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Abstract

We adopt Convolutional Neural Networks (CNN) as our
parametric model to learn discriminative features and clas-
sifiers for local patch classification. As visually similar pix-
els are indistinguishable from local context, we alleviate
such ambiguity by introducing a global scene constraint.
We estimate the global potential in a non-parametric frame-
work. Furthermore, a large margin based CNN metric
learning method is proposed for better global potential
estimation. The final pixel class prediction is performed
by integrating local and global beliefs. Even without any
post-processing, we achieve state-of-the-art performance
on SiftFlow and competitive results on Stanford Background
benchmark.

1. Introduction
Scene labeling builds a bridge towards better scene un-

derstanding. The goal is to relate one semantic class (road,
water, sea, etc) to each pixel. Generally, “thing” pixels (car,
person, etc) in real world images can be quite different due
to their scale, illumination and pose variation, meanwhile
“stuff” pixels are very similar (road, sea, etc) in a local
close-up view. These issues pose scene labeling as one of
the most challenging problems in computer vision.

The recent advance of Convolutional Neural Networks
(CNN) [13, 15] has dazzled computer vision community
due to its outstanding performance ranging from large scale
object recognition, detection [2, 13, 20, 33, 36] to pose es-
timation [27, 28]. It has also been demonstrated that this
network is able to learn compact, discriminative and high-
level features [35]. Recently, Farabet [4] and Pinheiro [21]
has applied CNNs to scene labeling. In this scenario, CNNs
are used to model the class likelihood of pixels from local
context by parameterizing it in terms of features and clas-
sifiers. They can produce satisfactory labeling results by
learning strong features and classifiers to discriminate visu-
ally dissimilar pixels.

However, CNNs struggle in visually similar pixels due to
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Figure 1. Motivation of our method: the parametric model can
distinguish visually different pixels very well, but get confused
for pixels that are visually similar in local context. However, the
local features can be disambiguated from global scene semantics.
A more consistent labeling result can be achieved by integrating
their beliefs. The figure is best viewed in color.

using their limited context. As shown in Figure 1, the sand
pixels are highly confused with road and sidewalk pixels in
a local view. Previous works have addressed this issue from
two perspectives:

• Augmenting the scale of context to represent pixels:
[4] considers multi-scale context input, [21] increases
the size of context input in a recurrent convolutional
neural network. These methods somehow mitigate the
local ambiguity, however they may have an negative
effect for small objects and may also degrade the effi-
ciency of the system.

• Building a graphical model to capture dependencies
among pixels [9, 11, 23, 37]. However, the parametric
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graphical model is usually hard and inefficient to op-
timize when the higher order potentials are involved,
and the lower-order potentials suffer from low repre-
sentation power.

Here, we propose to utilize global scene semantics to elimi-
nate ambiguity of local context, for example, the confusion
between ‘road’ and ‘sand’ pixels in Figure 1 can be easily
removed if the “coast” scene is revealed. The global scene
constraint is achieved by adding a global potential to the en-
ergy function. However, it’s infeasible to model the global
potential parametrically due to the extraordinarily huge la-
beling space, therefore we model it by transferring the class
dependencies and priors from its similar exemplars. We
further decouple the global potential to the aggregation of
global beliefs over pixels. The final labeling result is ob-
tained by integrating the local and global beliefs.

Furthermore, a large margin based metric learning
method is introduced to make the estimation of global belief
more accurate. We justify our method on the popular Stan-
ford Background [6] and SiftFlow [16] benchmark datasets.
Our integration model is able to achieve state-of-the-art per-
formance on SiftFlow and very competitive result on Stan-
ford Background dataset. The contributions of this paper
are summarized as follows:

1. We use global scene semantics to remove the ambigu-
ity of local context by transferring class dependencies
and priors from similar exemplars.

2. We demonstrate that our Convolutional Neural Net-
work (CNN) can achieve significantly better results
than other reported CNNs when they are fed with same
local context.

3. We introduce a CNN metric learning approach, and
show that the learned features and metrics are bene-
ficial in our non-parametric global belief estimation.

For the rest of the paper, section 2 will review related
works and compare theirs with ours and the formulation for
our integration model is presented in Section 3. The details
for each module of our approach are presented in section 4,
and section 5 demonstrates the experimental evaluation of
our method. Section 6 concludes and prospects our paper.

2. Related Work
Scene labeling (also termed as scene parsing, semantic

segmentation) has attracted more and more attention these
years. It serves as a bridge towards deeper scene under-
standing. Among all the related interesting works achieved
so far, the directions how researchers approach this problem
can be roughly grouped to three categories.

The first direction exploits extracting better unary fea-
tures for classifying pixels/superpixels. This module is

usually ignored by most researchers until recently when
machine learning techniques are commonly used to learn
discriminative features for various computer vision tasks
[1, 4, 21, 31, 32, 39, 38]. Previously, low-level and mid-
level hand-engineered features are designed to capture dif-
ferent image statistics, which usually lack discriminative
power and suffer from high dimensionality, thus limiting
the complexity of the full system. Recently, [4] bypassed
this issue by feeding a convolutional neural network with
multi-scale raw data, and they have presented very inter-
esting results on real-world image scene labeling datasets.
Furthermore, [21] adopted a recurrent CNN to process the
large size raw data. [1] learned a more compact random for-
est by substituting the random split function with a stronger
Neural Network. They disambiguate the local confusions
via simply augmenting input context. In contrast, our CNN
only takes input as limited context, thus forcing the net-
work to learn strong features for local classification. The
local context ambiguity is further alleviated by introducing
global scene constraints.

Another line of works focuses on dependency model-
ing by formulating it as a structure learning problem. [23]
formulated the unary and pairwise features in a 2nd-order
sparse CRF graphical model. Later on, [22, 37] built a fully
connected graph to enforce higher order labeling coherence.
[11, 12, 18] modeled the higher order relations by consid-
ering patch/superpixel as a clique. [9] defined a multi-scale
CRF that captures different contextual relationships rang-
ing from local to global granularity. Our work is related to
this batch of works, but approaches from a different angle.
Their potentials are usually modeled parametrically, there-
fore extensive efforts are needed for learning these param-
eters. Our global potential doesn’t require additional train-
ing effort and can be estimated very efficiently in a non-
parametric framework.

Recently, non-parametric label transfer methods [3, 16,
24, 25, 29, 34] have gained popularity due to its outstand-
ing performance and scalability to increasing data. Their
usual practice is to estimate the unit class likelihood from
its nearest neighbors. The unit can be defined in pixel or
superpixel level. Global scene information is firstly used
to remove irrelevant images. A MRF is later employed to
ensure neighborhood labeling consistency. The pioneering
label transfer work [16] transformed RGB image to sift im-
age, which was used to seek correspondences in pixel unit.
Then, an energy function was defined over pixel correspon-
dences, and by minimizing it can they obtain the labeling
map. The Superparsing system [25] achieved a better re-
sult by performing label transfer over superpixel unit. [3]
learned adaptive weights for each low-level features, which
resulted in better nearest neighbor search. Gould[7, 8] built
a graph for dense patch or superpixel to achieve label trans-
fer. we adopt this framework to estimate our global po-



tential. Compared with their hand-engineered features, we
used the learned CNN features that are more compact and
discriminative. We also believe that our features can further
benefit their work in terms of accuracy and efficiency.

3. Formulation
The image labeling task is usually formulated as a clique

based discrete energy minimization problem:

E(X,Y ) =
∑
c∈C

Φ(X,Yc) (1)

where X = {X1, X2, . . . , XN} is the observed im-
age and Xi corresponds to the ith pixel; Y =
{Y1, Y2, . . . , YN}, Y ∈ {1, 2, . . . |L|}N denotes a label-
ing configuration; C = {C1, C2, . . . , CM} defines the clique
set, and Φ(X,Yc) is the potential function for label assign-
ment Yc over clique c; Energy associated to clique size 1
(|Cj | = 1) is usually referred to unary energy term, which
considers beliefs from local appearance cues. A more sen-
sible and coherent labeling result can be achieved by adding
pairwise or higher-order energy term, which are defined
over clique size to be 2 or larger(|Cj | ≥ 2).

Here in this paper, we consider the clique size to be 1
and N . Therefore, our energy function can be written as:

E(X,Y ) =
∑
i∈X

ΦI(Xi, Yj) + ΦG(X,Y ) (2)

where ΦI(Xi, Yj) = −PI(Xi, Yj) is the unary potential
function defined as negative likelihood of pixel Xi being
labeled as Yj 1; ΦG(X,Y ) is the global potential of image
X taking labeling configuration Y . Since it’s infeasible to
model the huge labeling state of Y parametrically (|L|N )
, we adopt a similar non-parametric approach like [18] to
model the global potential, which is defined as:

ΦG(X,Y ) = −
∑
i∈X

P
S(X)
G (Xi, Yj) (3)

where S(X) is the similar exemplars of image X and
P
S(x)
G (Xi, Yj) is global class likelihood of Xi labeled as
Yj . Even though the global potential is aggregated from
independent beliefs, their dependencies have been implic-
itly modeled and transferred by S(X). For example, in
Figure 1, the global exemplars define a ”coast” scene, in
which road and sidewalk pixels are invalid and sand pixels
are more likely to appear in the bottom regions. By rewrit-
ing the energy functions, it gives us the following form:

E(X,Y ) = −
∑
i∈X

(PI(Xi, Yj) + P
S(X)
G (Xi, Yj)) (4)

1The negative log-likelihood can also be used when the global belief
is not skewed towards frequent classes. The likelihood potential can be
regarded as a non-linear transformation of log-likelihood to ameliorate the
very small global belief, based on which MAP of Equation 4 is more ro-
bust.

Therefore, the energy function can be interpreted as an in-
tegration of beliefs from two sources: (1), Local belief:
PI(Xi, Yj) measures the belief for local context center-
ing on pixel Xi; (2), Global belief: P

S(X)
G (Xi, Yj) de-

notes the belief for Xi from global scene view. Since the
likelihood estimations of pixels is independent with each
other, the inference can be done in a pixel-wise manner:
Y =

⋃
i=1:N Yi, Yi = argmin1,...,|L|E(Xi, Yj).

4. Approach
The framework of our method is depicted in Figure 2.

The truncated CNN works as a feature extraction module.
The local features are fed into two branches: (1), Local be-
lief: they are independently classified based on the paramet-
ric CNN model; (2), Global belief: they are aggregated to
generate the global feature, which are used to retrieve simi-
lar exemplars; the global belief is estimated based on them.
Finally, the labeling results are generated by integrating lo-
cal and global beliefs. We elaborate each module in the
following sections.

4.1. Local Belief From Parametric CNN

The estimation of local belief PI(Xi, Yj) is achieved by
training a Convolutional Neural Network (CNN). The soft-
max layer outputs the class likelihood for pixel Xi. The
structure of our CNN is demonstrated in Figure 2. Com-
pared with other reported CNNs [4, 21], ours has three dif-
ferences: (1), a location channel is appended to the RGB
image, which denotes the normalized distance of each pixel
to the image center. By doing this, the output pixel fea-
tures are expected to carry spatial information. (2), our
network is fed with small-size patch, rather than multi-
scale or large-size contextual patches. (3), instead of us-
ing sigmoid or tanh activation function, we use the ReLU:
y(x) = max(0, x), which have been shown to converge
faster during training in large scale object recognition task
[13].The experiments will demonstrate that our CNN is able
to achieve significantly better results than others when they
are fed with same scale local context, while more efficient
in terms of training and testing.

4.2. Global Belief From Non-parametric Estimation

The parametric CNN is capable of generating satisfac-
tory results for the pixels with good local contextual sup-
port. However the prediction is poor for pixels that are
visually indistinguishable in local context. For example,
waveless sea pixels can be confused with road pixels, thus
an incorrect labeling configuration in which a sea region is
surrounded by road pixels may occur.

These confusing pixels can be distinguished if neighbor-
hood context is revealed to them. Previously, researchers
usually addressed this issue by generating contextual aware
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Figure 2. Framework of our approach: The final labeling is obtained by integrating local and global beliefs. The modules painted in yellow
represents parametric part (CNN and Metrics).

local features. For example, Farabet[4] fed the network
with multi-scale patches to yield richer contextual aware lo-
cal features, and likewise Pinheiro[21] took network input
as larger patches. In this paper, the disambiguation of lo-
cal context is achieved by gleaning cues from pixels of the
whole image. More specifically, a pixel is considered un-
der global context: the class likelihood of the pixel should
satisfy the scene layout and semantics of the image.

Given an image I , the corresponding CNN feature ten-
sor 2 F ∈ RH×W×M is obtained by passing I to the
truncated CNN. The global feature H is aggregated from
F , which is achieved by an average pooling operator
pool [13]. Suppose an image is decomposed to regions
3 R = {R(1), R(2), . . . , R(N)}. The region feature is
pooled from the constituent pixel features: H(R(i)) =
pool(F i),∀i ∈ R(i). The global image representa-
tion is thus defined as concatenation of region features
H = [H(R(1)), H(R(2)), . . . ,H(R(N))]. As expected, this
global image feature H not only conveys discriminative
scene semantics but also encodes scene layout information.

The class likelihood of pixels (global belief) should
match their scene semantics and layout, which is implicitly
defined by its nearest exemplars S(X) in the global feature
H space. Concretely, the global belief is transferred from

2The output of FC-1 layer in our CNN (Figure 2). 1 ≤ h ≤ H, 1 ≤
w ≤ W denotes the site location of the pixel feature, whose dimension is
given by M .

3In our experiments, the image is divided into rectangular regions in a
2-layer spatial pyramid fashion [14].

the statistics of pixel features in S(X), and it is calculated
in a weighted K-NN manner:

P
S(X)
G (Xi, Yj) =

∑
k φ(Xi, Xk)δ(Y (Xk) = Yj)∑

k φ(Xi, Xk)
(5)

where Xk is the k-th nearest neighbor of Xi among all the
pixel features in S(X), Y (Xk) is the ground truth label for
pixelXk; δ(Y (Xk), Yj) is an indicator function; φ(Xi, Xk)
measures the similarity between Xi and Xk, which is de-
fined over spatial and feature space:

φ(Xi, Xj) = exp(−α||xi − xj ||)exp(−γ||zi − zj ||) (6)

where xi = F (Xi) denotes the CNN pixel feature for Xi,
zi is the normalized coordinate along the image height axis
and α, γ controls the belief exponential falloff. Our non-
parametric global belief estimation is reminiscent of popu-
lar label transfer works[3, 16, 24, 25, 29], two differences
need to be highlighted:

• Instead of adopting hand-engineered low-level local
and global features, we use more discriminative and
compact features learned from CNN for label transfer.

• Our non-parametric model works as global scene con-
straints for local pixel features. Generally, small size
retrieval images are sufficient to define the scene se-
mantic and layout. However, previous works have to
seek large retrieval set to cover all the possible seman-
tic classes.



1

τ 

τ 

Figure 3. Illustration of our large margin idea. Before learning
metric, the nearest neighbors of the testing feature (rectangle) are
dominated by imposter classes (triangle) due to highly imbalance
data distribution. After metric mapping, the imposters will stay far
away from it, thus contributing little to the belief estimation.

4.3. CNN Metric Learning For Better Global Belief
Estimation

As shown in Equation 5, the estimation of global belief
PG(Xi, Yj) is highly dependent on the distance metric be-
tween two pixel features. However, our features are learned
by optimizing pixel/patch classification accuracy, while do
not take distance metric into consideration. Therefore we
propose to learn a large-margin based metric to mitigate the
inaccurate class likelihood estimation for rare classes (Fig-
ure 3). In details, the Mahalanobis metric M = WTW is
learned by minimizing the loss function, which is formally
written as:

L =
λ

2
||W ||2 +

1

2N

∑
i,j

g(xi, xj)

g(xi, xj) = max(0, 1− `i,j(τ − ||Wxi −Wxj ||2))

(7)

where `i,j indicates whether two features have the same se-
mantic label or not, and `i,j = 1 if Xi and Xj are from
the same class, or `i,j = −1 otherwise; τ(> 1) is the mar-
gin and λ controls the effect of regularization; xi = F (Xi)
is the feature representation for Xi and N is the number
of features. The objective function would enforce the pixel
features from the same semantic class to be close and stay
within the ball with radius 1 − τ , and enforce data from
different classes to be far away from each other by at least
1 + τ (Figure 3).

Instead of simply learning a metric based on the ex-
tracted CNN features, we further replace the softmax layer
with our metric learning layer, so that the feature extraction
parameters can also be adapted. We replace the softmax
layer of previous CNN (CNN-softmax) with a fully con-
nected layer parameterized by W (or more layers to learn
non-linear metrics [10]) and fix the biases to be zero, which
serves as a Mahalanobis metric (M = WTW ). We call the
new network CNN-metric. These two networks do not share
any parameters except that the feature extraction parameters
of CNN-metric are initiated from the corresponding layers

Data: Images: X(1), . . . , X(N);
Ground Truth: Y (1), . . . , Y (N);
Result: CNN parameters F , metric W ;
train CNN-Softmax;
while iter ≤ MAXITER do

for i = 1 ... N do
S(X(i)) = NearestNeighbors(Xi);
Ti = RandomPixels(S(X(i)));
Fine tune CNN-Metric based on Ti;

end
end

Algorithm 1: CNN Training and fine tuning

of CNN-softmax. The errors are back propagated through
the chain rule, and ∂L

∂W
∂L
∂xi

for the last layer are given in
Equation 8.

∂L

∂W
= λW +

1

N

∑
i,j

ζij

ζij = g
′
(c)`(i, j)(Wxi −Wxj)(xi − xj)T

∂L

∂xi
=

1

N

∑
i,j

g
′
(c)(WT `(i, j)(Wxi −Wxj))

c = 1− `(i, j)(τ − ||Wxi −Wxj ||2)

xi = F (Xi)

g
′
(c) =

{
0, c <= 0
1, c > 0

(8)

Due to the large intra-class variations of pixel fea-
tures(e.g. green and yellow tree pixels can be quite dif-
ferent), we only require that features from the same sub-
category to be close. Since pixel features from the same
semantic class in the nearest exemplars are usually quite
similar, we implicitly divide original class space to finer-
grained subclasses by only adapting their distance metrics.
Stochastic gradient descent is adopted to fine tune the net-
work based on the pixel features in the nearest exemplars.
The whole training algorithm is summarized in Algorithm
1.

5. Experiments
5.1. Evaluation Datasets

We evaluate our approach on two benchmarks:

• Stanford-background [6]: It has 715 images from ur-
ban and natural scene composed of 8 semantic classes.
Each image has around 320 × 240 pixels. We follow
the training/testing protocol by randomly using 80%
images as training, and the rest for testing. The results
are reported under 5-fold cross validation.



• Sift Flow [16]: It has 2688 images generally captured
from 8 typical natural scenes. Every image has 256
× 256 pixels, which belongs to one of 33 semantic
classes. We use the training/testing (2488/200 images)
split provided by [16] to conduct our experiments.

5.2. CNN Local Labeling Result

Stochastic Gradient Descent is adopted to train our CNN.
For every epoch, we randomly sample 2 × 105 pixels from
training pixel pools (approximate 80 million for Stanford
background and Sift Flow). We start with the learning rate
of 0.001, and decrease by 10 times after 20 epoches. The
momentum is set to 0.9. We take the batch size as 100
for each weight update iteration and the reported results
are based on the model learned in 35 epoches. Each im-
age is preprocessed by first subtracting the mean and then
performing contrast normalization by dividing its variance.
Unlike other CNNs that take days or even weeks for train-
ing 4 , our CNN only takes 3 ∼ 4 hours on a modern Telsa
K40 GPU based on MatConvnet [30] implementation. The
efficiency in training comes from the following aspects: (1),
We use batch size 100, rather than mini-batch size 1; (2), we
only randomly sample a small portion of patches to train the
model for each epoch, other than considering all of them;
we find that increasing the sampled patches from 2× 105 to
5×105 during each epoch has a marginal effect. (3), we use
ReLU function that has demonstrated faster convergence in
large scale object recognition task [13].

Furthermore, a ‘hybrid’ sampling method is developed
to mitigate the imbalance data distribution. A frequency
threshold η is considered (η = 0.01 in our experiments).
We require that all the class frequencies to be above η while
still respecting their natural frequency distribution. There-
fore, we firstly sample data naturally, and then augment data
for classes whose frequencies are below η to make it reach
the frequency threshold η.

Table 1 presents the result comparison for different
CNNs. Our network can achieve significantly better results
than other reported CNNs when they are fed with similar
local context input.

5.3. Evaluation of Discriminative Power for Global
Features

The discriminative power of local CNN features has been
presented in last section. Here, we demonstrate that the
pooling operation for pixel features is able to generate se-
mantic consistent global features. Specifically, The average
genuine matching percentage in their K nearest neighbors
is calculated: p =

∑N
i

∑K
k δ(Ii,NN(i,k))

NK , where N is the
number of test images, NN(i, k) stands for the k-th nearest
neighbor for image Ii, and δ(i, j) outputs value 1 if i and j

4The author of [5] reports the training/testing time of different CNNs
by personal communication to the original authors.

Stanford SiftFlow
singlescale convnet (46×46) [4] 66.0%(56.5%) -
Recurrent CNN (67×67) [21] 76.2%(67.2%) 65.5%(20.8%)

Ours (45×45)† 77.1% (68.0%) 73.5%(35.3%)
Ours (65×65) 79.1% (70.1%) 75.1% (38.2%)

† The network has the same structure as 65×65 CNN, except that the
spatial dimensions for the first convolutional filter is 6×6.

Table 1. Performance comparison for different CNNs. The num-
bers following the networks indicate the size of input context. The
percentages given outside and inside of parenthesis denote pixel
accuracy and class accuracy respectively.

Dim K=1 K=5 K=10
GIST[19] 512D 74.0% 70.7% 68.3%

SIFT-SPM[14] 2100D 76.5% 71.3% 69.1%
Our feature 320D 90.5% 84.3% 82.1%

GT 165D 94.0% 91.0% 89.5%

Table 2. Average genuine matching percentage in their K-
nearest neighbors for different global features. GT is the
semantic feature pooled from ground truth label map.

are a genuine match, or 0 otherwise. A genuine matching
pair means that they belong to the identical semantic class.
We test the features in SiftFlow benchmark, as it provides
scene labels for each image.

Four global features are compared in our experiment:
GIST [19] is a global summary of scene images that cap-
tures scene structure and layout; SIFT-SPM (GT) [14] is
pooled from low-level local SIFT [17] (ground truth label
map [16]) in a 3(2)-layer spatial pyramid. They are are com-
monly used in scene classification and non-parametric label
transfer framework. GT is the idea global semantic feature.
Euclidean distance is used to retrieve nearest neighbors for
non-histogram features (GIST, Ours), and histogram inter-
section distance is applied for the rest histogram features
(SIFT-SPM and GT).

The quantitative genuine matching percentages for dif-
ferent global features are shown in Table 2. Our global fea-
ture pooled from CNN pixel features performs significantly
better than its hand-engineered counterparts. The imperfect
performance of GT features implies that different scenes
can have very similar building blocks, for example, ‘inside
city’ and ‘street’ scenes are dominated by sky and build-
ing pixels. We believe that the quality of nearest neighbors
directly determines the correctness of global belief. There-
fore, our global feature is expected to benefit other label
transfer works. Figure 4 presents two nearest exemplars for
each test image.

5.4. Non-parametric Global Labeling Result

We adopt non-overlapping patches as label transfer unit
in the non-parametric model. In details, as our CNN has
three subsampling layers (Figure 2), the dimension of the
output feature map F is 1

8 of original image size: one fea-



Stanford Sift Flow
SuperParsing[25] 77.5% (-) 76.9% (29.4%)

Liu[16] - 74.8 % (-)
Gould[7] 73.9% (63.2%) -

Ours 79.0% (69.0%) 78.0% (33.5%)
Ours+ metric tuning 80.2% (69.9%) 78.2% (35.8%)

Table 3. Performance for different label transfer approaches.

ture in F corresponds to a 8×8 image patch. We only con-
sider estimating class likelihood for each feature in F . In
this sense, the non-overlapping 8×8 patches work as the
label transfer units. Knowing that small-size object pixels
make negligible contribution to the global scene semantics,
we introduce an auxiliary transfer set to ameliorate the bi-
ased global potential. Specifically, the global belief estima-
tion is based on the features from its similar exemplars and
the auxiliary transfer set.5

For the parameters involved in the non-parametric
model, they are quite robust. Referring to Equation 5, we
set |S(X)| (size of nearest exemplar images) andK (size of
nearest pixel/patch neighbors) to be 5 and 200 respectively.
Both α and γ in Equation 6 are set to 5. To fine-tune CNN
metric, 20 global nearest exemplars are retrieved for each
training image and then 200 patches are randomly sampled
among them to be a training batch. λ and τ in Equation 7
makes marginal difference to the performance, and they are
fixed to 0.2 and 1.5 respectively. The learning rate is fixed to
10−5 and the reported results are obtained under the models
learned in 25 epoches .

Table 3 clearly demonstrates that our method is able
to attain very promising results that are comparable or
even better than most complicated label transfer counter-
parts. We attribute the performance superiority to the highly
discriminative CNN features that we adopt in the non-
parametric framework. Moreover, as evidenced by Table
3, the learned metric is capable of further improving the
quality of global belief, thus boosting the labeling accuracy.
Some qualitative labeling results are presented in Figure 4.

5.5. Final Labeling Result

Our final labeling result is obtained by integrating local
and global beliefs. The quantitative results are presented in
Table 4. In comparison with other CNNs that are fed with
richer context input, our integration model is able to yield
significantly better results that are comparable to state-of-
the-art. Some qualitative results are presented in Figure 4.

As evidenced by Table 4, our integration model is capa-
ble of significantly boosting the qualitative results (global
pixel accuracy) of CNN local labeling by introducing global

5The auxiliary set consists of features from classes whose frequency is
lower than 0.01. The label transfer set for each image is augmented with
infrequent classes from auxiliary transfer set until their numbers reach 100.

Stanford Sift Flow
Multiscale convnet[4]† 78.8% (72.4%) -
Multiscale convnet[4]‡ - 67.9% (45.9%)
CNN (133×133)[21] 79.4% (69.5%) 76.5% (30.0%)

RCNN (133×133)[21] 80.2% (69.9%) 77.7% (29.8%)
[4]†+ CRF 81.4% (76.0%) 78.5% (29.4%)
[4]‡+ CRF - 72.3% (50.8%)

Ours Final(65×65) 80.3% (70.9%) 79.8% (39.1%)
Ours Final(65×65, metric) 81.2% (71.3%) 80.1% (39.7%)

Gatta[5] - 78.7% (32.1%)
Gould[8] 79.3% (69.4%) 78.4% (25.7%)
Tighe[26] - 78.6 % (39.2%)
Singh[24] - 79.2% (33.8%)

† Natural Sampling
‡ Class sampling

Table 4. Performance comparison with state-of-the-art methods.

sky tree road grass water building mountain object
CNN 90.3% 76.8% 90.1% 81.6% 61.0% 77.3% 17.4% 66.4%

Ours Final 92.6% 78.7% 92.0% 84.5% 62.0% 80.1% 13.4% 67.0%

Table 5. Per-class accuracy comparison for Stanford dataset.

scene constraint: 2.1% and 5.0% global pixel accuracy im-
provement for Stanford Background and Sift Flow bench-
mark respectively. As images in Sift Flow present obvi-
ous and distinct scene semantics, it’s natural that confusions
from local context be disambiguated. Moreover, our global
belief can still remove some labeling errors for images in
Stanford Background that exhibit huge variations.

We further investigate the effect of our global constraint
on per-class accuracy. The detailed per-class accuracy for
SiftFlow dataset is presented in Table 6. Our integration
model boosts the accuracy significantly for frequent classes,
while slightly washes away some rare “object” classes. In
more details, the global potential is more helpful for classes
which are more stable in positions, and large-size classes
are preferred because the target classes to be included in the
nearest exemplars. Two strategies are adopted to alleviate
this issue: (1), As formulated in Equation 6, we only trans-
fer spatial information on the image height axis (y-axis) in
a soft manner, thus the global prior is weakly position de-
pendent. (2), we introduce an auxiliary set to mitigate the
global belief bias towards frequent classes. In the end, our
final integration model is able to improve the average class
accuracy. As shown in Table 5, the same trend is also ob-
served in Stanford Background dataset.

6. Conclusion

In this paper, we have shown that our parametric CNN
model can generate significantly improved labeling results
compared with other CNNs when they are fed with limited
context input. However, as the prediction for visually sim-
ilar pixels is poor, we proposed to use global scene context
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Frequency 0.11 0.03 ≈0 0.06 0.04 20.2 0.03 1.6 0.05 0.26 0.24 3.64 1.22 12.4 0.23 1.33 0.04 1.37 6.93 0.85 1.41 5.6 0.89 0.11 27.1 0.18 0.02 0.01 12.6 1.07 - -
CNN 10.8 40.0 13.2 2.0 6.7 83.4 10.5 54.3 69.4 32.1 34.0 33.1 57.2 72.0 32.9 19.2 2.6 25.7 79.4 14.9 32.8 68.5 23.9 28.3 94.5 28.6 4.9 79.0 78.4 15.3 75.1 38.2

Ours Final 6.6 40.4 7.6 2.3 5.8 89.5 8.3 52.6 53.0 29.6 37.1 38.8 71.2 78.2 31.7 6.4 0 45.5 85.7 7.5 37.3 77.1 46.6 31.4 95.7 32.1 0.6 74.6 84.7 14.0 80.1 39.7

Table 6. Per-class accuracy comparison for SiftFlow dataset. All the numbers are scaled to percent range. The statistics for class
frequency is obtained in test images and the frequent classes are highlighted in red.

75.3% (39.3%) 93.5% (53.6%) 93.2% (54.5%)

51.8% (39.0%) 70.2% (43.1%) 72.9% (49.0%)

Input Local Labeling Global Labeling Final Labeling Ground Truth

91.8% (91.9%) 92.3% (92.1%) 93.1% (92.8%)

49.9% (62.8%) 32.7% (46.8%) 38.8% (55.1%)

Nearest Exemplars

77.8% (80.0%) 74.3% (83.9%) 85.2% (88.7%)

skyseasandcarfieldmountainroadtree

Figure 4. Qualitative result comparisons. The numbers given outside and inside of brackets represent pixel accuracy and average class
accuracy respectively. The images shown in the dashed frame are two most similar exemplars. The last row shows an example, where the
ambiguity of local features cannot be eliminated when their aggregated global features fail to reveal the true scene semantics.

to alleviate the local ambiguity. The global belief was es-
timated in a non-parametric framework, which transferred
label dependencies from similar exemplars. Our final label-
ing is achieved by integrating local and global beliefs, and
it achieved very competitive results on two real world scene
labeling benchmark datasets. We may explore how to better
apply discriminative CNN features to the current successful
non-parametric models in the future.
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