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Abstract

Recent advances in camera relocalization use predic-
tions from a regression forest to guide the camera pose opti-
mization procedure. In these methods, each tree associates
one pixel with a point in the scene’s 3D world coordinate
frame. In previous work, these predictions were point esti-
mates and the subsequent camera pose optimization implic-
itly assumed an isotropic distribution of these estimates. In
this paper, we train a regression forest to predict mixtures
of anisotropic 3D Gaussians and show how the predicted
uncertainties can be taken into account for continuous pose
optimization. Experiments show that our proposed method
is able to relocalize up to 40% more frames than the state
of the art.

1. Introduction and Related Work
Simultaneous Localization and Mapping (SLAM) sys-

tems such as [14, 15, 17, 7] and commercial systems such as
HoloLens or Project Tango demonstrate that visual SLAM
is a maturing technology. Given new measurements, visual
SLAM systems build and update a map of an unknown en-
vironment while keeping track of the position of the camera
within it. There are two predominant scenarios in which
it is usually not possible for the system to estimate a cor-
rectly updated camera pose. In the first scenario, the camera
moves significantly between consecutive frames. In such
cases, generic pose optimization routines such as ICP or
the minimization of reprojection error can get stuck in local
minima due to the non-convex nature of their energy land-
scapes. In the second scenario, the user acquires a map of
the environment and switches the reconstruction system off.
When the SLAM system is turned on again, it is unable to
recover the camera pose with respect to the previously ac-
quired environment again for reasons of convergence. The
task of camera relocalization is to tackle both scenarios by
providing an estimate of the camera pose relative to an ex-
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Figure 1. Camera Relocalization Pipeline. As a new frame ar-
rives (top left), pixels are sparsely sampled (top right) and passed
down a regression forest (middle). The forest predicts a series
of candidate locations in the scene as well as the uncertainty as-
sociated with each prediction (bottom left). Given these predic-
tions, camera pose hypotheses are robustly sampled (bottom mid-
dle) and continuously optimized over iterations of RANSAC (bot-
tom right).

isting model, ideally from a single frame.
Camera relocalization has mainly been studied and de-

veloped for SLAM applications; however, this technology
could be applicable in a wide range of use cases. For in-
stance, one can imagine scenarios where the user is in a
large environment (shopping mall, exhibition, etc.) and
queries the location of a destination such as ‘Exit’, ‘Mona
Lisa’, or the name of a specific shop, and takes a snapshot
of her immediate environment. Given this information, an
on-site service could precisely localize the user and guide
her to the desired destination.



Relocalization techniques largely belong to two classes.
The first class is composed of image-based (also known as
key-frame) approaches and the second of keypoint-based
approaches. A few successful approaches also exist that do
not belong to either of those two classes [5, 16].

Image-based approaches estimate an approximate cam-
era pose by computing whole-image similarity measures
against a set of images for which the camera position is
known. These images will be referred to as key-frames. The
challenges with image-based approaches are the on-line se-
lection of key-frames for good spatial coverage and the se-
lection of metrics to rank the similarities between images.
Successful attempts at solving these challenges have been
proposed in [9, 8, 12]. A key limitation of these methods
is that the number of key-frames increases as the camera
moves through space, which directly impacts the time re-
quired for identifying key-frames that are similar to the cur-
rent image. Another major limitation is that they are bad at
recovering when the query frame is too different from those
in the database of stored key-frames. This is due to the spar-
sity of the sampling of the camera space. A recent work [8]
approached the problem of sampling views for a denser cov-
erage of the space of the camera poses by generating new
views. This is an interesting way of tackling the problem,
but is quite costly. Due to the aforementioned limitations,
this first family of methods is better suited to systems which
have strong constraints on the camera motion, and will not
work well when the camera can move freely in large envi-
ronments.

Keypoint-based approaches do not require a dense sam-
pling of viewpoints and have the key advantage of being
able to deal with novel viewpoints if enough keypoints can
be matched. First, keypoints are detected in the images,
and their corresponding descriptors and positions in world
coordinates are stored. When the tracking of the cam-
era is lost, keypoints and descriptors are computed in the
current image and matched against the existing database.
Given these matches, a robust pose can be inferred after
optimization. The challenges with such approaches are to
compute keypoints and corresponding descriptors on-line,
then to choose which ones to store in order to control the
growth of the database while ensuring good coverage of the
scene, and finally to identify a robust matching mechanism.
An inherent limitation of this family of methods lies in the
sparsity of the keypoints, which strongly influences the in-
ferred camera pose. The method presented in [19] solves the
problems of sparsity and density using a different pipeline,
but needs to train a model off-line. Publications present-
ing on-line keypoint-based relocalization methods include
[6, 22, 18, 21].

We now describe the recent advances [19, 10] in solv-
ing this problem. The scene coordinate regression forest
(SCoRe Forest) approach of [19] trains regression trees to

predict the location of any pixel in the scene’s world coordi-
nate frame. Given these 2D-to-3D point estimates, camera
hypotheses are sampled and refined using the Kabsch al-
gorithm. This method has been shown to work well on a
variety of scenes, but all the components of their pipeline
assume isotropic and uni-modal distribution of the samples.
For any given scene, it is very likely to find regions of the
descriptor space that contain multiple clusters of points liv-
ing in different parts of the scene. For instance, imagine that
we use a descriptor that is composed of color gradient fea-
tures, and that our samples are taken from close-up views of
an untextured wall and an untextured table. In such cases, it
is unsatisfying to only predict a point on the wall or a point
on the table. Instead, we would like to predict both, to-
gether with the uncertainty associated with each prediction.
Furthermore, clusters of points within the scene generally
are extremely anisotropically distributed. The SCoRe For-
est framework was recently extended in [10], which learned
an ensemble of regression forests that are both relevant and
diverse predictors. In contrast to [19], they used an ex-
plicit representation (based on a truncated signed distance
function) of each scene to score hypotheses. Note that both
methods neither model nor use uncertainty about their pre-
dictions, and hence use predictions as point estimates.

The main contributions of this work are (i) the exten-
sion of the state of the art on RGB-D camera relocaliza-
tion by modeling and minimizing uncertainties for regres-
sion tree induction and predictions performed by the regres-
sion forest; and (ii) leveraging these uncertainties in order to
provide for improved relocalization without using explicit
models of the scenes.

2. Method Overview
The proposed camera relocalization approach consists of

two major components: (i) a regression forest trained on
RGB-D input data to predict anisotropic Gaussian mixtures
of 3D scene coordinates; and (ii) a continuous pose opti-
mization leveraging the anisotropic Gaussian mixtures pre-
dicted by the forest. In more detail:

• Given samples from the scene for which the relocaliza-
tion task will be performed, a regression tree is trained
using an objective function that minimizes the spatial
variance of the scene coordinates. The distribution at
the leaves is typically anisotropic and multimodal (see
Fig. 2), and thus the leaves predict anisotropic Gaus-
sian mixture models that have been fitted to those dis-
tributions.

• At test time, pixels are randomly sampled and passed
down the regression forest. For each of these sam-
ples, the ensemble learner predicts a Gaussian mixture
model that specifies a probability density function over



that sample’s location in the scene’s 3D world coordi-
nates. The predictions are then aggregated to generate
robust camera hypotheses that are passed to a preemp-
tive locally-optimized RANSAC. Each loop of the op-
timization ranks the camera hypotheses, discards the
worst half, and optimizes the pose of all the remain-
ing hypotheses by leveraging the predicted Gaussian
mixtures. This process is repeated until only one hy-
pothesis remains.

An overview of the complete relocalization pipeline is
shown in Fig. 1.

3. Learning Uncertainties
We first describe the image features and the tree training

objective, followed by our method for modeling uncertainty
in the predictions made by the forest.

3.1. Image Features

Following [19], we use features based on pairwise pixel
relationships [13, 20] as they have proven to be well-suited
for the task of camera relocalization. Aside from their dis-
criminative power, these simple features are also extremely
fast to evaluate. The two types of features we use are the
following ‘Depth’ and ‘Depth-Adaptive RGB’ (‘DA-RGB’)
features:

fDepth
Ω = D(p)−D

(
p+

δ

D(p)

)
(1)

fDA-RGB
Ω = G(p, c1)−G

(
p+

δ

D(p)
, c2

)
(2)

D(p) is the depth at pixel p, G(p, c) is the value of the cth

color channel of pixel p and Ω is a vector of randomly sam-
pled feature parameters. For the ‘Depth’ feature, the only
random parameter is δ, which is a 2D offset in image space.
The ‘DA-RGB’ feature has two extra random variables that
correspond to the channels in which the intensity lookups
are performed. Both ‘Depth’ and ‘Depth-Adaptive RGB’
features are translation invariant and largely scale invariant.
In this work, we use a combination of both of these features
and will refer to this as ‘DA-RGB + D’.

3.2. Training a Regression Forest

A regression forest is a collection of regression trees. We
use the standard greedy tree training algorithm to grow the
trees. Each tree is trained with some randomness that comes
from the random generation of pairs of feature indices φ and
thresholds τ , and optionally also from bagging. We denote
each pair of (φ,τ ) as θ, and the set of candidate random pa-
rameters θ in node n as Θn. Each node n uses the randomly
generated Θn to greedily optimize

θ∗n = argmax
θ∈Θn

In (3)

which is the set of parameters that will be used as the weak
learner at node n. We use the classical information gain as
the objective function:

In = E(Sn)−
∑

i∈{L,R}

|Sin|
|Sn|

E(Sin) (4)

where E(S) is a measure of the entropy of the labels of the
examples in set S. Note that the left and right subsets Sin
are implicitly conditioned on the candidate parameters θ.

3.3. Measuring Entropy

Given the above definition of information gain, we now
need a definition of the entropy E(S). We do this by fit-
ting a model that approximates the distribution of labels (the
scene coordinates) in set S and computing the entropy of
that distribution. As motivation, the top row of Fig. 2 shows
some empirical distributions of scene coordinates that reach
particular tree nodes. Note how these distributions appear to
be highly multi-modal, and that each model is often highly
anisotropic.

There are several approaches to modeling the observed
distributions, with varying levels of accuracy and efficiency.
Perhaps the simplest approach, used in [19], is to fit an
isotropic Gaussian to the labels in S. While very fast,
this approach provides a poor approximation and thus we
believe a sub-optimal entropy measure for training the
trees. The next approach we explored was to build a non-
parametric model using mean shift, and scoring candidate
splits based on the weighted sum of the determinant of the
generated modes. The need to run mean shift for each can-
didate weak learner made the training extremely slow to
the point where we could not feasibly train a deep enough
tree to obtain reasonable results. Furthermore, mean shift
typically assumes isotropic kernels which are unlikely to
explain our anisotropic distributions. We thus investigated
an approach that fits a Gaussian mixture model to the data.
This proved somewhat faster than mean shift, and allowed
us to fit anisotropic Gaussians. However, ultimately, we set-
tled on an approach that uses a single full-covariance Gaus-
sian model, with the entropy defined as

E(S) =
1

2
log((2πe)d|Λ(S)|) , (5)

with dimensionality d = 3, and Λ representing the full co-
variance of the labels in S. This gave a good trade-off be-
tween training speed and the accuracy of the final predictor.
A uni-modal Gaussian clearly cannot represent the multi-
modal empirical distributions we observe, and so the next
section describes how, after training the tree structure, we
fit a multi-modal distribution at the leaf nodes.
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Figure 2. Leaf models that represent uncertainty. Top row: Examples of empirical distributions in different regression tree leaves.
Colors indicate the 3D scene coordinates (i.e., RGB = XYZ). Note how the distribution is often multi-modal and anisotropic. Bottom row:
Samples from the Gaussian mixtures fitted to the each of the above empirical distributions. Colors indicate mixture components. Note that
all the images correspond to a 2D projection of 3D points.

3.4. Leaf Prediction Models

The previous section described the entropy criterion used
to select good features θ when building the structure of
the tree. This section now describes what we store at the
leaf nodes, and thus the predictions that get made at test
time when a particular leaf node is reached after descend-
ing a tree. Note that we do not need to (though of course
could) use the model that we used in the previous section
for computing entropies. Indeed in practice, for computa-
tional reasons, we ended up using a rather simplistic dis-
tribution when building the tree structure (a full covari-
ance uni-modal Gaussian; see Sec. 3.3) but a more detailed
model (see below) stored at leaf nodes.

Referring again to Fig. 2 (top row), we see examples of
the empirical distribution of scene coordinates at a few ran-
domly chosen (leaf) nodes. We aim to use prediction mod-
els that are compact but representative of these distributions.
It is clear that these distributions are in general highly multi-
modal and anisotropic. One might argue that if the tree was
trained deeper, then these distributions would become in-
creasingly more Gaussian. However, deeper trees are more
expensive for both training and testing, and can be prone to
over-fitting, which we confirmed in our experiments. Fur-
thermore, regions of the appearance space are likely to have
inherently multi-modal distributions in scene coordinate la-
bel space. For example, imagine a node which contains

samples from a close-up view of both a white wall and a
white floor. There are no appearance features that could re-
liably distinguish these two planar regions, and yet they can
live in quite different regions of the scene. For such regions,
a uni-modal distribution such as a Gaussian could never be
a good representation. We must therefore be able to cope
with multi-modality in our leaf models. One of our main
contributions is to investigate how to represent and exploit
the observed distributions, and whether doing so improves
the quality of the final output.

In [19], mean shift was used to cluster the scene coordi-
nate labels into a sparse set of point correspondences at each
leaf. This approach does support multi-modality and is thus
much better than fitting Gaussians in the leaves. However,
the point correspondences are not able to accurately repre-
sent the uncertainty present in the scene coordinate labels.
The energy function from [19] (Eq. 7) implicitly specifies
a level of uncertainty in the predictions by the use of a ro-
bust error function ρ. However, this is not learned, and is
isotropic.

Our models, in contrast, are learned and can be
anisotropic. In particular, we explore the use of robustly-
fit Gaussian mixtures as compact but representative models
of leaf node uncertainty. Similar to [19], we run mean shift
mode detection [3] to find the modes of the empirical distri-
bution in each leaf. Given all the samples associated to each
mode, a 3D Gaussian is estimated. Repeating this process



for all the modes leads to a mixture of Gaussians as illus-
trated in Fig. 2 (bottom row). At test time, each tree in the
regression forest predicts a mixture of Gaussians over the
space of 3D scene coordinates y. Aggregating the predic-
tions from multiple trees, we obtain a mixture of mixtures,
itself a mixture:

l(y|M) =
∑

(m,µ,Σ)∈M

mN (y;µ,Σ). (6)

For each mixture component, m is the (scalar) mixing co-
efficient, and µ and Σ are respectively the mean vector and
full 3D covariance matrix. Because the decision tree evalu-
ation directs each pixel i to a different set of leaf nodes, the
forest thus predicts a different mixture Mi for each pixel.
These predictions will be used in the optimization as de-
scribed below.

4. Camera Pose Optimization
Similarly to [19], we employ a variant of preemptive

locally-optimized RANSAC [2]. This variant starts by hy-
pothesizing 1024 camera candidates H that are constrained
to be rigid body transforms.We efficiently rank these initial
hypotheses and take the top 64. The method then loops over
the following steps until only one camera remains: (i) gen-
erate an additional batch of samples I, (ii) use these sam-
ples to score the fit of each candidate, (iii) discard the worst
half, and (iv) locally-optimize the remaining candidates us-
ing the current set of samples. For brevity, we describe the
new aspects of our optimization algorithm below, and re-
fer the reader to [2] for further details about the particular
variant of RANSAC.

4.1. Hypothesis Generation

When per-pixel depth information is available, one can
estimate the transformation parameters from the current
view to the model with three local positions (current cam-
era space) and their corresponding positions in the scene
(world coordinates) using the Kabsch algorithm [11]. For
each of the samples in the local world coordinates, [19]
proposed to randomly sample one mode among the list of
predicted modes. Although this is reasonable, such an ap-
proach ignores the fact that good camera samples are rigid
body transformations between the points in camera space
and their associated modes in scene coordinates. Given
the proportion of ‘bad’ modes among the predictions, not
checking for rigid body transforms leads to a significantly
inferior proportion of ‘good’ camera hypotheses. We thus
propose to check the properties of rigid body transforma-
tion, i.e. checking that the distance between modes and the
angle between the lines going though them are preserved.
Given that the covariance of the modes generally has a non-
negligible determinant, those constraints are only loosely

checked. Note that the proposed constraints can be incre-
mentally verified during the sampling process, which re-
duces the number of samples required to form a plausible
rigid body transformation matrix compared to simultane-
ously sampling three random correspondences at once.

4.2. Energy

The regression forest described above is able to pre-
dict a mixture model over the space of 3D scene coordi-
nates for each pixel in the query image. We now define an
energy function that evaluates the likelihood of the trans-
formed observations (by the current hypothesis H) under
these mixture distributions. Unlike [19], this allows ex-
ploitation of the learned uncertainty in the predictions of
the forest, rather than assuming a fixed uncertainty model
for all pixels. Let I be a batch of image pixels i at which
the forest has been evaluated. Let xi be an observed 3D
depth pixel in camera space. Our energy for the hypothesis
H is defined as

P (H) =
∑
i∈I
− log l(Hxi|Mi) (7)

i.e., the negative log of the relative likelihood of the trans-
formed observations under the predicted mixture model
Mi. See Eq. 6 for the evaluation of l.

4.3. Early hypothesis filtering

The robustness of hypothesis sampling and the efficiency
of the proposed optimization allows us to directly reduce the
number of camera hypotheses from 1024 to 64 with only a
small loss in relocalization accuracy1. The hypothesis prun-
ing corresponds to reducing the number of subsequent op-
erations by a factor of 8. This also means that the final esti-
mate is the result of fewer steps of pose optimization, all of
them performed with less samples. Aside from that initial
rejection, the subsequent rejections consist of discarding the
worst half of the candidates, as done in [19].

4.4. Optimization

Having computed the set of inliers, [2] suggests per-
forming a local optimization step to refine the hypotheses.
In [19] this step was performed by re-running the Kabsch
algorithm using the updated set of inliers. Note that this
method makes the assumption that all the inliers are subject
to the same anisotropic uncertainty. Instead, we perform
a continuous local optimization of an energy proxy (Eq. 9)
that leverages the uncertainties captured during the training.
One such problem is solved for each candidate camera pose
H .

First, we randomly sample a batch of B pixels (B is set
to 500 is our experiments). Then, we find for each pixel i

1That loss is of 1.2% on ‘Heads’, 0.5% on ‘Chess’ and 1.2% on ‘Fire’.



the mixture component in Mi that currently best explains
the transformed observation Hxi:

(m∗i , µ
∗
i ,Σ

∗
i ) = argmax

(m,µ,Σ)∈Mi

mN (Hxi;µ,Σ). (8)

Note that this can be computed (almost) for free during the
evaluation of the full energy (Eq. 7) in the RANSAC scoring
stage described above. When the best mode is above some
threshold on the distance between µ∗i and Hxi, it is not in-
cluded in the optimization as it is unlikely to be a correct
match for xi. To be able to continuously optimize the proxy
energy function over the 6 degrees of freedom of H , we
project H from SE(3) to se(3) and obtain the correspond-
ing 6D twist vector ξ = log(H) (see [1]). Now we can
define the proxy energy function to be optimized:

P (ξ) =
∑
i∈I
||Σ∗− 1

2 (ξ(xi)− µ∗i )||, (9)

where ξ(x) represents x transformed by the twist ξ. This
energy is the sum of the square root of the Mahalanobis
distances between the transformed observations and the
closest components chosen in Eq. 8. This energy is opti-
mized by a Levenberg-Marquardt optimizer and the result-
ing H = exp(ξ) is used as the refined camera pose hypoth-
esis in the next RANSAC iteration. Note that we also tried
the sum of Mahalanobis distances, which provided inferior
results in our experiments. Note also that, for simplicity,
the mixture selected by Eq. 8 is held fixed in this optimiza-
tion. However, this is effectively allowed to change across
RANSAC iterations.

5. Results

Dataset. We use the 7-Scenes dataset from [19] to evalu-
ate our contributions. This dataset consists of seven scenes
recorded using a Kinect RGB-D camera at a resolution of
640x480. The creators of the dataset used an implementa-
tion of KinectFusion to generate the ‘ground truth’ camera
pose for each frame.

Baselines. We compare the proposed method against the
state of the art in RGB-D camera relocalization [19, 10] and
a baseline that uses state-of-the-art feature matching tech-
niques. For more details about the latter baseline, we refer
the reader to Sec. 4.3 of [19].

Error metric. For comparison with [19, 10], we re-
port accuracy as the proportion of test frames for which the
translational error is below 5cm and the rotational error is
below 5◦. This metric is fairly strict and should allow any
robust model-based tracker to resume. To further assess the
robustness of our method, we also plot the probability of

Scene Baselines Our
Sparse RGB [19] [10] method

Chess 70.7% 92.6% 96% 99.4%
Fire 49.9% 82.9% 90% 94.6%

Heads 67.6% 49.4% 56% 95.9%
Office 36.6% 74.9% 92% 97.0%

Pumpkin 21.3% 73.7% 80% 85.1%
Kitchen 29.8% 71.8% 86% 89.3%
Stairs 9.2% 27.8% 55% 63.4%

Average 40.7% 67.6% 79.3% 89.5%

Table 1. Main results. Percentages denote the portion of frames
satisfying the error metric. Our method very substantially im-
proves upon the baselines on all the scenes. Note that our results
were generated using the same features across all sequences, while
we compare against the best results from [19, 10] that use different
features for each sequence (‘DA-RGB’ or ‘DA-RGB + D’).

convergence of our method using camera hypotheses sam-
pled to uniformly cover translational errors ranging between
0cm and 50cm and angular errors ranging from 0◦ to 50◦.

Main results. We present our main results and our com-
parison against the state of the art in Table 1. The proposed
method yields major improvements over all baselines on all
the test sequences. The decrease in relative error ranges
from 18.7% on ‘Stairs’ to 90.7% on ‘Heads’, with a mean
and median relative decrease of 50.3% and 46.0% respec-
tively. As can be observed in Table 2, the source of the
improvement is the use of the predicted anisotropic distri-
butions in the proposed continuous pose optimization. Infe-
rior results are obtained when the minimization of Eq. 9 is
performed using isotropic distributions.

‘Chess’ ‘Fire’ ‘Office’
Isotropic Energy & 92.6% 82.9% 74.9%Kabsch updates [19]
Isotropic Energy & 86.9% 77.1% 45.7%Continuous pose update

Anisotropic Energy & 99.4% 94.6% 97.0%Continuous pose update

Table 2. Source of the accuracy gain. This table illustrates that
the proposed continuous pose optimization has issues converging
to good cameras when the trees predict isotropic Gaussians mix-
ture models. Hence, the performance gains come from the pairing
of anisotropic distributions with the proposed continuous pose op-
timization.

Constraints on hypothesis sampling. Table 3 shows the
influence of checking the proposed constraints while sam-
pling camera hypotheses. It can be observed that the pro-
posed sampling of hypotheses provides for a non-negligible
gain in accuracy over random sampling.



Random Constrained
Sampling sampling

Isotropic Energy & 75.0% 76.5%Kabsch updates
Anisotropic Energy & 91.8% 95.9%Continuous pose update

Table 3. Influence of the constraints added during the sam-
pling of hypotheses on the ‘Heads’ sequence. First column:
Results obtained when no constraints are enforced during the sam-
pling of hypotheses. Second column: Results obtained when con-
straints are enforced. First row/Second row: Observe that both
constrained sampling and continuous optimization of anisotropic
predictions are important for high accuracy.

Pose optimization. Tables 2 and 3 show a comparison of
the results obtained when the camera hypotheses are opti-
mized with the Kabsch algorithm or the proposed optimiza-
tion using the same regression forest. It can be observed that
in similar settings, our proposed optimization yields ma-
jor improvements over running Kabsch, demonstrating the
benefits of explicitly modeling and using the uncertainties
in regression forests during the pose optimization process.
Fig. 3 illustrates the probability of convergence for both the
method described in [19] and our proposed approach. It can
be observed that the method of [19] has a parameter space
in which only a relatively small region has a high probabil-
ity of convergence to cameras satisfying the error metric.
For that method, the mean percentage of cameras satisfy-
ing the error metric after optimization is 4% and the median
is 2%. By contrast, our proposed method is more robust
to the initial position of the hypotheses with respect to the
ground truth. Indeed, our method exhibits a mean and a
median percentage of cameras satisfying the error metric
of 48%. However, it is important to note that the method
of [19] is more stable than the proposed method when the
sampled camera directly satisfies the error metric (82.2%
vs. 73.7%). In most cases, the method used by [19] robus-
tifies hypotheses but does not allow them to evolve much.
The top left image of Fig. 3 illustrates this behavior: in the
region where the error metric is satisfied (5cm and 5◦), the
percentage is high, but it greatly drops as soon as cameras
are sampled outside that region.

Accurate relocalizations. Fig. 4 shows the accuracy of
our predicted camera poses. When using the proposed opti-
mization, 50% of the frames are relocalized within 0.45cm
and 0.33◦ of their respective ground-truth. This is dramat-
ically better than using an isotropic energy combined with
Kabsch updates, for which the same relocalization rate is
only attained at 2.3cm and 2.85◦.

Energy. At the end of each loop of the preemptive
locally-optimized RANSAC, each candidate is assigned a

Kabsch update Our optimization
as in [19] after 30 iterations of LM

Our optimization Our optimization
after 60 iterations of LM after 100 iterations of LM

Figure 3. Probability of convergence on ‘Heads’. Top left: Prob-
ability of convergence for the pose update based on Kabsch as
described in [19]. All but top left: Probability of convergence
for the proposed optimization at different iterations of LM. All
results have been obtained by first randomly sampling 50 transla-
tion vectors per frame with errors against ground truth uniformly
distributed between 0cm and 50cm; similarly for rotations with er-
rors ranging from 0◦ to 50◦. These vectors are then combined into
2500 camera hypotheses which are all optimized over 10 rounds
of RANSAC. For all the plots, the ordinate corresponds to the dis-
tance from the sampled cameras to the ground truth, the abscissa
corresponds to their angular difference, and the color associated to
each pair of angular and translational errors represents the percent-
age of the corresponding hypotheses that converged to a solution
satisfying the error metric.

score corresponding to its estimated degree of relevance.
These candidates are then ranked and the bottom half is
discarded. Given a set of cameras, it is then crucial to reli-
ably distinguish between promising and less promising can-
didates. In a side-by-side comparison with the isotropic en-
ergy described in [19], the results in Table 4 show a major
difference in favor of our proposed approach, confirming
the benefits of leveraging the uncertainty of the predictions
while computing the degree of relevance of each camera hy-
pothesis.



Isotropic energy & Anisotropic Energy &
Kabsch update Continuous update

‘Heads’

‘Fire’

‘Office’

Figure 4. Precision of the relocalization on ‘Heads’, ‘Fire’ and
‘Office’. For all the plots, each entry corresponds to the percent-
age of predicted cameras that have a translational and rotational
error lower than the values specified by that entry. Left column:
Results obtained when using an isotropic energy and the Kabsch
algorithm to update camera hypotheses. Right column: Results
obtained when using the proposed anisotropic energy and the pro-
posed continuous optimization. Note that the same regression for-
est and the same camera hypotheses have been used to generate
these results.

Isotropic energy [19] Proposed energy
57.4% 77.2%

Table 4. Energies for camera ranking on ‘Heads’. The isotropic
energy refers to the energy of [19] and described in Eq. 7, and the
proposed energy corresponds to Eq. 7. For each frame of the se-
quence, 1024 cameras are sampled, scored and ranked using both
energies. The results correspond to the percentage of cameras that
received the best score and passed the error metric (5cm and 5◦).

6. Comparisons with the state of the art

Comparison with [19]. The proposed approach directly
extends multiple aspects of [19]. A first notable difference
lies in the fact that the training objective from [19] assumes
an isotropic distribution of the samples where we propose to
compute the entropy of an anisotropic estimator. A second
major difference comes from the leaf models: in practice,
the leaf model from [19] predicts a single point estimate

where ours predicts multi-modal Gaussians. A third differ-
ence comes from the energy that is computed to rank the
camera hypothesis. In [19], the authors propose to count in-
liers, where we propose to measure the relative likelihood of
each predicted mode. A fourth difference is that we exploit
some constraints about the problem to sample a higher ratio
of relevant camera hypotheses. Finally, the most important
difference comes from the fact that [19] optimizes the cam-
era candidates with a least squares objective minimizing the
distance between sampled points in camera coordinates and
their corresponding inliers in world coordinates. Instead,
we propose to use the multi-modal Gaussian predictions in
the leaves and to leverage the predicted uncertainties during
the optimization of the hypotheses.

Comparison with [10]. The main differences between
the proposed work and the orthogonal contributions from
[10] are twofold. First, they present a training method that
iteratively trains an ensemble of forests by evaluating the
error it makes on each sample, and uses these errors to re-
weight samples in a boosted fashion in order to train the
next forest. The results are generated using 10 forests of
5 trees each, which is substantially more expensive to train
and test than the approach proposed in this paper. Second,
the camera hypotheses are scored using a truncated signed
distance field which comes from an explicit reconstruction
of the scene. In our case, we only use the implicit represen-
tation of the scene captured by the regression forest. De-
spite our simpler approach, Table 1 shows our considerably
better accuracy.

7. Conclusion
We have presented a method to train and exploit uncer-

tainty from regression forests for accurate camera relocal-
ization. We were able to improve upon state of the art meth-
ods in multiple aspects. First, we have demonstrated that the
proposed approach is better than the state of the art at re-
localizing cameras. Second, we reported results illustrating
that the proposed method has a robust convergence. Finally,
we have shown that our predictions are considerably more
precise than methods assuming isotropic distribution of the
samples.

A very exciting opportunity and an interesting extension
of this work would be RGB-only relocalization, as we be-
lieve that it would allow for a wide range of new applica-
tions, especially on mobile devices.
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