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Abstract

The in-vehicle black box camera (dashboard camera)
has become a popular device in many countries for security
monitoring and event capturing. The readability of video
content is the most critical matter, however, the content is
often degraded due to the windscreen reflection of objects
inside. In this paper, we propose a novel method to remove
the reflection on the windscreen from in-vehicle black box
videos. The method exploits the spatio-temporal coherence
of reflection, which states that a vehicle is moving forward
while the reflection of the internal objects remains static.
The average image prior is proposed by imposing a heavy-
tail distribution with a higher peak to remove the reflection.
The two-layered scene composed of reflection and back-
ground layers is the basis of the separation model. A non-
convex cost function is developed based on this property and
optimized in a fast way in a half quadratic form. Experi-
mental results demonstrate that the proposed approach suc-
cessfully separates the reflection layer in several real black
box videos.

1. Introduction
The evolving paradigm of the automobile industry has

changed the concept of a car from being not only a con-
ventional driving machine but also a convergence of ad-
vanced IT technologies. Computer vision technologies, in
particular, function to automatically provide the car with
the capability of viewing and understanding the outside
scene. The ultimate objectives of these technologies include
vision-based lane detection, pedestrian detection, and colli-
sion avoidance.

In this regard, in-vehicle black box camera, as shown in
Figure 1(a), has become a popular device for security mon-
itoring and possible car accident recording. These devices
are now being widely distributed in many countries. For
example, in South Korea, more than 30% of personal vehi-
cles and almost 100% of cabs and buses are equipped with
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Figure 1: Reflection layer separation from the in-vehicle
black box video. (a) Black box examples attached inside a
car. (b) Example results of the proposed method in which
the background scene (L) and reflection (R) are separated
using the average image (Ī) of the frame sequence (It) and
the proposed optimization technique.

in-vehicle black box cameras.
However, most research on the in-vehicle black box cam-

era has focused on enhancing its video resolution and com-
pression. Despite the fact that the readability of video con-
tent is the most important aspect, few works have targeted
this function. To address the readability issue, there are sev-
eral problems that should be tackled. In this paper, we fo-
cus on video quality degradation due to the reflection on the



windscreen. In the video captured by an in-vehicle black
box in a moving automobile, visibility is often diminished
by the windscreen reflection of bright objects inside the ve-
hicle. The unwanted reflection causes poor visibility in the
captured videos. Therefore, the challenge is to remove the
interference of the reflection, i.e. to separate the reflection
layer from the background (outside scene) layer.

In the conventional layer separation problem, the ob-
served image is comprised of the combination of the reflec-
tion layer R and the background layer L. The two layers
are combined in a single image to create the mixture image
I as follows.

I = L+R (1)

This problem is highly ill-posed, even for a number of dif-
ferent mixture images. Attempts to solve the problem have
been made to reconstruct the scene behind the glass sur-
face [9, 13, 26]. In a black box video, the reflection on
the windscreen seems easy to be separated from the back-
ground scene using existing methods. However, the black
box video is very complicated to be handled because it typ-
ically includes non-uniform and perspective optical flow of
the complex outdoor environment. For instance, it is not a
trivial task to find the most salient gradient by taking the
median in [24] on account of many moving objects outside.
Moreover, in this condition, it is not straightforward to use
conventional methodologies, such as optical flow [5], align-
ment, and warping.

To address the problem properly, we investigate the re-
flection in the captured videos to find the important differ-
ence from the imaging conditions of previous works. That
is, the reflection on a windscreen tends to be stationary,
whereas the background scene keeps moving along the di-
rection of the vanishing line. This is natural because the
camera and object inside the car are relatively static or
slightly moving compared to rapidly moving objects in the
outside scene. This unique circumstance of the in-vehicle
black box video has inspired the concept of the effective
approach proposed in this paper.

The main idea of the proposed method is to exploit the
use of average image prior to remove the reflection with
region-based optimization technique. The mathematical
framework based on the sparsity prior like in [13] has
shown significant contribution in reflection separation as
well as in image deblurring [25, 28] and denoising [4, 23].
A non-convex cost function is developed based on the spar-
sity prior and subsequently optimized. Figure 1(b) shows
an example of reflection removal by applying the proposed
method. The contribution of this paper is summarized as
follows.

• An efficient technique is presented to remove the re-
flection on the windscreen using the proposed average
image prior and the region-based optimization tech-
nique.

• To our best knowledge, it is the first approach to sep-
arate the layer under fast forward motion of vehicle in
outdoor environment.

2. Related Works
2.1. Single Image Layer Separation

Levin and Weiss [13] proposed a method using a mix-
ture of Laplacian distributions to separate the layers on a
single mixture image with human assistance. However, this
method with human assistance is a tedious job, particularly
to separate a reflection in a large number of images. In ad-
dition, Yu and Brown [27] proposed a method to separate
a single latent image from reflection by assuming that re-
flection layer has significant blur while background layer
remains sharp. However, this assumption is not applicable
to black box videos in which both layers have less blur or
sharp profile.

2.2. Layer Separation Using Multiple Images and
Videos

In the earliest work, Weiss proposed a method of deriv-
ing intrinsic images from an image sequence captured in a
video [24]. It minimizes the sparse representation by calcu-
lating the median of gradient in the temporal domain. Gra-
dient in the image sequence indicates the possibility to sep-
arate the two layers. However, the median can incorrectly
identify the gradient belonging to a specific layer especially
when the gradient structure in image sequence is similar.

A few methods have utilized the camera’s setting to cap-
ture multiple images. For instance, the reflection is removed
from multiple images by employing focus adjustment [20]
and polarizer rotation [9, 10, 20]. Moreover, Agrawal et
al. [1] utilized gradient projection and the flash on a cam-
era. Nevertheless, the additional setting and equipment are
not relevant for application in portable mobile device such
as black box. Note that the in-vehicle black box camera has
fully automatic camera settings.

In [6, 7, 26], the most salient gradient in a set of images is
utilized to separate layers. They assumed that the scene be-
hind the glass surface is the layer to be reconstructed when
capturing multiple images. Thus, it would have the most
salient gradient. Nevertheless, this approach requires regis-
tration and warping processes which are unstable in a fast
moving black box video.

In a video sequence, the layer separation problem be-
comes more tractable. Sarel and Irani [18] proposed a
unique approach to separate non-rigid transparency using
layer information exchange. However, they assumed that
a set of images must have a different opacity for each
layer. Moreover, the initial layer image mixture is ob-
tained by intrinsic decomposition from the image sequence
method [24]. The same authors also proposed a layer sepa-



ration method using repetitive behavior detection [19]. This
method requires an alignment method and motion estima-
tion, which is difficult to be employed in a fast moving black
box video with large displacement.

Although the above algorithms have shown notable per-
formance, the black box video of a fast moving vehicle in
an outdoor environment is quite complex for these methods
to be applied in a straightforward manner. Therefore, we
propose a novel algorithm.

3. Proposed Method
3.1. Layer Separation Model

The reflection on a glass surface can be deduced as a
layer separation model. The proposed model is inspired
by the layer separation model in [13], in which the joint
probability Pr(L,R) (= Pr(L)Pr(R)) of two layers L and
R should be maximized. The probability can be derived as
a minimization problem when the negative logarithm is ap-
plied. One approach minimizing the probability function is
to utilize gradient independency between two layers. In this
case, relevant prior knowledge should be applied to solve
the minimization of the ill-posed problem. Therefore, it is
equivalent to minimize E(L,R) as follows.

E(L,R) =
∑
i∈N

∑
j∈J

(
F1

(
(L⊕gj)i

)
+F2

(
(R⊕gj)i

))
(2)

where ⊕ is the convolution operator and F1(x) and F2(x)
denote negative log functions applied for distribution model
of each layer. Moreover, N and J denote a set of pixels
in the image space and derivative filters. In the remainder
of the paper, the derivative filters are denoted as Dj

iX ≡
X ⊕ gj for j ∈ J .

In a video, this equation is extended to reconstruct the
reflection in time domain (T ) with L = I − R, which thus
becomes

min
Rt

∑
t∈T

∑
i∈N

∑
j∈J

(
F1(Dj

iR−D
j
i I)t + F2(Dj

iR)t
)

(3)

In this case, we observe the average of consecutive frames
Ī in a video, where

Ī = L̄+ R̄. (4)

Because the reflection on the windscreen is stationary,Rt ≈
Rt+1 yields R̄ = Rt. Therefore, it is possible to omit the
time domain subscript and regardR as a constant as follows.

E(R) = min
R

∑
i∈N

∑
j∈J

(
F1

(
Dj
iR−D

j
i Ī
)

+ F2

(
Dj
iR
))

(5)
Ī is constant over several frames that are taken to obtain the
average image. Stepping from Eq. (5), proper distribution
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Figure 2: The distribution of image gradient from the back-
ground and reflection layers. (a) The reflection layer has
high-peak distribution. (b) The background layer has low-
peak distribution.

models for F1 and F2 should be imposed to perform reliable
layer separation. In the proposed approach, F1 and F2 de-
note the narrow Gaussian and hyper-Laplacian models, re-
spectively (i.e. F1(x) ∝ x2

σ2 and F2(x) ∝ |x|α/s with α <
1). In this sense, unlike the previous methods, the proposed
approach first reconstructs the reflection layer R rather than
the scene behind the glass surface L. Therefore, the edges
of the reflection layer should be separated robustly using
the average image to solve the layer separation problem.
The proposed average image prior and reflection removal
method are described in the following subsections.

3.2. Average Image Prior

An interesting observation from in-vehicle black box
video is that the reflection is almost stationary over time.
Based on the observation that the reflection layer is static,
we can take average from the frame sequence to produce an
extremely low-passed image in which the reflection still re-
mains sharp. It is named average image prior in this paper.

To achieve reliable separation of two layers, it is nec-
essary to have the beneficial prior information. As shown
in Figure 2(a), the gradient of the reflection layer is quite
sparse and the gradient in most area is very small or nearly
zero. On the other hand, as shown in Figure 2(b), the dis-
tribution of background image has a lower peak. Thus,
in modeling the distribution using the function p(x) =
e−|x|

α

/s, it can be deduced that the function to model the
gradient distribution of reflection layer has a much smaller
α than α to model that of the background layer.



Hyper-Laplacian Distribution There are several distri-
butions that can model the non-Gaussian distribution in
low-level image processing to approximate sparse distri-
bution. For instance, student-t [17], Gaussian scale mix-
tures [22], Laplacian mixtures [13], and hyper-Laplacian [8]
distributions are commonly used. As described in [12],
high-peak with heavy-tail distribution is more effectively
approximated by the hyper-Laplacian model (with α = 0.8)
to produce sharper edges and less noise. Accordingly, the
prior distribution model for reflection utilizes the robustness
of the hyper-Laplacian model ((p(x) = e−k|x|

α

/s) ) with
α < 1. However, in the average image, the gradient rep-
resenting moving scene outside cannot be well-penalized if
only a single α is used because some areas have large gra-
dient values while the others are not. Therefore, different α
values are applied using the proposed region-based model
which is described in the following paragraph.

Relative Sparsity Distribution using Region Division
In the proposed approach, the average image is divided into
several different angular regions to utilize different shapes
of hyper-Laplacian distributions with different α values.
The number of different alpha values is denoted as H . Con-
sidering the forward motion of a vehicle, there is a single
vanishing point in the center area of the image. The back-
ground layer consists of regions with different properties of
gradient sparsity including the ground, building/wall/green,
and sky areas. Therefore, it is better to assign different α
values to different angular regions. The vanishing point is
easily found using a group of line segments with a similar
direction as shown in Figure 3(b). The line segments are
detected using the recent detector [21]. Then, the vanishing
point is estimated using the dominant line direction from
detected line segments with high confidence.

Figure 3(c) shows an example of uniformly divided an-
gular bins centered at the detected vanishing point. For each
region, the sum of length is computed for the line segments
which converge to the vanishing point. Using the histogram
of the sum of length as shown in Figure 3(d) (sorted in as-
cending order), classification is performed to generate H
groups of angular regions with similar gradient density. For
example, in Figure 3(c), 36 angular bins are grouped into 4
groups of similar gradient density. In Figure 3(c) and Fig-
ure 3(d), histogram bins and angular regions with similar
gradient density are painted with the same color. Angular
regions with higher density are assigned bigger α values,
with typical range of 0.5 ≤ α ≤ 0.8.

3.3. Reflection Removal

Reflection removal can be performed by applying the
proposed prior and optimizing each term. Because the im-
age is divided into angular subregions with different gra-
dient distribution, the minimization in Eq. (5) becomes as

(a) (b)

(c) (d)

Figure 3: Line segments and angular region division. (a)
The average image. (b) Detected line segments from the
average image. Red line segments converge to the vanishing
point while green ones do not. (c) Example of angularly
divided regions (with different α values in different shades).
(d) The histogram of line segments length for each region.

follows.

min
R

∑
i∈N

F1

( ∑
j∈J1

{Dj
iR−D

j
i Ī}
)
+

∑
h∈H

∑
i∈Nh

∑
k∈J2

F2

(
Dk
i R
)
h

(6)

where narrow Gaussian F1 can be modeled as F1(x) ∝ x2

σ2

with 1/σ2 associated with λ. Moreover, F2(x)h is the
function of hyper-Laplacian model with different α value
in each region and Nh denotes a set of pixels in regions
assigned with αh. The second derivative filters are uti-
lized in J1 to control the smoothness in the result, while
the first derivative filters are used in J2 to recover the
edges. In our implementation, the derivative filters in J1
are D1 =

[
1 −2 1

]
, D2 =

[
1 −2 1

]T
while

the derivative filters for J2 are D1 =
[

1 −1
]
, D2 =[

1 −1
]T

.

Optimization It is not a trivial problem to optimize
Eq. (6) since α < 1. This condition leads to a concave
function. In this case, the half-quadratic method [11, 15]
should be applied to simplify the optimization problem. The
auxiliary variables y1 and y2 are introduced for non-convex



function F2 as follows.

min
R,yk

∑
i∈N

{
λ

2

(∑
j∈J1

{Dj
iR−D

j
i Ī}
)2}

+

∑
h∈H

∑
i∈Nh

∑
k∈J2

{
β

2

(
||Dk

i R− yki ||22 + |yki |αh
)}

s.t. 0 ≤ (R)i ≤ Īi

(7)

Eq. (7) can be solved by optimizing two subproblemsR and
y. The optimal solution for subproblem y can be obtained
by solving the following auxiliary minimization.

y∗ = arg min
y
|y|αh +

β

2
(y −Dk

i R)2 (8)

In our case, same α is repetitively accessed for a specific
region h. Therefore, it is necessary to compute the opti-
mized y and store the values to map the result after opti-
mization. This problem can be rapidly tackled by employ-
ing the method proposed in [11]. A lookup table (LUT) is
utilized to map the values from Dk

i R to y. To map the val-
ues, we generate 10,000 different gradient values between
-0.6 to 0.6 for specified α and β values. The gradient value
which is not covered in the LUT can be found using ex-
trapolation. Consequently, the optimization of y can be per-
formed fast.

Afterwards, as described in [11], the R sub-problem is
solved in a fast manner using FFT (F) and IFFT (F−1) as
follows.

R =

F−1
( ∑
k∈J2
F(Dk)∗ ◦ F(yk) + (λβ )F(KJ1)∗ ◦ F(KJ1)∗ ◦ F(Ī)∑

k∈J2
F(Dk)∗ ◦ F(Dk) + (λβ )F(KJ1)∗ ◦ F(KJ1) + ε

)
(9)

where ε and KJ1 are a small number to avoid division by
zero and 2D matrix of two second derivative filters in J1,
respectively. In addition, ∗ and ◦ denote complex conjugate
and component-wise multiplication, respectively. After R
is obtained, it should be normalized such that it falls within
a specific range [0, Īi]. To achieve it, we need to obtain the
constant g by minimizing as follows.

min
g

∑
i∈N

mi

(
(R)i + g

)2
+ ni

(
(R)i + g − Īi

)2
(10)

where,

mi(·) =

{
1 (R)i + g < 0

0 otherwise

ni(·) =

{
1 (R)i + g > Īi

0 otherwise

(11)

In Eq. (10), mi and ni are indicative functions. Traditional
gradient descent is sufficient to optimize this normalization.

Postprocessing In the final step, the background scene
can be computed by Lt = It − R. However, both R and
Lt may have varying tone. To adjust the tone of R for each
frame, we use luminance transfer method in [16] with the
input frame as a reference image. Moreover, background
scene L is adjusted to have similar brightness by calculat-
ing the mean of luminance in the newly reconstructed back-
ground (l̄L) and the input frame (l̄f ) for angularly divided
region. Lastly, luminance value l for each pixel i in L can
be adjusted by li = li +G(l̄L− l̄f ), where G is the average
filter.

4. Experimental Results
In this section, we describe the performance of the pro-

posed method and the comparison with previous works. In
our experiment, the proposed method is evaluated using
both real-world videos with reflection on the windscreen
and synthetic videos. We collect the data from various
sources such as video sharing sites and private black box
video collections. To demonstrate the robustness of the pro-
posed method, we compare it with the state-of-the-art algo-
rithms by Yu and Brown [26] and Sarel and Irani [18]. Fur-
thermore, single image layer separation techniques in [27]
and [13] are additionally considered for comparison. The
proposed method is implemented using Matlab on a PC with
Windows 7 32-bit operating system. The PC equips with an
Intelr CoreTM i7 3.5 GHz with 8 GB RAM. In angular
region division, the average image is divided into 8 initial
regions which are empirically set α1 = 0.5, α2 = 0.6, α3 =
0.7, and α4 = 0.8 (H = 4).

Qualitative Comparison First, we compare the proposed
method with the layer separation algorithms using multi-
ple images [26] and video [18]. These methods require
many frames to find the correct gradient of layers and huge
amount of memory which can hardly be handled properly
with current PC memory. Therefore, we consider using five
different frames to be applied for their methods. More-
over, in our test data, it is not feasible to apply the layer
separation technique by Yu and Brown [27] directly from
the multiple images because their method requires image
registration and warping process to align gradient from the
background scene. Since the reflection scene is static, SIFT-
Flow [14] algorithm is not performed correctly to warp the
multiple images. The global threshold values and param-
eters of the proposed method are tuned to obtain best re-
sults in the frame sequences of test videos. We cannot show
the comparison with another layer separation from multiple
images proposed by Gai et al.’s [6] because their method



(a) (b) (c) (d)
Figure 4: Frame by frame results with comparison. The first row shows the average image from the input frames and the
result of separated reflection layers from the initial sample frame. (a) Input frames. (b) Result of [26]. (c) Results of [18].
(d) Results of the proposed method. Video results including this example are provided in the supplementary material.

cannot handle memory well for the image resolution used
in our data. Furthermore, their optimization takes a long
processing time even with the small size image.

Figure 4 and Figure 5 show that the proposed method
performs better in removing the reflection of the real-world
videos. Note that the proposed method even works prop-
erly for videos in rural areas as long as the background
is not homogeneous. In addition, the method also works

well for slightly changing lighting system. While the pro-
posed method shows comparable performance with Sarel
and Irani’s work [18], it is observed that [18] cannot pro-
duce the background scene correctly as shown in Fig-
ure 4(c) and Figure 5(c). Much of the objects’ gradients
are degraded and the frames of the video have inconsis-
tent tone in temporal domain. Not surprisingly, degraded
details in the result occur because their method heavily de-



(a) (b) (c) (d)

Figure 5: Additional comparison with single layer separation techniques. (a) Selected input frames. (b) Results of [26]. (c)
Results of [18]. (d) Results of the proposed method.

(a) (b) (c) (d)

Figure 6: Comparison results with single layer separation techniques. (a) Selected frame with the average image. (b)
Separation layer result from [27]. (c) Separation layer result from [13]. (d) Result from the proposed method.

pends on the median of gradients in the temporal domain
when creating the initial mixture of images. Furthermore,
initial layer mixture should be distinct in terms of gradi-
ent structure to obtain satisfactory result. In addition, as
shown in Figure 4(b) and Figure 5(b), the method of Yu
and Brown [26] produces unpleasing result with inconsis-
tent color and ghost artifact because the complex outdoor
scene distracts the gradient saliency detection.

We additionally compare the performance of the pro-
posed method with single image layer separation tech-
niques, as shown in Figure 6. Yu and Brown’s method [27]
is not appropriate for our problem setting, because it as-

sumes that the reflection layer is smoother than the back-
ground scene. Edges separation of the method in [13] can
be provided by manual user markup or the method in [26].
In our comparison, we use the method in [26] for edge se-
lection. However, the rest is unchanged from [13] including
Laplacian mixture distribution model and the optimization
method. Nevertheless, the method in [13] produces unsatis-
factory results with inconsistent color reconstruction.

Quantitative Comparison In order to validate the robust-
ness of the proposed algorithm quantitatively, we test a few
synthetic frames using CamVid dataset [2, 3]. Figure 7



(a) (b) (c) (d) (e)

Figure 7: Comparison on the synthetic frames. (a) Selected input frames. (b) Result of [26]. (c) Result of [18]. (d) Result of
the proposed method. (e) Ground truth. Video results including this example are provided in the supplementary material.

Table 1: RMSE comparison using CamVid dataset [2, 3].

Algorithm
RMSE

Mean
seq06R0 seq16E5 seq05VD

Proposed 29.14 28.63 28.67 28.81

Yu and Brown [26] 51.48 52.43 49.85 51.26

Sarel and Irani [18] 49.52 52.47 56.52 52.83

shows the visual comparison, which shows clearly that the
proposed method outperforms the others. In Table 1, the
root-mean-square error (RMSE) is calculated for each se-
lected frame to prove that the proposed method has low er-
ror rate than those of the previous methods in [18, 26]. Al-
though [18] may seem to produce comparable visual results
visually, Table 1 obviously shows that the RMSE error is
significantly higher than the proposed method.

Computation time To evaluate the computation time, an
additional experiment is performed using video frames with
512 × 288 resolution. The proposed algorithm consumes
approximately 2 seconds, while the methods in [26] and
[18] spend about 2 minutes and 7 seconds on the same data,
respectively. The faster computation time of the proposed
method is achieved because LUT is applied to speed up the
performance. Moreover, LUT is particularly useful when
there are a lot of images to be processed because it does not
need to recompute the same calculation redundantly.

Limitation The proposed method has a limitation be-
cause the use of average image prior and the assumption
on static reflection restrain the application in general cases.
The proposed method is mostly applicable to separate the

reflection when it is relatively static or slightly moving,
which is the case for the forward motion videos captured
by car black boxes. Therefore, the limitation is not a major
concern in using the proposed algorithm in vehicular appli-
cation we focus on.

5. Conclusion
Reflection on a glassy surface is a typical problem in re-

ality. The complexity of removing the reflection increases
particularly when dealing with outdoor environment. In this
paper, the average image prior was specifically proposed to
remove the reflection on the windscreen of a vehicle. A real
world black box video was used in our experiment to com-
pare the performance of the proposed method with the pre-
vious methods. Experimental results validated the robust-
ness of the proposed method in separating the windscreen
reflection and producing clear background images. In fu-
ture, we will extend the current algorithm to complete the
background region occluded by saturated reflection or by
car dashboard. We believe it becomes possible by develop-
ing accurate flow estimation and image warping algorithms
in spatio-temporal domain under fast forward motion.
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