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In multimedia annotation, due to the time constraints and the tediousness
of manual tagging, it is quite common to utilize both tagged and untagged
data to improve the performance of supervised learning when only limited
tagged training data are available [1, 2]. This is often done by adding a geo-
metrically based regularization term in the objective function of a supervised
learning model. In this case, a similarity graph is indispensable to exploit
the geometrical relationships among the training data points, and the graph
construction scheme essentially determines the performance of these graph-
based learning algorithms. However, most of the existing works construct
the graph empirically and are usually based on a single feature without using
the label information.

In this paper, we propose a semi-supervised annotation approach by
learning an optimal graph (OGL) from multi-cues (i.e., partial tags and mul-
tiple features) which can more accurately embed the relationships among
the data points. We further extend our model to address out-of-sample and
noisy label issues.

Suppose that for each image, we have for v features. Let X t = {xt
i}n

i=1
denote the feature matrix of the t-th feature of training images, where t ∈
{1, ...,v}. The traditional graph based semi-supervised learning [3, 4, 5]
usually solves the following problem:

min
F,Fl=Yl

∑
i j

∥∥ fi− f j
∥∥2

2si j (1)

where fi and f j are the labels for the i-th and j-th images, and S is the
affinity graph with each entry si j representing the similarity between two
images. The affinity graph S ∈ Rn×n is usually defined as follows:

si j =

{
e−‖xi−x j‖2

2/2σ 2
, if xi ∈NK(x j) or x j ∈NK(xi)

0,else
(2)

where NK(·) is the K-nearest neighbor set and 1≤ (i, j)≤ n. The variance σ

will affect the performance significantly, and it is usually empirically tuned.
Also, the similarity graph is often derived from single information cue. To
address these issues, we propose to learn an optimal graph S from multiple
cues.

The multiple cues include the given label information F and the multiple
features X t = {xt

i}n
i=1. An optimal graph S should be smooth on all these

information cues, which can be formulated as:

min
S,α

g(F,S)+µ

v

∑
t=1

α
th
(
X t ,S

)
+β r (S,α) (3)

where g(F,S) is the penalty function to measure the smoothness of S on
the label information F and h(X t ,S) is the loss function to measure the
smoothness of S on the feature X t . r (S,α) are regularizers defined on the
target S and α . µ and β are balancing parameters, and αt determines the
importance of each feature.

The penalty function g(F,S) and h(X t ,S) should be defined in the way
such that close labels (data points) have high similarity and vice versa. In
this paper, we define them as follows:

g(F,S) = ∑
i j

∥∥ fi− f j
∥∥2

2si j

h(X t ,S) = ∑
i j

∥∥∥xt
i− xt

j

∥∥∥2

2
si j

r (S,α) = µγ

β
‖S‖2

F +‖α‖2
2

(4)

where fi and f j are the labels of data point xi and x j. We further constrain
that S ≥ 0,S1 = 1,α ≥ 0 and αT 1 = 1. Then we can obtain the objective
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Figure 1: The overview of OGL. Firstly, a similarity graph is constructed
on each feature (multiple feature graph) and also on the partial tags (par-
tial label graph) to exploit the relationship among the data points. Partial
tags means that tags are provided only for a part of the training data. Then,
the optimal graph learning is applied to these graphs to construct an opti-
mal graph, which is integrated with SSL for the task of image and video
annotation.

function for learning the optimal graph by replacing g(F,S), h(X t ,S) and
r (S,α) in Eq.3 using Eq.4. By combining Eq.1 with Eq.3, we can obtain
the objective function for optimal-graph based SSL, as follows:

min
S,F,α

∑
i j

∥∥ fi− f j
∥∥2

2 si j +µ ∑
ti j

(
αt

∥∥∥xt
i− xt

j

∥∥∥2

2
si j

)
+µγ ‖S‖2

F +β ‖α‖2
2

s.t.
{

S≥ 0,S1 = 1, Fl = Yl , α ≥ 0, αT 1 = 1

(5)

We propose an iterative method to minimize the above objective func-
tion in Eq.5. Firstly, we initialize S = ∑t St/v with each St being calcu-
lated using Eq.2, and we initialize αt = 1/v. We further normalize S as
S = (D1/2)T SD1/2. Once these initial values are given, in each iteration, we
first update F given S and α , and then update S and α by fixing the other pa-
rameters. Our conclusion is that by learning an optimal graph (OGL) from
multi-cues (i.e., partial tags and multiple features), the relationships among
the data points can be more accurately embedded. Consequently, the perfor-
mance of graph-based algorithms using OGL can potentially be improved.
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