
Tree Quantization for Large-Scale Similarity Search and Classification

Artem Babenko1, Victor Lempitsky2

1Yandex. 2Skolkovo Institute of Science and Technology (Skoltech).

As very large datasets of high-dimensional vectors proliferate, machine learn-
ing, computer vision, and information retrieval systems that work with such
datasets increasingly rely on lossy vector compression or hashing schemes.
A crucial requirement for these schemes is the ability to evaluate distances
and scalar products between compressed and uncompressed vectors effi-
ciently and without explicit decompression. At the moment, systems that
are based on the product quantization[3] are often preferred.

Given a dataset of vectors in RD, product quantization starts by splitting
the vector dimensions into M groups. Each dimension group is then quan-
tized separately and independently from others using codebooks of small
size (most often 256 codewords), whereas codewords in the codebooks have
the dimension D/M. In the PQ compression scheme, an input vector is ap-
proximated as a concatenation of M codewords (one codeword from each
codebook). Product quantization implicitly relies on the limited amount of
correlation between the dimension groups, since each codebook is learned
independently from others. The encoding process within PQ is very sim-
ple and fast, and the computation of scalar product and distances between
a large number of PQ-compressed vectors and an uncompressed vector can
be implemented very efficiently using look-up tables.

Recently, [1] have proposed an alternative compression scheme called
additive quantization (AQ) that pushes the coding accuracy of PQ-based
methods even further. Similarly to PQ, AQ maintains a set of M code-
books. However, the codewords within the codebooks are full-length, i.e.
D-dimensional. During the compression stage AQ represents a vector as
a sum of M codewords (one codeword from each codebook). The vector
code is thus the same as within PQ, i.e. M codeword numbers. The addi-
tive nature of the compression means that the evaluation of scalar products
between AQ-compressed and uncompressed vectors can use the same look-
up table trick and is thus very fast. Evaluation of Euclidean distances takes
slightly more time or an extra byte of memory but is still efficient. In gen-
eral, AQ achieves a significant boost in coding accuracy over PQ, which can
be explained by the lack of low-correlation assumption between dimension
groups. Furthermore, AQ codebooks possess an increased number of pa-
rameters that can be adjusted at the codebook learning stage in order to fit
the data distribution.

The main limitation of the AQ-compression is the inefficiency of the
encoding step. As shown in [1], finding the optimal combination of the
codebook vectors is equivalent to the MAP-inference in the fully-connected
Markov random field with unstructured and highly non-submodular pair-
wise potentials. As reported in [1], none of the standard MRF optimization
methods work well and therefore a special kind of Beam Search is used,
which is able to find approximate codings resulting in lower coding error
than PQ-compression. Still, this approximate inference takes orders of mag-
nitude more time than PQ encoding, and can be prohibitively slow for many
practical applications, especially when online encoding of new vectors is
needed.

Here, we propose a new coding scheme called Tree Quantization (TQ)
that belongs to the same family as PQ and AQ. Similarly to PQ and AQ, TQ
maintains a set of M codebooks and, similarly to AQ, it encodes a vector as
a sum of M codewords from different codebooks. The TQ-code for a vec-
tor is thus, once again, a set of M codeword numbers. The difference from
AQ lies in the special structure that TQ imposes onto its codebooks. The
encoding is based on a tree graph (the coding tree), where vertices corre-
spond to codebooks, while each of the D dimensions is assigned to an edge.
Each codebook then encodes only the dimensions that are assigned to edges
that are incident to the vertex corresponding to this codebook (1). All other
dimensions are then fixed to zero for all codewords in a given codebook.

The encoding process within the tree quantization is performed via the
MAP-inference in a tree-shaped model, and is therefore exact and efficient.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

3 

1 

8 

2 
6 

5 

4 
7 

Figure 1: Tree quantization encoding for D-dimensional vectors (here
D=16). Each dimension is assigned to an edge of the coding tree (the
assignment is color-coded). Each of the M=8 vertices of the coding tree
contains a codebook (shown for vertex #2). Each codebook encodes dimen-
sions from the incident edges (also color-coded). An input vector x is then
represented as a sum of M codewords ct(it) from vertex codebooks (shown
as rectangles with active dimensions color-coded; the position of the code-
word c2(i2) within the second codebook is highlighted in red).

The most interesting part in the TQ framework is the codebook learning
stage. Standard quantization, product quantization, and additive quantiza-
tion all use k-means like processes to learn their codebooks, which alternate
the encoding steps with the codebook-reestimation steps, during which the
codebook assignments of the training vectors are kept fixed. Crucially, we
demonstrate that TQ can follow the same scheme, and that given the code-
book assignments of the training vectors, it is possible to estimate (i) the tree
structure, (ii) the dimensions to edges assignments, and (iii) the codewords,
all jointly and in a globally optimal way. Such global estimation requires
solving an integer linear program (ILP), which in our experiments was al-
ways solvable to optimality using a modern ILP solver for D and M that
were typically used in previous works.

While the AQ scheme is theoretically more powerful than TQ as it has
more parameters (MKD) that can fit the distribution and potentially achieve
lower reconstruction error, it is hindered by the slowness and inexactness
of the encoding. As was shown in the [1] the problem of AQ encoding is
equivalent to the problem of an inference in a fully-connected MRF in prob-
abilistic modeling. The usage of TQ is then an analogy of Chow-Liu tree
approximation for this MRF. Similarly to Chow-Liu tree, TQ can capture
second-order correlations while remaining tractable for inference.

We evaluate TQ in terms of coding errors and within the contexts of the
nearest neighbor search and classification. We compare TQ with the recent
PQ-based methods: Optimized Product Quantization (OPQ) [2, 4], Additive
Quantization (AQ) [1] and Composite Quantization (CQ) method [5]. Our
experiments show that the accuracy of Tree Quantization, and in particular
its “optimized” variant (OTQ) exceeds that of the OPQ. This advantage is
more pronounced for descriptors with easily identifiable parts (such as spa-
tial bins within SIFT, or separate GMM components within Fisher vectors).

Overall, TQ provides a combination of high compression accuracy and
fast encoding that is attractive for retrieval and classification systems.

[1] Artem Babenko and Victor Lempitsky. Additive quantization for ex-
treme vector compression. In CVPR, 2014.

[2] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product
quantization for approximate nearest neighbor search. In CVPR, 2013.

[3] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantiza-
tion for nearest neighbor search. TPAMI, 33(1), 2011.

[4] Mohammad Norouzi and David J. Fleet. Cartesian k-means. In CVPR,
2013.

[5] Ting Zhang, Chao Du, and Jingdong Wang. Composite quantization for
approximate nearest neighbor search. In ICML, 2014.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

