FMD 65.24+1.2 68.4+1.5 65.64+1.4[1]
DTD 65.141.4 67.8+1.6 64.7+1.7 [1]

work activation features (DeCAF) [2] has shown excellent texture classifi-
cation accuracy in the state-of-the-art [1], achieving about 9% improvement
over the previous best result. Experiments are conducted on three challeng-
ing datasets: the KTH-TIPS2 database, Flickr Material Database (FMD),
and the Describable Textures Dataset (DTD). We obtained better classifica-
tion performance than the state-of-the-art [1], as shown in Table 1.
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