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Semantic scene parsing has recently made much progress by incorporating
high-level visual information, such as scene context and objects, and jointly
solving multiple related vision tasks [5, 7]. However, such object-aware
strategies require many proposals of object instances and their relations to
accommodate uncertainty in object detection and localization. This leads
to increasingly higher complexity of the resulting models on pixels and ob-
jects, which is challenging for efficient inference at test time, especially for
parsing video data.

In this work, we address the problem of integrating object reasoning
with supervoxel labeling in multiclass semantic video segmentation. Taking
a hypothesize-and-verify approach, we generate a pool of object proposals
and formulate the video segmentation as a joint labeling of pixels and object
hypotheses. To handle a large number of object proposals, we adopt an ac-
tive inference strategy at object level to select an optimal subset of proposals
for joint inference. An overview of our model is shown in Figure 1.

We tackle the joint labeling problem by designing an object-augmented
dense CRF in spatio-temporal domain, which captures long-range depen-
dency between supervoxels, and imposes consistency between object and
supervoxel labels. Specifically, given a video sequence 7, we first compute
its supervoxel representation and the semantic class of the ith supervoxel is
denoted as /;. We then generate a set of object trajectory proposals from
object detection and tracking efficiently as in [4]. For the m-th proposal, a
binary variable d,, is used to indicate whether it is true positive detection
or background. We model the object relations by considering the relative
depth ordering between them. To this end, we divide the proposals into the
singleton object set S, and the overlapping object set P which consists of
occluding object pairs. For each p € P and p = (m,n), we introduce Ay, to
describe their occlusion relations. Denoting the supervoxel labeling, object
states and their relations of the entire sequence as L, D, H, we define the
overall energy function of our CRF model as follows:

E(L,D,H|T)=E,(L)+ Z EJ(L,dnm) + Z EP(L,dw,dn,hn) (1)
meS peEP

where E, denotes the potentials at supervoxel level. E™ and Ef are poten-
tials for singleton and overlapped objects.

We first develop an efficient mean field inference algorithm to jointly in-
fer the supervoxel labels, object activations and their relations for a moderate
number of object proposals. For scaling up inference with many object pro-
posals, we propose to select an informative subset of objects and their rela-
tion nodes [6]. To this end, we build a set of subgraphs corresponding to the
object hypotheses, which are selected in our inference procedure. Specif-
ically, we introduce a subgraph selection state vector z = [z*,z"], where z°
and z" are for singleton and object pair set S, P respectively. Each element
Zj in z is an binary indicator and z; = 1 means subgraph £ is selected. The
full CRF model with subgraph selection can be defined by its energy func-
tion, E(L,D,H,2|T) = Ey+ Lnes 2B + Lpep 2HEF .

We formulate the subgraph selection as a Markov Decision Process
(MDP) and develop a learning approach to search the optimal policy for se-
quentially choosing most informative subgraphs. We define a reward func-
tion using the improvement on average per-class pixel accuracy, and learn
an approximate policy based on Q-learning [3]. Our policy takes long-range
features generated by both current model uncertainty and video input, and
predicts the most valuable subgraph to choose in next step. Furthermore, we
also use an imitation learning scheme [1] to train a fast local classifier that
approximates the optimal decision.

We evaluate our approach on three publicly available semantic video
segmentation datasets. We demonstrate that our learned policy is capable of
selecting informative object proposals and their relations, leading to much
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Figure 1: Overview of our approach. Example of the object-augmented dense CRF
model. Our active inference adaptively selecting subgraphs thus improve the infer-
ence efficiency.

simpler model structure and comparable and even higher segmentation ac-
curacy. Figure 2 shows the prediction curves for average class accuracy and
foreground object accuracy on CamVid Dataset [2]. Our proposed methods
(first three in legend) achieve a better traded-off in accuracy and efficiency
than baseline methods.

o
Y
&

o

0.44

(] 20 40 60 80
Number of Subgraphs

10 20 30 40 50 60 70
Number of Subgraphs

>
)
s
=
8
oy <
5 &3 043
<
062 ©
§ O o4
a kel
s 3 —
g Q-learning(linear) o o4l Q-learning(linear)
L 0615 —Qrlearning(non-linear) gi',’ 04 ——Q-learning(non-linear)
o —LocalC o LocalC
2 Entropy-based % 030 Entropy-based
< —ELC 2 —ELC
—Greed < —GreedyC
061 reedye g 038
<

Figure 2: Traded-off performance on the CamVid dataset. The curve shows the
increase in accuracy over the selective inference model as a function of subgraph
number. The cross shows the termination point for inference.

Table 1 shows the comparison of the efficiency of our algorithm and
two state-of-the-art methods. Our algorithm is much faster, and its inference
time increases only sub-linearly with respect to the number of hypotheses.

# of Subgraphs Time(s)
[4] (GraphCut) | FullCRF (MeanField) | Our Method
21.6 43 2.6 1.5
41.1 5.8 33 1.6
81.8 8.3 5.3 1.8
165 14.4 10.9 24

Table 1: Inference efficiency v.s. number of proposals of different methods on two-
second video chunks in CamVid.
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