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Abstract

We propose a new vector encoding scheme (tree quan-
tization) that obtains lossy compact codes for high-
dimensional vectors via tree-based dynamic programming.
Similarly to several previous schemes such as product
quantization, these codes correspond to codeword num-
bers within multiple codebooks. We propose an integer
programming-based optimization that jointly recovers the
coding tree structure and the codebooks by minimizing the
compression error on a training dataset. In the experiments
with diverse visual descriptors (SIFT, neural codes, Fisher
vectors), tree quantization is shown to combine fast encod-
ing and state-of-the-art accuracy in terms of the compres-
sion error, the retrieval performance, and the image classi-
fication error.

1. Introduction

As very large datasets of high-dimensional vectors pro-
liferate, machine learning, computer vision, and informa-
tion retrieval systems that work with such datasets in-
creasingly rely on lossy vector compression or hashing
schemes. A crucial requirement for these schemes is the
ability to evaluate distances and scalar products between
compressed and uncompressed vectors efficiently and with-
out explicit decompression. At the moment, systems that
rely on the product quantization compression [10] are often
preferred to hashing approaches due to a more favourable
memory-accuracy tradeoff as evidenced by comparisons in
e.g. [8, 15].

Given a dataset of vectors in RD, product quantization
starts by splitting the vector dimensions into M groups.
Each dimension group is then quantized separately and
independently from others using codebooks of small size
(most often 256 codewords), whereas codewords in the
codebooks have the dimension D/M . In the PQ compres-

sion scheme, an input vector is approximated as a concate-
nation of M codewords (one codeword from each code-
book). Product quantization implicitly relies on the limited
amount of correlation between the dimension groups, since
each codebook is learned independently from others. The
encoding process within PQ is very simple and fast, and
the computation of scalar product and distances between
a large number of PQ-compressed vectors and an uncom-
pressed vector can be implemented very efficiently using
look-up tables.

Recently, we have proposed an alternative compression
scheme called additive quantization (AQ) that pushes the
coding accuracy of PQ-based methods even further [3].
Similarly to PQ, AQ maintains a set of M codebooks. How-
ever, the codewords within the codebooks are full-length,
i.e. D-dimensional. During the compression stage AQ rep-
resents a vector as a sum of M codewords (one codeword
from each codebook). The vector code is thus the same
as within PQ, i.e. M codeword numbers. The additive na-
ture of the compression means that the evaluation of scalar
products between AQ-compressed and uncompressed vec-
tors can use the same look-up table trick and is thus very
fast. Evaluation of Euclidean distances takes slightly more
time or an extra byte of memory but is still efficient. In gen-
eral, AQ achieves a significant boost in coding accuracy (for
the same code length) over PQ, which can be explained by
the lack of low-correlation assumption between dimension
groups. Furthermore, AQ codebooks possess an increased
number of parameters that can be adjusted at the codebook
learning stage in order to fit the data distribution.

The main limitation of the AQ-compression is the inef-
ficiency of the encoding step. As we show in [3], finding
the optimal combination of the codebook vectors is equiv-
alent to the MAP-inference in the fully-connected Markov
random field with unstructured and highly non-submodular
pairwise potentials. As reported in [3] none of the stan-
dard MRF optimization methods [12] work well and there-
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fore [3] uses a heuristics-driven beam search, which is able
to find approximate codings resulting in lower coding er-
ror than PQ-compression. Still, this approximate inference
takes orders of magnitude more time than PQ encoding, and
can be prohibitively slow for many practical applications,
especially when online encoding of new vectors is needed.

Here, we propose a new coding scheme called Tree
Quantization (TQ) that belongs to the same family as PQ
and AQ. Similarly to PQ and AQ, TQ maintains a set of M
codebooks and, similarly to AQ, it encodes a vector as a
sum of M codewords from different codebooks. The TQ-
code for a vector is thus, once again, a set of M codeword
numbers. The difference from AQ lies in the special struc-
ture that TQ imposes onto its codebooks. The encoding is
based on a tree graph (the coding tree), where vertices cor-
respond to codebooks, while each of the D dimensions is
assigned to an edge. Each codebook then encodes only the
dimensions that are assigned to edges that are incident to
the vertex corresponding to this codebook (Figure 1). All
other dimensions are then fixed to zero for all codewords in
a given codebook.

By construction, the encoding process within the tree
quantization is implemented via the MAP-inference in a
tree-shaped model, and is therefore exact and efficient [16].
Perhaps the most interesting part of the TQ scheme is the
codebook learning stage. Standard quantization, product
quantization, and additive quantization all use k-means like
processes to learn their codebooks, which alternate the en-
coding steps (“E-steps”) with the codebook-reestimation
steps, during which the codebook assignments of the train-
ing vectors are kept fixed (“M-steps”). Crucially, we
demonstrate that TQ can follow the same scheme, and that
given the codebook assignments of the training vectors, it is
possible to estimate (i) the tree structure, (ii) the dimensions
to edges assignments, and (iii) the codewords, all jointly
and in a globally optimal way. Such global estimation dur-
ing the M-step requires solving an integer linear program
(ILP), which in our experiments was always solvable to op-
timality using a modern ILP solver [1] for D and M that
were typically used in previous works.

We evaluate the tree quantization scheme in terms of
coding errors as well as within the contexts of the nearest
neighbor search (matching uncompressed queries to a com-
pressed dataset) and classification (where either the training
or the test sets are compressed). We compare TQ with sev-
eral methods, namely PQ and AQ, the “optimized” versions
of PQ and TQ, which additionally estimate a global rotation
of the data that optimizes the coding accuracy [15, 8] and
with the recent Composite Quantization (CQ) method [19]
which approximates a vector as a sum of several codewords
with fixed pairwise scalar products. Overall, the global op-
timality of the TQ encoding (given the coding tree) as well
as the global optimality of the extended M-step within the

coding tree learning, allowed TQ to achieve coding error,
recall, and classification accuracy that were similar to the
AQ encoding and much better than the PQ encoding. While
achieving similar coding accuracy, TQ outperformed AQ by
a large margin in terms of the encoding time.

2. Tree quantization
In this section, we first discuss the representation em-

ployed by the tree quantization. We then briefly discuss how
this representation facilitates fast scalar product and Eu-
clidean distance computations between uncompressed and
compressed vectors in a way that is similar to product and
additive quantizations.

2.1. Coding tree

We assume that we are dealing with vectors in the
D−dimensional space RD, and that vectors are to be en-
coded with M codebooks C1, C2, . . . , CM . Each codebook
has K vectors (codewords) and in our experiments, as well
as in most previous works on PQ and AQ, K is fixed to 256.
We denote cm(i) to be the ith codeword in the mth code-
book, and cm(i)[d] to be the dth entry (dimension) of this
vector. In TQ, each vectors is encoded using M numbers
between 1 and 256, i.e. M bytes, corresponding to code-
word numbers in each of the codebooks. TQ (as well as
AQ) approximates a vector x with the code [i1, i2, . . . , iM ]
as a sum of the corresponding codewords:

x ≈
M∑

m=1

cm(im), im ∈ 1..K (1)

Unlike AQ that does not impose any structure on the
codewords, TQ uses the coding tree (Figure 1) to impose
such structure. The coding tree T is a tree graph with
M vertices, where each vertex corresponds to a codebook.
We further use the notation (m,n) ∈ T for m∈ 1..M and
n∈ 1..M to denote the fact that the mth and the nth vertices
are connected by a tree edge. Given the tree T , we assign
each of the D dimensions in RD to one of the edges in the
tree. We denote with Dm,n the set of dimensions that are
assigned to an edge (m,n) ∈ T . Since each dimension is
assigned to one edge, these sets are disjoint. Here and be-
low, when using (m,n) as an index, we do not distinguish
between (m,n) and (n,m) as the coding tree is undirected.

We further define Dm to be the union of all dimension
sets for edges that are incident to the vertex m, i.e.:

Dm = {
⊔
Dm,n |n∈ 1..M, (m,n) ∈ T } . (2)

TQ requires all codewords in the mth codebook to have
dimensions that are not in Dm to be zero, i.e:

∀i, d /∈ Dm, cm(i)[d] = 0 . (3)
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Figure 1. Tree quantization encoding for D-dimensional vectors (here D=16). Each dimension is assigned to an edge of the coding tree
(the assignment is color-coded). Each of the M=8 vertices of the coding tree contains a codebook (shown for vertex #2). Each codebook
encodes dimensions from the incident edges (also color-coded). An input vector x is then represented as a sum of M codewords ct(it)
from vertex codebooks (shown as rectangles with active dimensions color-coded; the position of the codeword c2(i2) within the second
codebook is highlighted in red).

As a result, each dimension is encoded by two codebooks
corresponding to the end vertices of the edge the dimension
is assigned to. This is different from PQ, where each dimen-
sion is coded by only one codebook and from AQ, where it
is coded by all M codebooks. An important (for TQ) con-
sequence of the codebook structure imposed by TQ is the
orthogonality of any pair of codewords coming from two
codebooks that are not adjacent in the tree, i.e.:

∀(m,n) /∈ T ,∀i, j : 〈cm(i), cn(j)〉 = 0 . (4)

2.2. Efficient operations

The representation (1) permits efficient operations be-
tween compressed and uncompressed vectors. The effi-
ciency is attained through the use of look-up tables. The
algorithms here are essentially the same as those employed
by AQ, although the Euclidean distances can be evaluated
more efficiently.

Generally, we consider an uncompressed query vector
q and a dataset of L compressed vectors x1, . . . , xL with
L�K. Each xj is represented with the code [ij1, i

j
2, . . . i

j
M ],

i.e.:
xj =

∑
m∈1..M

cm(ijm) . (5)

Then, the scalar product between q and xj can be evaluated
as:

〈q, xj〉 =

M∑
m=1

〈q, cm(ijm)〉 =

M∑
m=1

Θm(ijm) , (6)

where Θm(·) = 〈q, cm(·)〉 can be precomputed and stored,
given the query q. The complexity of computing these look-
up tables is independent of L and therefore for large enough
datasets becomes negligible. Apart from this overhead, the

complexity of computing a scalar product is M lookups and
M − 1 additions per each compressed vector.

When one considers the (squared) Euclidean distance be-
tween q and the compressed vectors, extra operations are
needed. Since:

‖q − x‖2 = ‖q‖2 − 2〈q, x〉+ ‖x‖2 , (7)

one also needs to evaluate ‖xj‖2 for each compressed vec-
tor (the term ‖q‖2 can be precomputed once for all com-
pressed vectors). Evaluating the norm ‖xj‖2 based on the
representation (1) can be done as follows:

‖xj‖2 = ‖
M∑

m=1

cm(ijm)‖2 =

M∑
m=1

‖cm(ijm)‖2+

2
∑

(m,n)∈T

〈cm(ijm), cn(ijn)〉 (8)

Here, we use the orthogonality (4) to eliminate all cross-
terms for (m,n) /∈ T . To facilitate fast computation, the
terms ‖cm(·)‖2 can be added to the values in the look-
up tables Θm(·) discussed above, while the cross-terms
Θm,n

2 (·, ·) = 2〈cm(·), cn(·)〉 can be stored in separate
query-independent look-up tables. The overhead of com-
puting the Euclidean distance over the scalar product (and
over the distance computation with the PQ compression)
is then M look-ups and additions (i.e. about two times
slower). Note that for AQ the same overhead is quadratic
in M , i.e. much larger, since cross-terms for all (m,n) have
to be looked up and summed.

3. Encoding and Learning
A tree quantizer is characterized by the tree T and the

codebooks Cm(k), that are consistent with the tree. In this



section, we discuss (1) how an optimal TQ code can be in-
ferred for a given vector given the tree quantizer, and (2)
how a tree quantizer can be learned in an unsupervised way
from a training dataset of vectors.

3.1. Encoding

To find the optimal TQ-code [i1, i2, . . . im] for a vector
x given the codebooks C1 . . . CM , the reconstruction error
E in the representation (1) is minimized:

E(i1, i2, . . . iM ) = ‖x−
M∑

m=1

cm(im)‖2 −→ min
im

(9)

Using (7), this function decomposes as:

E(i1, i2, . . . iM ) =

M∑
m=1

(
−2 〈x, cm(im)〉+ ‖cm(im)‖2

)
+∑

(m,n)∈T

2 〈cm(im), cn(in)〉, (10)

where once again the orthogonality (4) is used to eliminate
cross-terms for (m,n) /∈ T , and the constant term ‖x‖2 is
also omitted.

The minimization (10) is then equivalent to the MAP-
inference in the tree-shaped pairwise Markov random field
defined by the coding tree, where the terms Um(im)= −
2〈x, cm(im)〉 + ‖cm(im)‖2 correspond to the unary terms.
The terms Vm,n(im, in)=2〈cm(im), cn(in)〉 can be pre-
computed independently of the query and constitute the
pairwise terms.

The inference can thus be performed using dynamic pro-
gramming (max product algorithm) in the tree graph [16],
which is exact and has the complexity O(MK2), while
the precomputation of the unary terms has the complexity
O(KD). While the first term will typically be much larger
and harder to vectorize, it is still much faster than the infer-
ence in the fully-connected model that has to be performed
in the case of AQ [3] (e.g. the heuristic beam search algo-
rithm proposed in [3] has the complexity O(M2K2(M +
logMK))). The exactness and the efficiency of the encod-
ing process is the key advantage of TQ over AQ.

3.2. Codebook learning

We now focus on the task of learning a tree quantizer that
is well adapted to a certain data distribution. We assume
that a training dataset X = {x1, x2, . . . , xL} of L vectors
is given, for which we minimize global reconstruction error
over the codes and the tree quantizer parameters.

Let us introduce the assignment variables A =
{a(m,n)[d]} that are binary indicator variables, i.e.
a(m,n)[d] = 1 iff the dimension d is assigned to the
edge (m,n). Note that for each dimension d exactly one
a(m,n)[d] = 1. Recall that if a training example xj has

the code [i1, i2, . . . , iM ] and if the dimension d is assigned
to the edge (m,n) then xj [d] is approximated as xj [d] ≈
cm(imj )[d] + cn(inj )[d]. The global reconstruction error
G(X) over all examples can therefore be written as:

G({imj }, {Cm}, A;X) =

L∑
j=1

D∑
d=1

∑
(m,n)∈F

a(m,n)

(
cm(imj )[d] + cn(inj )[d]− xj [d]

)2

.

(11)

Here, F denotes the set of edges of a full graph on M ver-
tices: F = {(m,n) | 1 ≤ m < n ≤M}.

To build the optimal quantizer, we need to minimize the
functional G in (3.2) over all arguments, subject to the con-
straint that the assignment variables have to be consistent
with some tree (∃T : a(m,n)[d] = 1 ⇒ (m,n) ∈ T ). Sim-
ilarly to all other quantization-based algorithms, we per-
form this minimization by k-means-like alternations. Thus,
we alternate the minimization over the codes {imj } given
the quantizer parameters {Cm} and A (“E-step”) and vice-
versa (“M-step”). The minimization over the codes given
the tree quantizer is equivalent to finding the optimal en-
coding for every training example, which has already been
discussed in Section 3.1. Below, we focus on the M-step,
i.e. optimizing G over {Cm} and A given the codes {imj }.

A key observation from (3.2) is that when the codes are
given, the objective decomposes into the sum of the recon-
struction errors for independent dimensions. Denote with
r(m,n)[d] the reconstruction error for the dimension d that
would accumulate over all training examples if this dimen-
sion is assigned to the edge (m,n). Assuming that the
codeword entries cm(k)[d], cn(k)[d] are set optimally for
all k = 1..K we have:

r(m,n)[d] = min
cm(·)[d]
cn(·)[d]

L∑
j=1

(
cm(imj )[d] + cn(inj )[d]− xj [d]

)2
.

(12)
Finding the value r(m,n)[d] thus requires solving the least-
square problem (12), which has a tall (L rows, 2K columns)
and very sparse matrix (in each row there are two non-zero
entries both equal to 1). For a given (m,n), the least-
squares matrix is the same for all dimensions d as only the
right-hand side differs across the LS problems. This can
be additionally exploited when computing r(m,n)[d] for all
d ∈ 1..D.

The codebook parameters can then be minimized out of
the quantizer update, i.e. the M-step is reduced to the mini-
mization over the assignment variables only:

min
{Cm},A

G({imj }, {Cm}, A;X) =

min
A

D∑
d=1

∑
(m,n)∈F

a(m,n)[d] · r(m,n)[d] . (13)



Algorithm 3.1: TRAINTREEQUANTIZATIONCODEBOOKS()

input X = {x1, . . . , xL}, M, K
{a(m,n)[d]}, {Cm}, {imj } = Initialize(X,M,K) // randomly

or via PQ
repeat until convergence:
{Cm} = SolveLeastSquares

(
{a(m,n)[d]}, {imj }

)
// see (12)

{a(m,n)[d]} = SolveILP
(
{Cm}, {imj }

)
// see (14)-(19)

{imj } = MaxProduct
(
{Cm}, {a(m,n)[d]}

)
// see (10)

output {a(m,n)[d]}, {Cm}

Figure 2. The pseudocode of the codebook learning process.

The minimization (3.2), once again, has to be subject to
the assignments being consistent with some tree. Let us
introduce the binary indicator variables e(m,n) that define
whether (m,n) is included into the tree. The constrained
minimization of (3.2) can then be formulated using the fol-
lowing binary integer linear program (ILP):

minimize
a(m,n)[d], e(m,n)

D∑
d=1

∑
(m,n)∈F

r(m,n)[d] · a(m,n)[d] (14)

subject to a(m,n)[d] ∈ {0, 1}, e(m,n) ∈ {0, 1},
(m,n) ∈ F , d = 1..D (15)

∑
(m,n)∈F

a(m,n)[d] = 1, d = 1..D (16)

a(m,n)[d] ≤ e(m,n),

(m,n) ∈ F , d = 1..D (17)

∑
m∈V

n∈V,m<n

e(m,n) ≤ |V | − 1,

V ⊂ {1, . . . ,M} (18)∑
(m,n)∈F

e(m,n) = M − 1 . (19)

Here, (14) is a linear objective with r(m,n)[d] serving as
coefficients, (16) ensures that each dimension is assigned
to a single edge, (17) is a consistency constraint ensuring
that dimensions can only be assigned to edges in the tree,
(18) are the loop elimination constraints that are defined for
all possible subsets of vertices and are in practice handled
using delayed constraint generation. Finally, (19) ensures
that the tree has M − 1 edges and is therefore a spanning
tree rather than a forest.

The resulting ILP is generally a hard one. However in
our experiments we found that for the considered datasets

and for the practical range of dimensionalities D (upto sev-
eral hundred) and code lengths M (4–32 bytes), the state-
of-the-art general purpose solver [1] was able to solve the
ILPs within several minutes (typically much faster). Con-
sequently, it was possible to find globally optimal M-steps
within the codebook learning. Once the optimal tree struc-
ture T and the optimal assignment variables A are recov-
ered from the ILP, the minimized-out variables cm(·)[d] can
be recovered via the least-squares optimization (12). The
pseudocode of the whole training pipeline is presented in
Figure 2.

Global rotation. [8, 15] have recently suggested an op-
timized version of product quantization (OPQ). OPQ aug-
ments PQ codebook learning with the estimation of the
global rotation of the data. We can use the same Orthog-
onal Procrustes analysis method as in OPQ [8, 15] to find
the global rotation that further minimizes the reconstruction
error of TQ. We refer to this variant of the method as opti-
mized tree quantization (OTQ).

Initialization. The learning process for OTQ thus al-
ternates (i) the M-step (re-estimating the tree, the dimen-
sion assignments, and the codebook entries), (ii) the E-step
(re-estimating the codes for training examples), and (iii) the
global rotation re-estimation. While each of the steps attains
a global minimum (and thus never increases the reconstruc-
tion error), the overall alternation scheme converges to a
local minimum that is dependent on initialization. Impor-
tantly, one can prove the following statement relating the
encoding accuracy of (O)TQ and (O)PQ for the same code
length:

Corollary: Let X = {x1, . . . , xL} be a training dataset,
let C1, . . . , CM , |Cm| = K be a set of (O)PQ code-
books trained on this dataset, and let {imj }m=1...M

j=1...L be the
(O)PQ codes of the training vectors. Then it is possible to
train (O)TQ codebooks for the same X , M , K that provide
smaller or equal reconstruction error on X . In other words,
one can guarantee that (O)TQ encodes X with better (or
same) accuracy than (O)PQ.

Proof: see supplementary material.
While the corollary refers to the encoding of a training

set, we never observed any considerable overfitting in our
experiments for either of the methods. Consequently, as
will be shown in the experiments, (O)TQ consistently out-
performs (O)PQ in terms of the encoding accuracy on hold-
out datasets.

4. Experiments
In this section we evaluate the optimized tree quanti-

zation (OTQ) approach for the tasks of nearest neighbor
search and large-scale classification. We compare OTQ
with other codebook-based methods PQ [10], OPQ [8, 15],
and AQ [3]. As AQ encoding becomes prohibitively slow
for long codes, we used AQ only for extremely short codes



Figure 3. Average compression errors on SIFT1M (left) and Deep1M (right) datasets for different methods and visualizations of coding
tree topologies of OTQ for the case M=8. AQ was used for 4-byte codes and APQ was used for 8-byte and 16-byte codes. OTQ provides
the lowest error except for the shortest codes (M=4), where AQ performs best. On tree visualizations each edge is marked by a number of
dimensions assigned to it.

(M=4). For longer codes (M=8, 16) we include compari-
son with “APQ” (i.e. a hybrid of AQ and PQ), which splits
vectors into two or four parts and applies AQ to each part
(see [3] for more information).

We first compare methods in the context of approximate
nearest-neighbor search on the following two datasets:

(I) SIFT1M: This dataset introduced in [10] contains one
million of 128-dimensional SIFT descriptors [14] in the
main set and 100,000 descriptors in a hold out training set.
It also contains 10,000 queries with known true Euclidean
nearest neighbors (within the main dataset).

(II) Deep1M: this dataset contains deep neural codes of
natural images obtained from the activations of a convolu-
tional neural network [13]. The codes were L2-normalized
and PCA-compressed to D = 256. Recent works [4, 17]
show that such neural codes can serve as powerful holistic
descriptors for similar image search. The main set contains
one million vectors and the training set contains 100,000
vectors. The query set contains 1,000 vectors, for which we
precomputed the ground truth neighbors in the main set.

We train all methods on the training sets and compress
the main sets. We then look at (i) the compression (re-
construction) error and (ii) the usefulness of the obtained
codes for retrieving true nearest neighbors. For the latter,
we follow the popular protocol of [10]. We thus used the
recall@T measure [10], defined as a probability (computed
over a number of queries) that the set of T closest com-
pressed vectors contains the true nearest neighbor of an un-
compressed query. Three compression levels (M=4, 8, 16
bytes) were evaluated.

As can be observed in Figure 3, for both datasets AQ
performs best with 4−byte codes but APQ becomes infe-
rior with longer codes. Meanwhile OTQ outperforms all
other methods with M = 8, 16 and provides almost the
same quality as AQ with M = 4. Curiously, Figure 3 also

OTQ AQ APQ
M = 4

Absolute time (ms) 2.9 52.6 52.6
OTQ speed-up — 18x 18x

M = 8
Absolute time (ms) 6.0 235.8 103.0

OTQ speed-up — 39x 17x
M = 16

Absolute time (ms) 12.3 1127.3 204.7
OTQ speed-up — 92x 17x

Table 1. The average timings (in ms) of a 128-dimensional SIFT
descriptor encoding with OTQ, AQ and APQ along with speed-ups
factors provided by OTQ. A speedup over AQ/APQ is especially
significant for large M .
shows that the trees learned by OTQ for the two datasets
have quite different topologies. Interestingly, TQ outper-
forms AQ/APQ for long codes (M=8, 16) even with tree
structure constraints imposed on its codebooks. The rea-
son is that the TQ encoding is optimal for given codebooks.
The AQ/APQ encoding (via Beam Search) is approximate,
which results in higher compression error for M > 4 de-
spite having more parameters.

The main advantage of OTQ over AQ/APQ is fast encod-
ing especially for larger M . Table 1 demonstrates average
times of a 128-dimensional SIFT descriptor encoding with
both methods implemented with Python and Numpy. OTQ
encoding is 17 times faster than APQ and up to 92 times
faster than AQ encoding [3].

The relative performance of all methods in terms of the
compression accuracy translates into the nearest-neighbor
search accuracy (Figure 4). For reference, in one case we
also provide the results for a state-of-the-art binary hashing
method (ITQ [9] reproduced from [15]).

(O)TQ also provides faster retrieval than AQ/APQ as
demonstrated on Figure 5. The reason of this advantage
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Figure 4. Euclidean nearest neighbor search accuracy based on different compression methods for SIFT1M and Deep1M datasets with the
different code lengths. The x-axis shows the number T of items retrieved (in log-scale), while the y-axis shows Recall@T (the probability
of the true neighbor being retrieved). For both datasets the recall@T with the the OTQ encoding is uniformly higher than for with the PQ
and the OPQ encodings. AQ outperforms OTQ with 4−byte codes, but for longer codes OTQ performs better than APQ.
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Figure 5. Average timing of exhaustive nearest neighbor search
in SIFT1M dataset using OPQ, OTQ and AQ/APQ. AQ was used
for 4-byte codes and APQ was used for 8-byte and 16-byte codes.
OTQ provides faster search than AQ/APQ because the complexity
of distance evaluation with OTQ is linear in M (see Section 2.2)

is the fact that number of terms in (8) is linear in M while
within AQ/APQ this number is quadratic in M . In most of
our experiments retrieval with OTQ is just 2 times slower
than efficient OPQ retrieval providing significantly better
recall. Hence the usage of OTQ is justified when the mem-
ory budget is limited and the compression quality is more
crucial when the runtime. We also note that OTQ is slower

M = 8
R@1 R@10 R@50

CQ 0.29 0.71 0.97
OTQ 0.32 0.75 0.97

M = 16
R@1 R@2 R@5

CQ 0.54 0.71 0.88
OTQ 0.53 0.70 0.89

Table 2. Comparison of Composite Quantization and Optimized
Tree Quantization for the nearest neighbor search on the SIFT1M
dataset.

than (O)PQ in the case of Euclidean distance but for other
similarity measures (e.g. dot-product similarity) OTQ can
provide the same speed as PQ.

Another challenging competitor for TQ is the recent
Composite Quantization (CQ) method [19]. Table 2 demon-
strates the comparison of OTQ and CQ on the SIFT1M
dataset (using figures provided by the authors of [19]).
Overall, both methods achieve comparable performance.

Interestingly, CQ and OTQ achieve the advantage over
PQ by analogous but complementary ways. Both CQ and
OTQ relax codebooks orthogonality in PQ. In particular,
CQ enforces “slight non-orthogonality” of all codebooks,
while OTQ allows “arbitrary non-orthogonality” between
several codebooks (which are connected in the graph). One
can incorporate CQ into OTQ framework and combine both



Reconstruction error Classification mAP
320x 640x 1280x 320x 640x 1280x

Optimized Product Quantization 0.711 0.846 0.957 0.464 0.389 0.306
Additive Quantization 0.548 0.637 0.737 0.490 0.459 0.431

Optimized Tree Quantization 0.521 0.607 0.637 0.497 0.467 0.441

Table 3. Reconstruction error and average precision of image classification with Fisher vectors for learning on uncompressed data and
testing on compressed data. Codebooks for OPQ and OTQ were learned on the train+val set and were used to encode the test set. The
classifiers were learned on the training and validation sets and were tested on the test set. Better coding approximation of the OTQ results
in higher classification accuracy. The mAP for uncompressed descriptors is 0.577.

methods, by allowing slight non-orthogonality (as in CQ)
for the codebooks not connected in the OTQ graph. OTQ
inference will then still apply. Codebooks can be learned
with our method and refined using local optimization (as
in [19]). We did not compare runtime of CQ and OTQ as
CQ implementation is not avaliable but CQ should perform
faster for L2-distance queries and encoding and have simi-
lar speed for dot product queries.

Classification. We performed extra experiments on
PASCAL VOC 2007 [7]. We compare OPQ and OTQ for
a scenario when a classifier trained on uncompressed de-
scriptors is applied to a very large dataset of compressed
descriptors in order to find images with the highest classifi-
cation score [6, 5]. In this scenario, it is only necessary to
evaluate the scalar products between the query (the classi-
fier) and the compressed vectors.

We used Fisher Vector descriptors[18] with 256 compo-
nents over SIFT descriptors PCA-compressed to 80 compo-
nents. We then evaluated the degradation from the compres-
sion by OPQ and OTQ for different compression rates. As
in [3], we split original Fisher vectors into R subvectors and
compress each subvector by 8−byte OPQ and OTQ. Differ-
ent compression rates can be obtained by varying R. We use
the standard mean average precision measure for PASCAL
classification experiments. Both OPQ and OTQ codebooks
were learned on the train+val set and used to compress de-
scriptors from the test set.

Table 3 shows the compression error and the classifica-
tion accuracy for three levels of compression (320x, 640x,
1280x). OTQ provides significantly lower reconstruction
error and consequently smaller degradation in classification
accuracy. The advantage is particularly large (0.135 mAP)
for the highest compression level.

5. Discussion
Experiments show that the accuracy of Tree Quantiza-

tion, and in particular its “optimized” variant (OTQ) ex-
ceeds that of the optimized product quantization. This ad-
vantage is due to a larger number of parameters (2KD vs
KD) that can be used to fit the data distribution and the
ability to model dependencies between all dimensions. The
advantage is more pronounced for descriptors with easily
identifiable parts (such as spatial bins within SIFT, or sepa-

rate GMM components within Fisher vectors).
While the AQ scheme has even more parameters

(MKD) that can fit the distribution and potentially achieve
lower reconstruction error, it is severely hindered by the
slowness and inexactness of the encoding. As was shown in
the original AQ paper the problem of AQ encoding is equiv-
alent to the problem of an inference in a fully-connected
MRF in probabilistic modeling. The usage of TQ is then
an analogy of Chow-Liu tree approximation for this MRF.
Similarly to Chow-Liu tree, TQ can capture second-order
correlations while remaining tractable for inference.

Overall, tree quantization provides a combination of high
compression accuracy and fast encoding that is attractive
for practical retrieval and classification systems. Tree quan-
tization can also be combined with any indexing structure
for non-exhaustive search. The state-of-the-art methods for
large-scale nearest neighbor search [11, 2] currently use
PQ/OPQ to encode database points. In fact, during retrieval
they reconstruct points from a short-list of candidates using
their PQ-codes. Then system calculates distances from can-
didates to queries explicitly thus not exploiting PQ fast dis-
tance evaluation procedure. Within such a system PQ can
be easily replaced by OTQ or any other similar encoding
scheme.
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