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A major challenge of modern data sets is that their elements usually repre-

sent complex geometric structures and objects, e.g., proteins, cells, mechan-

ical parts, facial surfaces, and other morphologies. Typically, one wants to

cluster, classify or compare elements of such data sets, but performing such

analyses requires defining a proper topological space where these data enti-

ties reside. In the particular case where the elements of the data set represent

shapes of objects, shape spaces offer the appropriate framework. Accord-

ingly, one then needs the notion of shape distance to quantify dissimilarity of

such entities. In this paper, we focus on the elastic shape distance of Srivas-

tava et al. [2] for closed planar curves. This provides a flexible and intuitive

geodesic distance measure between curve shapes, invariant to translation,

scaling, rotation and reparametrization. Computing this distance, however,

is computationally expensive. The original algorithm proposed in [2] using

dynamic programming (DP) runs in O(N3) time, N the number of nodes
per curve. In this paper, we propose a new fast iterative algorithm to com-

pute the elastic geodesic distance between shapes of closed planar curves.

The asymptotic time complexity of our algorithm is roughly O(N2). How-
ever, in our experiments, we have observed a linear trend with running times

depending on the type of curve data.

Mathematically, the shape distance computation is formulated as a global

minimization over triplets that consist of possible starting points (on the

curve), rotations and reparametrizations. To be specific, given planar closed

curves β1 and β2 of unit length in classC
2, and their shape functions qi(t) =

β̇i(t)/‖β̇i(t)‖
1/2, i = 1, 2, respectively, the shape distance between them

corresponds to the minimum over triplets (t0,θ ,γ) of the following energy

E(t0,θ ,γ) ≡

∫ 1

0
‖q1(t)−

√

γ̇(t)R(θ )q2(t0+ γ(t))‖2dt, (1)

where t0 is a starting point, θ , R(θ ) are a rotation angle and matrix, and γ is
a diffeomorphism of [0,1] into [0,1] (with γ(0) = 0, γ(1) = 1, γ̇(0) = γ̇(1)).
We propose to optimize (1) using an alternating approach: We fix γ and

optimize (1) with respect to t0,θ (computing θ = θ (t0,γ) with the Kabsch
algorithm [1] where required). With optimal t0,θ fixed in (1), we then op-
timize E with respect to γ . We alternate between these optimizations until

convergence. This is summarized in Algorithm 1. The optimization with re-

spect to t0 is done inO(N2) time by looping through ti= (i−1)/(N−1), i=
1, . . . ,N, and evaluating (1) for each t0. The optimization with respect to
γ for fixed t0, θ is an O(kN) iterative nonlinear constrained optimization
problem initialized in O(εN2) time with a fast DP algorithm, where k is the
number of iterations and ε is a small constant. We elaborate on details of γ

optimization below. Thus the overall computational cost of our algorithm is

O(εN2+K(N2+kN)), K the number of iterations of alternating approach.

Algorithm 1 The main optimization algorithm

Initialize γ(t) = t, ti = (i−1)/(N−1), i= 1, . . . ,N.
repeat

Fix current γ in (1) and loop over all ti to find optimal t0 and θ =
θ (t0,γ) with Kabsch algorithm.
Fix current t0,θ in (1).
If 1st iteration, then compute new γ with fast DP.
Optimize E in (1) w.r.t. γ with iterative nonlinear constrained optimiz.
algo. initialized with current γ .

until Energy change < tol = 10−6 or iteration # > 50.

A crucial step in Algorithm 1 for the optimization of the energy (1) is

the computation of the optimal diffeomorphism γ when we fix t0,θ in (1) as
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N=64 128 256 512 1024 2048 4096

original-DP .02 sec .086 .37 1.4 5.8 23 94

fast-DP+iter .11 .16 .22 .45 .90 2.3 7.4

Table 1: Timings of diffemorphism computations for increasing N.

Reparametrized β2(t) (cell boundary) with test γ , used shape functions q2(t)
of original curve β2(t), q1(t) of reparametrized curve β1(t) to recover γ .

N = 64 128 256 512 1024

Original Algorithm 1.4 sec 11 92 735 5917

Algorithm 1 4 11 19 50 89

Table 2: Timings of distance computations for increasing N. Computed

theoretically zero distance between shapes of two versions of limaçon.

part of our alternating optimization approach. At that point, we are dealing

with an energy depending on a single function variable. When discretized,

the global minimum of this single variable (γ) energy can be obtained using
a DP algorithm [2]. The drawback of the original DP algorithm (original-

DP) used for this problem is that it has O(N2) time complexity [2]. This
is expensive for curves with many nodes, especially if we need to repeat

this computation for many t0 candidates. An efficient alternative is to use

an iterative algorithm, which can have O(N) cost per iteration, but usually
converges to a local minimum of the energy. We combine the strengths of

the two approaches: we first use a fast approximate DP algorithm (fast-

DP). Our fast-DP algorithm works on a reduced search space and produces

a rough approximate global minimum very fast. It still has quadratic time

complexity, albeit with a very small constant. Then we use this approxi-

mation as the initial iterate for an efficient iterative nonlinear constrained

optimization algorithm (iter), which takes it to the precise global minimum

very fast in a small number of iterations, each of which has O(N) cost.
Finally, we present some of our experimental results that demonstrate

the efficiency gains of our new algorithm compared to the original shape dis-

tance algorithm in [2] (see Tables 1, 2, 3, and the full paper for all results).

We test our algorithm on synthetic curves, cell boundary curves, and subsets

of Leaf and MPEG7 shape data sets. Our first test is to identify the correct

diffeomorphism γ . Our fast-DP+iter algorithm accomplishes this an order
of magnitude faster than original-DP for large curves (see Table 1). The

next test is about actual shape distance computations. Table 2 shows the

timings for a limaçon curve, sampled at an increasing number of nodes for

the purpose of investigating scalability. We change the starting point of the

curve, rotate the curve, and apply a synthetic reparameterization to it to ob-

tain a second version of it, thus of the same shape and zero distance from it.

The computational cost of the original algorithm becomes very expensive as

N increases beyond 256, whereas Algorithm 1 yields reasonable computa-

tion times for all N. Finally, we compute the pairwise distance matrix of all

the shape data sets (with N = 256). Our algorithm is an order of magnitude
faster (see Table 3). It is even faster for finer samplings, e.g.,N = 512,1024.
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Synthetic Cells Leaves MPEG7

Matrix Size 62 = 36 102 = 100 752 = 5625 1002 = 10000

Original Algo. 1 hr 2.5 hrs 129 hrs 240 hrs

Algorithm 1 12 min 4.5 min 12.5 hrs 38.5 hrs

Table 3: Timings for distance matrices. Distance matrices obtained by

computing shape distances for all curve pairs (at N = 256) in each data set.
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