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Figure 1: Sample outcomes of our scheme: background c(x) = 0 (gray) and foreground layers c(x) = 1, c(x) = 2, c(x) = 3
indicated by , , respectively. On the far right, our algorithm correctly infers that the bag strap is in front of the woman’s
arm, which is in front of her trunk, which is in front of the background. Project page: http://vision.ucla.edu/cvos/

Abstract
Occlusion relations inform the partition of the image do-

main into “objects” but are difficult to determine from a sin-
gle image or short-baseline video. We show how long-term
occlusion relations can be robustly inferred from video, and
used within a convex optimization framework to segment the
image domain into regions. We highlight the challenges in
determining these occluder/occluded relations and ensuring
regions remain temporally consistent, propose strategies to
overcome them, and introduce an efficient numerical scheme
to perform the partition directly on the pixel grid, without
the need for superpixelization or other preprocessing steps.

1. Introduction

Partitioning the image domain into regions that corre-
spond to “objects” is elusive absent an explicit definition of
objects that has a measurable correlate in the image. Gestalt
principles [33] provide grouping criteria: continuity, regular-
ity, proximity, compactness, the last of which (figure/ground,
or occlusion) is best informed by video. Occlusions have
been used extensively for grouping [32, 5, 7, 3]. A feature of
[3] is that grouping is obtained via a linear program: local or-
dering constraints provided by occluder/occluded relations
are integrated to globally partition the image domain into
depth layers. The challenge is that errors in determining
occlusion relations can have a cascading effect.

Occlusions are usually detected from the residual of op-
tical flow, but even assuming this detection is correct, oc-
cluder relations are non-trivial to determine. As we show in
Fig. 2, correct determination of the occluder requires either
knowledge of the motion of the occluded region (which is

undefined), or knowledge of its partition into regions. Hence
the conundrum: to determine occlusion relations, so that
objects can be segmented, we need to know the objects in
the first place. The first contribution of our work is to break
the conundrum by leveraging motion and appearance pri-
ors to hallucinate motion in the occluded region. With the
occluder/occluded relations we can obtain a depth-layer par-
tition for the image domain. In video, however, nuisances
such as motion blur, quantization, scale, and lack of motion
can cause layer segmentation to fail. Thus, the second contri-
bution is a causal framework for integrating occlusion cues
exploiting temporal consistency priors to partition the video
into depth layers. Our third contribution is to make the solu-
tion of the resulting optimization problem efficient using a
primal-dual scheme. Our proposed method is competitive to
state-of-the-art approaches qualitatively in visual boundaries
and quantitatively in numerical benchmarks, while process-
ing video sequences causally, rather than in batch. Samples
from our scheme are shown in Fig. 1.

The paper is organized as follows: we set up our problem
in Sec. 2. We describe our first contribution in determining
occluder relations in Sec. 2.1 and how we leverage prior
work [3] in Sec. 2.2. Sec. 3 explores how we causally
integrate cues to construct priors for foreground regions in
Sec. 3.1, obtain persistent object boundaries in Sec. 3.2, and
aggregate occluder relations in Sec. 3.3. Our final model
is presented in Sec. 3.4. Implementation and optimization
details are covered in Sec. 4–5, including our approach for
hallucinating motion in the occluded regions in Sec. 4.2.
Empirical evaluation appears in Sec. 6, where we show that
the typical failure modes of prior approaches stemming from
unreliable occlusion relations are mitigated.
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1.1. Related Work

A large number of methods have been proposed for parti-
tioning a video sequence into non-overlapping regions with
unique labels, using motion, appearance or their combination
[24, 6, 17, 31, 21, 10, 34, 15, 36, 23, 22]. These approaches
are susceptible to oversegmentation, which video object seg-
mentation attempts to mitigate by assigning a single label to
each object. The problem can be cast as multi-label classifi-
cation, in which a unique label is attached to each object [22],
or as binary “foreground”/“background” (FG/BG) classifica-
tion [11, 21, 36, 23]. While our work produces depth layers,
and not object labels, these could be added post-mortem.

Many approaches operate offline (or non-causally), with
the entire video available for processing [22, 21, 36, 23],
which scales poorly with sequence length, although “stream-
ing” approaches can be used [31, 34]. Our approach is on-
line (or causal), and is closely related to tracking [24, 4, 9],
which, unlike us, requires manual initialization.

Estimation of segmentation masks, motion, and depth
ordering can be formulated jointly [12, 32, 5, 19, 26, 18,
20, 28, 25, 9, 35], but the resulting problem is nonconvex
and requires a substantial computational effort. We separate
motion estimation from segmentation and depth ordering,
and focus on the latter, which makes a scalable convex for-
mulation possible.

2. Video segmentation with layers
Let It : D → R3 be an image of a video {It}Tt=1 defined

on the domain D ⊂ R2. We seek to partition D into regions,
each associated with an integer depth order, represented by
a function ct : D → Z+ indicating to which layer each
pixel belongs. A layer is then c−1

t (i) = {x ∈ D|ct(x) = i},
where ct(x) = 0 denotes the background and larger values
of ct indicate “foreground” regions ct(x) = 1, 2, 3, . . . . The
connected components of non-zero regions correspond to
individual objects. It was shown by [5, 3] that depth layers
can be inferred from occlusion phenomena, that occur as a
result of object or viewer motion, causing parts of the scene
to become hidden and others revealed. These inform local
order relations between surfaces in the scene: when a surface
becomes occluded, the image region where it projected to
becomes occupied by the occluder, which is therefore closer
to the viewer. These occluder-occluded relationships can
be used as cues for segmenting regions in the image that
back-project to distinct objects in the scene.

2.1. The “occluder” and the “occluded”

Under the assumptions of Lambertian reflection, con-
stant illumination, and co-visibility typically implicit in most
optical flow algorithms, It(x) is related to It+1(x) by the
brightness-constancy equation

It(x) = It+1(wt+1
t (x)) + nt(x), x ∈ D \Ωt+1

t (x), (1)
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Figure 2: Initial (top) and final (middle) views of a smaller
square sliding under a larger one, producing an occluded
region Ω in red (subscripts dropped for readability). Two
alternate hypotheses (left and right) for the occluder (f)
in yellow produce different constraints (bottom). Left: Ω
moves with E and slides under A ∪ B. Right: the occluder is
split in two—B occludes C and E occludes D. Disambigua-
tion requires either knowledge of the motion in Ω, which is
undetermined as it is occluded, or the object segmentation,
which is the final goal.

where wt+1
t is the deformation field that warps the domain

of It into It+1 and nt lumps together all un-modeled phe-
nomena and violations of the assumptions. Often, wt+1

t is
represented by the optical flow field vt+1

t by wt+1
t (x) =

x+ vt+1
t (x). The above holds on the entire image domain

except in the occluded regions Ωt+1
t , where surfaces visible

at time t are no longer visible at t+ 1. In this region, the
optical flow is not defined, but can be extrapolated from the
“co-visible” regions via regularization. Occluded regions are
easy to find as a byproduct of optical flow estimation [2], as
they yield a large residual nt via backward flow. What is not
easy to find is the occluder.

The defining characteristic of the occluder point yct ∈
ft+1
t (the occluder region) corresponding to the occluded

point yt ∈ Ωt+1
t (the occluded region) is

wt+1
t (yct ) = yt. (2)

This equation is somewhat unintuitive as the left hand-side
lives in the domain of the image at time t + 1 whereas
the right-hand side is defined only at time t. This can be
interpreted as

yct = wtt+1(yt), (3)

which is completetely agnostic of the motion of the occluded
region.

Consider Fig. 2: The occluded region, C ∪ D, could
slide under the larger rectangle, and become occluded by
A ∪ B. However, C and D could also actually correspond to
different objects, and move independently. In this case, B
could be the occluder of C and E could be the occluder of D.
To disambiguate between these two hypotheses, we need to
know either the motion of D, which is not possible since it



is occluded, or the object partition, which is our goal in the
first place. In the example in question, using (2) would favor
the hypothesis of B occluding C and E occluding D (right
half of Fig. 2). This would yield two ordering constraints,
c(B) > c(C) and c(E) > c(D) that hinge on the occluded
region and impose no constraints between the visible regions
B and E. The latter constraint is also incorrect in the example
(Fig. 2 bottom right).

However, while the motion in the occluded region is not
determined, it can be hallucinated exploiting regularization
priors. Even with a coarse estimate of the motion of D, we
could determine if it moves similarly to E, in which case it
cannot be occluded by it and must instead be occluded by
B. Therefore, in our approach we extrapolate motion to the
occluded region, so as to attribute it to a possible occluder.
In Sec. 4.2, we discuss how to exploit natural image and
motion priors to achieve this. Of course, one could resort to
such priors and photometric characteristics of the occluded
region to directly determine the grouping of C, D, and E.
But again if this was easy, we would have already solved the
problem of object segmentation.

2.2. From local ordering constraints to layers

In [3], the following convex model for inferring ct from
occlusion cues was proposed:

ct = arg min
ct:ct≥0

∫
D

gt(x)|∇ct(x)|dx

s.t. ct(yc)− ct(y) ≥ 1 ∀(yc, y) ∈ Ot.
(4)

Ot denotes the set of occlusion cues composed of pairs
(yc, y), where yc lies on the occluding surface, and y lies on
the surface that was (will be) occluded in the previous (next)
frame. The objective

∫
D
gt(x)|∇ct(x)|dx is just weighted

total variation (TV), with the data-dependent affinity weights
(denoted by gt(x)) being small at image and motion bound-
aries and large otherwise. Note that the “data-term” en-
ters the optimization as a set of constraints which require
occluded-occluder pairs to lie in different layers: specifically,
the occluder must lie in the layer closer to the viewer (higher
values of ct). An overview of this approach is shown in
Fig. 3. While this optimization problem relaxes the integer
constraint (ct : D → Z+), empirically the solutions are
piecewise constant and integer valued.

Although this model is formulated for a single time in-
stant t, three frames (t− 1, t, t+ 1) are necessary to obtain
occlusion cues. However, they are typically not sufficient
when small inter-frame motion produces unreliable occlu-
sion constraints. Next, we exploit temporal persistence to
overcome this problem.

3. Incorporating motion cues causally
Our causal framework leverages a rich history of image

frames, the segmentation cues from those frames (occlu-

Figure 3: Left: The motion of two objects generate occlu-
sions and disocclusions (both denoted by Ω, shown in red).
Middle: each occluded region is attributed to a local occluder
(f, shown in yellow). Occluder-occluded relationship con-
strains objects’ depth-order. Right: resulting depth layers.

sions and weights), and previous layer estimates to facilitate
segmentation in the current frame. Large-displacement prop-
agation of these cues via wt−1

t is unstable, rendering cues
unusable. But when the motion becomes large, occlusions
become easier to detect, making the past unnecessary for
segmentation. Thus, these cues are complementary—when
the motion is large, sufficient occlusion cues are produced,
and wt−1

t is erroneous. When the motion is small, occlusion
cues are few, but propagation is reliable. This motivates an
adaptive integration of cues based on motion. A weight-
ing function mt(x)

.
= α exp(−|vt−1

t |/µv) is used, where
α ∈ [0, 1], vt−1

t is the optical flow, and µv is the mean value
of v for this frame. The weight decreases with large motion,
regardless of how long ago it occurred. The following sec-
tions describe the temporal cues leveraged in our framework.
Note that the variable being optimized over is always ct, and
ct−1 is always available as a result of previous optimization.

3.1. Once an object, always an object

Layer values ct(x) are not constant over time, as objects
can move in front of one another and switch order of their
distance to the viewer. However, once an object is detected,
it should not later be labeled as background–even if it stops
moving and produces no occlusion cues for segmentation.

This can be enforced causally using the prior segmenta-
tion result (ct−1) via a (convex) constraint:

ct(x) ≥ 1 ∀x ∈ F, F = {ct−1(wt−1
t (x)) ≥ 1} (5)

where F is the indicator of the previous frame’s foreground
region warped into the current frame. To mitigate errors in
prior segmentations, we relax the constraint and penalize
violations with a hinge loss:∫

D

κt(x) max
(
0, 1− ct(x)

)
dx (6)

with κt being the cost of violating the constraint. Choosing
κt(x) = 0 for x outside F allows us to write the penalty as
an integral over entire image domain D. As κt(x)→∞ for
x ∈ F , the hard constraint (5) is recovered.



Figure 4: ct−1 (column 1) is used to compute the foreground
prior (κt) (column 2). Without κt, the resulting ct com-
pletely misses the objects (column 3), however with κt, ct
succeeds (last column). Note ct−1 and ct look very similar—
κt helps most during small-baseline motion when occlusion
cues are weak but ct−1 easily predicts ct.

The cost of violating the constraint is computed recur-
sively, with initial condition κ1(x) = 0, as

κt(x) = mt(x)κt−1(wt−1
t (x)) + 1{ct−1(wt−1

t (x)) ≥ 1}

where 1 is a characteristic function (1{X} = 1 if X is
true, and is 0 otherwise). This foreground prior boosts κt(x)
wherever the corresponding points are labeled as foreground
in the previous frame and diminishes it over time and motion
as described above. As demonstrated in Fig. 4, whenever
motion is small, instantaneous occlusion cues are insuffi-
cient to perform segmentation, and this notion of temporal
consistency is helpful.

To avoid the entire image domain from becoming fore-
ground, we introduce an additional regularization penalizing
layer values

τ

∫
D

ct(x)dx. (7)

This is similar to the regularization used in [3], although
they use the `∞ norm, whereas here we use `1. This term
encourages pixels to lie in the background layer, unless
sufficient evidence pushes them into the foreground.

3.2. Persistent layer boundaries

While depth-layer values are not persistent, their bound-
aries are. Unless objects split or merge, we have

1{∇ct(x) 6= 0} = 1{∇ct−1(wt−1
t (x)) 6= 0}. (8)

This is a nonconvex constraint. However, enforcing
∇ct(x) = 0 wherever ct−1(wt−1

t (x)) = 0 is simple (a
linear constraint), and its relaxed version with a hinge loss
and associated cost ut(x) is equivalent to increasing weights
in TV regularization (shown in [30]). This leaves the hard
part: enforcing ∇ct(x) 6= 0 wherever ct−1(wt−1

t (x)) 6= 0.
To remain within a convex optimization framework, we treat
this as a bias and set the corresponding ut(x) to be negative,
which decreases the corresponding TV weights (which are
kept nonnegative to preserve convexity). This layer unity

Figure 5: Occlusion cues from the current frame alone (Ot),
with occluded points (Ω) in red and occluder points (f) in
yellow, (column 1) fail to segment the objects (column 2).
However, aggregating constraints over time (Ōt) (column 3)
succesfully recovers all of them (last column).

prior is also computed recursively, with u1(x) = 0, as

ut(x) =mt(x)ut−1(wt−1
t (x)) + 1{∇ct−1(wt−1

t (x)) = 0}
− 1{∇ct−1(wt−1

t (x)) 6= 0}.
We also perform temporal aggregation of the TV affinity
weights. In each frame, we compute the boundary strength
ρt(x) ∈ R+, as described in Sec. 4. The aggregated bound-
ary strength ρ̄t(x) is (with ρ̄1(x) = 0)

ρ̄t(x) = mt(x)ρ̄t−1(wt−1
t (x)) + ρt(x). (9)

The aggregated TV weights used in the optimization are

gt(x) = max(0, 1− ρ̄t(x) + ut(x)). (10)

3.3. Occlusion cue aggregation

Instantaneous occlusion constraints (Ot) are accumulated
into the aggregated constraints set Ōt = wtt−1(Ōt−1) ∪Ot,
where past constraints Ōt−1 are propagated to the current
frame by the motion of the occluder wtt−1(yc) (see Fig. 5).
The base condition is Ō1 = O1. The constraint penalty
weights λ, computed by (4.1), are adjusted over time by

λt,i = mt(y
c
i )λt−1,i+1{ct−1(wt−1

t (yci )) ≥ ct−1(wt−1
t (yi))}.

3.4. Overall model

The final model that incorporates occlusion cues, weights,
foreground and unity priors is

ct = arg min
ct≥0

∫
D

gt(x)|∇ct(x)|dx+ τ

∫
D

ct(x)dx

+

∫
D

κt(x) max
(
0, 1− ct(x)

)
dx

+

N∑
i=1

(yci ,yi)∈Ōt

λi max
(
0, 1− ct(yci )− ct(yi)

)
,

(11)

where the first term (weighted TV) ensures that the result
is piecewise constant, the second term (foreground prior)
encourages regions to have nonzero layer values wherever
κ̄t(x) is large, the third (model selection) term prevents the
creation of spurious layers, and the fourth is the penalty for
violating the occlusion constraints.



4. Implementation details

For each frame, we incorporate appearance, edge, and
motion information into the weights ρt(x) in (9) as follows:

ρt(x) = 1−
(
βIh(|∇I(x)|)+βEh(E(x))+βvh(|∇vt+1

t (x)|)
)

where h(x) = exp(−x/µx), µx is the average value of
x. E(x) ∈ [0, 1] is the output of an edge detector [13]
with E(x) ≈ 1 at the boundaries. In our experiments,
(βI , βE , βv) = (0.2, 0.4, 0.4). Following [23], we also ad-
just the motion term by the difference in flow angles at the
pixels where flow magnitude is small.

4.1. Occlusion constraint weights

Often the occluded and occluding surfaces differ in ap-
pearance, motion, and are separated by a strong image bound-
ary, suggesting λ be computed in a fashion similar to (4):

λi = ηi
(
1−

(
βIh(|I(yci )− I(yi)|) + βEh(Ê(yci , yi))

+ βvh(|vt+1
t (yci )− vt+1

t (yi)|)
))

where the gradient operator is replaced by a difference be-
tween appearance, edge, and motion statistics of yc and y.
Here, E(x) is replaced by Ê(x1, x2)—the strongest edge
response on the line connecting yc and y. We additionally
validate yc and y as an occluder-occluded pair with weight η,
which measures the degree to which y and yc move toward
each other. Indeed, unless they do so, ft+1

t cannot take the
place of Ωt+1

t , i.e. when η(yc, y) in

∆(yc, y) = (vt+1
t (yc)− vt+1

t (y))T (
yc − y
‖yc − y‖

)

η(yc, y) = max(0, 1− exp(−θ ∆(yc, y)))

(12)

is small, then yc is less likely to occlude y. We choose θ = 2
so that ∆(yc, y) = 1 yields a high score. λi ≈ 1 whenever
the appearance and motion of yc and y are “different” and
the points are moving toward each other. Finally, assuming
that the occluded and occluding surfaces differ in appear-
ance, we can locally perturb constraints with the goal of
correcting them; this procedure is described in [30]. Alto-
gether, these factors alter the constraints to help us discount
potentially erroneous cues, which occur due to inevitable
errors in optical flow and occlusion estimation.

4.2. Flow extrapolation over the occlusion region

As noted in Sec. 2.1, vt+1
t (x) for x ∈ Ωt+1

t is undefined
(1) and filled in by the regularizer, which corresponds to
enforcing priors on motion. The simplest priors rely solely
on continuity, tending to smooth motion boundaries, while
more sophisticated ones attempt to preserve them. We use
the cross-bilateral filter [14] to enforce such priors on vt+1

t

C

A
D

B

CA DB

Figure 6: Cross bilateral filtering extrapolates flow in Ω via
motion and appearance priors, facilitating reliable occluder
determination. Left: The extrapolated motion field v̂t+1

t .
Boxes highlight occluded regions where notable change (of-
ten improvement) occurs. Right: For each box, vt+1

t (top)
and v̂t+1

t (bottom) are shown.

in the occluded regions based on the backward flow vt−1
t :

v̂t+1
t (z) =

1

Vz

∫
D

vt+1
t (x)P (x /∈ Ωt+1

t )

G(vt−1
t (x)− vt−1

t (z), σv)G(x− z, σx)dx,

(13)

where v̂t+1
t is the extrapolated forward flow, P (x /∈ Ωt+1

t )
is the probability of x being visible, G is the gaussian kernel
G(x, σ) = exp(−‖x‖2/2σ2), and Vz is a normalization
term. We can filter the backward flow v̂t−1

t by exchanging
t + 1 with t − 1 and vice versa. Extrapolating flow is key
to determining the occluder (Fig. 2), but cannot be proven
“correct” as it hinges critically on the choice of prior. vt+1

t is
computed using publicly-available code [27] (“classic-nl”),
and occlusions are computed by thresholding the residual
image. See [30] for further details.

4.3. Foreground prior region

In practice, motion estimation makes mistakes near object
boundaries (e.g. occluded regions). When computing κt, we
first warp κt−1 to the current frame and then use morpho-
logical operations to erode the edges proportionally to the
magnitude of the flow in that region. This ensures the prior
does not leak outside of the object regions, but produces
a poor estimate near the boundaries. To help recover the
structure of these edges, we incorporate a set of local shape
classifiers as in [4] to better capture and predict the shape of
the object boundary, the details of which are in [30].

5. Optimization
The optimization problem (11) is convex but large enough

that off-the-shelf methods cannot solve it without resorting to
superpixels or other pre-processing to reduce its dimension.
Here we present an efficient numerical primal-dual scheme
based on [8] that allows us to solve it on the pixel grid.

The indicator function – not to be confused with char-
acteristic function 1 used above – of a set A is defined by
IA(x) = 0 for x ∈ A and IA(x) = ∞ for x 6= A. For
a function f , the convex conjugate is defined as f∗(y)

.
=



Algorithm 1 Layer Solver
Initialize: Pick σy, σc > 0, σyσc ≤ 1

8 , and θ ∈ [0, 1].
Arbitrarily initialize feasible y0

1 , y
0
2 , c

0. Set x̄0 = c0.
Perform iterates for k = 0, 1, 2, . . . :

yk+1
1 = proxσyF∗

1

(
yk1 + σyDx̄k

)
yk+1

2 = proxσyF∗
2

(
yk2 + σyDoccx̄k

)
ck+1 = proxσcG

(
ck − σc(DT yk+1

1 +DToccyk+1
2 )

)
x̄k+1 = ck+1 + θ(ck+1 − ck).

supx y
Tx− f(x). The prox operator of f is defined as

proxσf (y)
.
= arg min

x

1

2σ
‖x− y‖2 + f(x). (14)

Since the optimization is performed on a finite pixel grid,
the depth values c can be written as a vector c ∈ Rn+, with
ci indicating the layer value at the i-th pixel. We denote
by D the gradient operator represented by a matrix of finite
differences. Weights associated with the edges are denoted
by the diagonal matrix W . A difference matrix for occlusion
constraints is denoted by Docc and the cost of violating
constraints by λ. As before, τ is used for regularization and
κ is a weighted indicator of the foreground region. We can
then write the objective in shorthand as

min
c
‖WDc‖1 + τT c+ κT max(0, 1− c)+

λT max(0, 1−Doccc) + I{c≥0}(c). (15)

Let G(c) = τT c+ κT max(0, 1− c) + I{c≥0}(c). Also, let
z1 = Dc, z2 = Doccc, construct the functions F1(z1) =
‖Wz1‖1, F2(z2) = λT max(0, 1 − z2), and introduce the
dual variables y1, y2. The augmented Lagrangian follows as

min
z1,z2,c

max
y1,y2

F1(z1) + F2(z2) +G(c)+

yT1 (Dc− z1) + yT2 (Doccc− z2), (16)

or, equivalently, using the convex conjugates, as

min
c

max
y1,y2

G(c)− F ∗1 (y1)− F ∗2 (y2) + yT1 Dc+ yT2 Doccc.

This saddle-point problem is addressed in [8], so we can
apply their primal-dual algorithm shown in Alg. 1.

Alg. 1 depends on the ability to compute proximal op-
erators for G, F ∗1 and F ∗2 . All three operators have simple
closed form solutions that require few arithmetic operations:

proxσG (y) = max
(
0,

min
(
y − στ + σκ,max

(
1, y − στ

)))
(17)

proxσF∗
1

(y) = sign(y) min{diag(W ), |y|} (18)

proxσF∗
2

(y) = min
(

max
(
y − σ1,−λ

)
, 0
)

(19)

Derivation details are reported in [30].

6. Experiments
Our method segments video into depth layers. Unfor-

tunately, no benchmark dataset is available to evaluate it
directly. However, our method can be modified to produce
binary and multi-label segmentations; leveraging this, we
evaluate the algorithm on two datasets: MoSeg [22] (de-
signed for video object segmentation with no consideration
for depth ordering), on which we focus, as well as BVSD
[16] (designed for video segmentation).

Evaluation methodology. We follow the process de-
scribed in [22]. The dataset contains 59 sequences, rang-
ing from 19 to 800 frames. Each has pixel-wise ground
truth annotation for a sparse subset of frames (3–41). As in
[22], we report precision, recall, F-measure, and the num-
ber of extracted objects (regions with F-measure ≥ 0.75).
For multi-label segmentation tasks, we treat each connected
component of the depth layers as a unique “object”. We also
evaluate on foreground/background (FG/BG) video object
segmentation, which come directly from depth layers as
FG

.
= {x : c(x) ≥ 1}, BG .

= {x : c(x) = 0}. Precision,
recall, and F-measure are reported on the ground truth anno-
tations converted to binary masks. Note we cannot evaluate
“number of extracted objects” in the FG/BG scenario.

The methods we compare against ([17, 21, 23, 22]) are
non-causal and “batch”, whereas our method is causal. Since
we do not know the future, we do not detect objects until
they undergo sufficient motion, which sometimes causes us
to miss objects in the beginning of video sequences. To fairly
compare against non-causal methods, we also perform a non-
causal evaluation (reported as “NC”)—we run our algorithm
forward in time to accumulate all priors, and then backward
in time. The latter half is used for evaluation.

Effects of system components. In Sec. 3 we described
individual components of our model and showed examples
where they improved results (see Fig. 4, 5). Here we quan-
tify this improvement. We evaluate [3] (“BASIC”), their
temporal extension (“TE”), foreground-background prior
(Sec. 3.1, “FG”), and the full model (“FULL”). In addition,
we evaluated the full model without flow extrapolation (Sec.
4.2) to understand its effects (“NOFE”). These results are
reported in Table 1. “BASIC” does not use long-term tem-
poral information. “TE” integrates weights using previous
segmentations, increasing the cost of making a cut away
from object boundaries. “FG” discourages previously seg-
mented regions from falling into background. “FULL” is a
combination of all components.

The “BASIC” method does not use temporal information,
so on the multi-label benchmark, whenever objects disappear
(as they often do, due to insufficient motion) and re-appear,
they are assigned a new object label. Long-term integra-
tion helps avoid missed detections and propagates object
labels throughout the sequence. Performance on the FG/BG
evaluation suggests that objects are often not detected at all.



0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

training set

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

test set

Grundmann10 Brox14 TE FULL FULL-NC
(a)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

training set

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

test set

Grauman11 Papazoglou13 TE FULL FULL-NC
(b)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

boundary precision recall

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

volume precision recall

oracle+IS
Galasso13

IS (Arbelaez)
Xu12

Brox14
Grundmann10

Galasso12
Corso08

Human
FULL

(c)

Figure 7: (a-b) Comparison on MoSeg: (a) multi-label segmentation, (b) FG/BG segmentation. (c) Comparison on BVSD.

Multi-label segmentation
Training set (29 sequences) Test set (30 sequences)

P R F N/65 P R F N/69
BASIC 84.90 53.10 65.34 10 78.80 44.49 56.87 4

TE 87.20 59.60 70.81 17 79.64 50.73 61.98 7
FG 86.98 60.99 71.71 18 79.04 52.08 62.79 10

NOFE 86.67 58.06 69.54 14 80.71 50.64 62.24 8
FULL 85.00 67.99 75.55 21 82.37 58.37 68.32 17

FULL-NC 83.00 70.10 76.01 23 77.94 59.14 67.25 15
[17] 79.17 47.55 59.42 4 77.11 42.99 55.20 5
[22] 81.50 63.23 71.21 16 74.91 60.14 66.72 20

Binary segmentation
Training set (29 sequences) Test set (30 sequences)

P R F - P R F -
BASIC 89.99 40.86 56.21 - 93.21 33.69 49.49 -

TE 75.94 61.64 68.05 - 78.11 54.68 64.33 -
FG 75.93 63.07 68.91 - 76.97 56.16 64.94 -

NOFE 68.92 66.09 67.48 - 74.27 53.99 62.52 -
FULL 83.92 68.19 75.24 - 86.54 63.20 73.05 -

FULL-NC 79.26 78.99 79.12 - 83.41 67.91 74.87 -
[21] 64.86 52.70 58.15 - 62.32 55.97 58.97 -
[23] 71.34 70.66 71.00 - 76.29 63.29 69.18 -

Table 1: Comparison of our approach (rows 4–5) to baselines
using individual components (rows 1–3) and state-of-the-art
(rows 6–7) on the MoSeg dataset. R .

=recall, P .=precision,
F .=F-measure, N .

= number of extracted objects.

Precision decreases for the “FULL” system due to an
increased number of “false positives”—often we detect more
objects than labeled in the annotation (see Fig. 8). “NC”
provides a small performance boost by allowing us to label
objects before they move.

Video object segmentation. In Table 1 and Fig. 7 we
report results of the comparison with multi-label dense mo-
tion segmentation [22], video over-segmentation [17], as
well as binary (i.e. FG/BG) video object segmentation meth-
ods [21, 23]. On multi-label segmentation, we outperform
[17],[3], and [22] in F-measure. The improvement from
the latter is not great; however, note that unlike theirs, our
method is causal and has a small memory footprint. We
are not the best in terms of “number of extracted objects”.
As mentioned before, unless the object undergoes sufficient
motion, it will not be detected. On FG/BG segmentation, we
outperform [21],[23], and [3].

Video segmentation. BVSD [29, 16] contains 40 train-
ing and 60 testing sequences, each up to 121 frames. Pixel-
wise ground truth annotation is provided for a subset of
frames. Video sequences are in HD; we resize images to
540×960. While we report results for a variety of algorithms

[10, 1, 15, 34] (with data from [16]), our primary point of
comparison is [22]. Performance is benchmarked using
“boundary precision-recall” (BPR) and “volume precision-
recall” (VPR) metrics. BPR is commonly used in image seg-
mentation, while VPR quantifies the spatiotemporal overlap
between machine-generated and ground-truth segmentations
(see [16] for details).

Video object segmentation algorithms are expected to be
in the high-precision regime in BPR, and in the high-recall
regime in VPR, which indeed both we and [22] satisfy (see
Fig. 7). We obtain (P,R, F ) = (0.760, 0.186, 0.299) and
(0.136, 0.870, 0.234) on BPR and VPR respectively, while
they obtain (0.566, 0.100, 0.170) and (0.146, 0.852, 0.249).
Sample results are in Fig. 9. Note that the ground truth is of-
ten fine-grained—with objects spanned by multiple regions.
Thus, on this benchmark, object segmentation methods will
not obtain the best F-measure.

Timing. Given optical flow (which video segmentation
often requires as input), our algorithm takes 30s for VGA
images on a standard desktop; most of the time is spent
solving (11), but a GPU implementation can reduce this.

7. Discussion
Occlusion relations inform the partition of the image

domain into segments, but proper inference of such rela-
tions requires knowledge of the segments in turn. Rather
than tackling an intractable chicken-and-egg problem, we
use priors informed by Gestalt principles to arrive at a con-
vex optimization scheme that can be efficiently solved with
primal-dual methods. To compare with existing bench-
marks, we converted our layers into “objects” and into “fore-
ground/background”. The evaluation highlights strengths
and limitations of our method, with some of the latter due
to the particular characteristics of the benchmarks. While
our scheme still relies on decent optical flow and occlusion
detection to bootstrap layer segmentation, it is less prone to
cascading failure than previous methods, as it better exploits
priors on motion, appearance, and layer consistency.
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Figure 8: Sample results on MoSeg. Left to right: original image, ground truth, [21], [23], [17], [22], ours (object maps).
Top two rows: occlusion cues allow us to obtain even the barely visible cars (row 1 - orange, row 2 - red, row 2 - green).
Row 3: use of both motion and appearance cues allows us to generate an accurate object boundary. Row 4: occlusion cues
yield three depth layers (bicyclist, tree, background) (see also Fig. 1). Notice that the tree (and some cars in rows 1–2) is not
annotated, so our scheme is penalized despite providing the correct answer. [21, 23] suffer from trailing and only produce
binary segmentation. [17] suffers from oversegmentation. [22] performs comparably to our method; The last two rows show
failure cases. Row 5: the painting is recognized as an “object” due to false occlusion detection; the hand is assigned to a
separate layer. Row 6: the lioness is missed due to insufficient motion and lack of occlusions.

Figure 9: Sample results on BVSD. Left to right: original image, ground truth, [17],[22], ours (object maps). Row 1: as
reflected by BPR, our method produces accurate boundaries (see Fig. 7). Both actors are correctly segmented—the arm
occluding the animal’s body is a distinct depth layer. Row 2: “failure case”—complex motion and inaccurate flow can result in
inaccurate segmentations. Row 3: failure case—object is not detected throughout the sequence due to lack of occlusions.
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