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Abstract

In this paper, we propose a face alignment method
that uses cascade Gaussian process regression trees (cG-
PRT) constructed by combining Gaussian process regres-
sion trees (GPRT) in a cascade stage-wise manner. Here,
GPRT is a Gaussian process with a kernel defined by a set
of trees. The kernel measures the similarity between two in-
puts as the number of trees where the two inputs fall in the
same leaves. Without increasing prediction time, the pre-
diction of cGPRT can be performed in the same framework
as the cascade regression trees (CRT) but with better gen-
eralization. Features for GPRT are designed using shape-
indexed difference of Gaussian (DoG) filter responses sam-
pled from local retinal patterns to increase stability and to
attain robustness against geometric variances. Compared
with the previous CRT-based face alignment methods that
have shown state-of-the-art performances, cGPRT using
shape-indexed DoG features performed best on the HELEN
and 300-W datasets which are the most challenging dataset
today.

1. Introduction
Face alignment is a task to locate fiducial facial land-

mark points, such as eye corners, nose tip, mouth corners,
and chin, in a face image. Accurate and robust face align-
ment is conducive in achieving the goals of various appli-
cations involving a face, such as face recognition [3, 21],
facial expression recognition [7], face synthesis [22], and
age estimation [11].

Shape regression has become an accurate, robust, and
fast framework for face alignment [4, 5, 9, 13, 17]. In
shape regression, face shape s = (x1, y1, · · · , xp, yp)>,
that is a concatenation of p facial landmark coordinates
{(xi, yi)}pi=1, is initialized and iteratively updated through
a cascade regression trees (CRT) as shown in Figure 1. Each
tree estimates the shape increment from the current shape
estimate, and the final shape estimate is given by a cumu-
lated sum of the outputs of the trees to the initial estimate.

The two key elements of shape regression that impact to the
prediction performance are gradient boosting [10] for learn-
ing the CRT and the shape-indexed features [5] which the
trees are based.

The CRT learned through gradient boosting generally
exhibits overfitting [10, 13]. In gradient boosting, each
stage iteratively fits training data in a greedy stage-wise
manner by reducing the regression residuals that are de-
fined as the differences between the ground truth shapes
and shape estimates. Overfitting occurs when there is a dis-
crepancy between the fitting rates during learning and pre-
diction. Fitting the training data too quickly within a few
stages, which often happened without regularization, can
lead to poor generalization and inaccurate shape estimations
during prediction.

Overfitting is even more critical when using the shape-
indexed features [5, 13, 17] which are closely coupled with
the shape estimate: the shape estimate is determined by the
shape-indexed features, and the shape-indexed features are
extracted from the pixel coordinates referenced by the shape
estimate. A discrepancy between the fitting rates lead to ir-
relevant shape-indexed features to be extracted during pre-
diction which in turn leads even more irrelevant features to
be extracted.

Various regularization methods have been considered in
shape regression to reduce overfitting and to attain better
generalization. Cao et al. [5] augmented training data by
generating multiple initial shape estimates for one face im-
age, and this data augmentation method has been adopted in
subsequent studies [13, 17]. Kazemi and Sullivan [13] con-
sidered shrinkage and averaging as regularization methods:
in the gradient boosting learning procedure, a learning rate
parameter 0 < ν < 1 is multiplied to each regression tree
(shrinkage) or multiple trees are individually learned and
averaged (averaging). Ren et al. [17] split up the learning
procedure into two steps: (1) learning binary mapping func-
tion and (2) learning linear regression matrix. The binary
mapping function consists of a set of local binary mapping
functions that are induced from independently learned trees
using a single facial landmark point. The linear regression
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Figure 1. A selected prediction result on the 300-W dataset using cGPRT. The shape estimate is initialized and iteratively updated through
a cascade of regression trees: (a) initial shape estimate, (b)–(f) shape estimates at different stages of cGPRT.

matrix is then learned by minimizing the squared loss func-
tion with l2 regularization, known as Ridge regression [12].

Instead of using gradient boosting, we propose cas-
cade Gaussian process regression trees (cGPRT) that can
be incorporated as a learning method for a CRT prediction
framework. Gaussian process regression (GPR) is known to
give good generalization [16] but high computational com-
plexity. By using a special kernel leading to low computa-
tional complexity in prediction, cGPRT provides good gen-
eralization compared with the CRT within the same pre-
diction time. The proposed cGPRT is formed by a cas-
cade of Gaussian process regression trees (GPRT), and each
GPRT considers a kernel function that is defined by a set
of trees. The kernel measures the similarity between two
inputs based on the number of trees where the two inputs
fall in the same leaves. The predictive mean of cGPRT can
be computed as the summation of outputs of trees, and this
provides the same computation time in prediction but with
better generalization. Here, the predictive mean of cGPRT
is designed to be proportional to the product of predictive
variables from a set of GPRTs, and this explicitly leads to a
greedy stage-wise learning method for cGPRT.

Input features to cGPRT are designed through shape-
indexed difference of Gaussian (DoG) features computed on
local retinal patterns [1] referenced by shape estimates. The
shape-indexed DoG features are extracted in three steps:
(1) smoothing face images with Gaussian filters at various
scales to reduce noise sensitivity, (2) extracting pixel val-
ues from Gaussian-smoothed face images indexed by lo-
cal retinal sampling patterns, shape estimates, and smooth-
ing scales, and (3) computing the differences of extracted
pixel values. Smoothing scale of each local retinal sam-
pling point is determined to be proportional to the distance
between the sampling point and the center point. Thus, dis-
tant sampling points cover larger regions than nearby sam-
pling points, and this leads to increasing stability of the dis-
tant sampling points against to shape estimate errors, while
the nearby sampling points are more discriminative with an
accurate shape estimate. In a learning procedure of cGPRT,
this trade-off allows for each stage to select reliable features
based on the current shape estimate errors.

The remainder of the paper is organized as follows: Sec-

tion 2 briefly reviews the CRT and describes the details of
the proposed method. The experimental and comparative
results are reported in Section 3. The conclusions are pre-
sented in Section 4.

2. Method

In Section 2.1, the CRT for shape regression is briefly
reviewed to make the paper self-contained. Then, the details
of the proposed cGPRT and the shape-indexed DoG features
are described in Section 2.2 and 2.3, respectively.

2.1. Cascade regression trees

The CRT considers a set of T trees and formulates the
shape regression as an additive cascade form of trees as fol-
lows:

ŝT = ŝ0 +

T∑
t=1

f t(xt;θt), (1)

where t is an index that denotes the stage, ŝt is a shape
estimate, xt is a feature vector that is extracted from an
input image I , and f t(·; ·) is a tree that is parameterized
by θt. Starting from the rough initial shape estimate ŝ0,
each stage iteratively updates the shape estimate by ŝt =
ŝt−1 + f t(xt;θt).

Given training samples S = (s1, · · · , sN )> and Xt =
(xt1, · · · ,xtN )>, the trees are learned in a greedy stage-wise
manner to minimize the squared loss using regression resid-
uals as follows:

θt = argmin
θ∗

N∑
i=1

||rti − f t(xt;θ
∗)||22. (2)

Here, the regression residual is given by rti = si − ŝt−1
i .

The tree parameter θt consists of a split function τ t(xt)
and regression outputs {r̄t,b}B1 . The split function takes an
input xt and computes the leaf index b ∈ {1, · · · , B}, and
each regression output is associated with the corresponding
leaf index b. The optimal regression outputs are obtained
by averaging the regression residuals over all training data



points falling in the corresponding leaf:

r̄t,b =
1

N t,b

∑
i:τt(xt

i)=b

rti, (3)

where N t,b is the number of training data points that fall in
leaf b. Now, Equation (1) can be re-written using the split
function and regression outputs by ŝt = ŝt−1 + r̄t,τ

t(xt).

2.2. Cascade GPRT

The proposed cGPRT is formed by a cascade of GPRTs,
and each GPRT considers a kernel function that is defined
by a set of trees. In the following, the details of GPRT and
cGPRT are described with a brief review on GPR. For the
details of GPR, we refer to readers to [16].

Gaussian process regression trees In GPR, the relation-
ship between inputs and outputs is modeled by a regression
function f(x) drawn from a Gaussian process with inde-
pendent additive noise εi,

si = f(xi) + εi, i = 1, · · · , N, (4)
f(x) ∼ GP(0, k(x,x′)), (5)
εi ∼ N (0, σ2

n). (6)

Given a test input x∗, distribution over its predictive vari-
able f∗ is given as

p(f∗|x∗,X,S) = N (f∗|f̄∗, σ2
∗), (7)

f̄∗ = k>∗K
−1
s S, (8)

σ2
∗ = k∗ − k>∗K

−1
s k∗, (9)

where k∗ and k∗ are k(x∗,x∗) and covariance vector be-
tween x∗ and X, respectively. Here, Ks is given by
K + σ2

nIN , and K is a covariance matrix of which K(i, j)
is computed from the i-th and j-th row vector of X. The
predictive mean can also be written as a liner combination
of N kernels as

f̄∗ =

N∑
i=1

αik(xi,x∗), (10)

where α = (α1, · · · , αN )> is given by K−1
s S.

A kernel k(x,x′) in GPRT is defined by a set ofM num-
ber of trees in a similar manner in [8]:

k(x,x′) = σ2
k

M∑
m=1

κm(x,x′), (11)

κm(x,x′) =

{
1 if τm(x) = τm(x′)
0 otherwise, (12)

where σ2
k is the scaling parameter that represents the kernel

power. This kernel computes the similarity of two inputs

based on counting the number of trees in which the two
inputs fall into the same leaf over trees.

Note that the method to learn split functions τ(·) and the
method to extract features x will be described in Section
2.3.

Optimization of GPRT Hyper-parameters of GPRT, σ2
k

and σ2
n, can be estimated by a gradient-based optimization

method on log marginal likelihood:

log p(S|X, σ2
k, σ

2
n)=−1

2
S>K−1

s S− 1

2
log |Ks|−

n

2
log 2π.

(13)

Without loss of generality, the hyper-parameters σ2
k and σ2

n

can be replaced by σ2
k and σ2

r =
σ2
n

σ2
k

. To set the σ2
r by

maximizing the log marginal likelihood, we seek the partial
derivatives with respect to σr:

∂

∂σr
log p(S|X,σ2

k,σ
2
r) =

1

2
tr
(
(αα> −K−1

s )
∂Ks

∂σr

)
. (14)

The computational burden in Equations (13) and (14) is to
compute K−1

s and log |Ks| which is in O(N3). However,
the inverse can be computed efficiently because the rank of
K is in maximumly the number of leaves over trees BM .
Let qi = (q1

i , · · · ,qMi )> and let qmi be the one-of-B cod-
ing vector that indexes the leaf node of them-th tree that the
i-th training data point falls in. Then K = σ2

kQQ>, where
Q = (qi, · · · ,qN )>. From this, we obtain

K−1
s =σ−2

k

(
σ−2
r IN − σ−2

r QK−1
r Q>

)
, (15)

log |Ks|=N log σ2
k+(N−BM) log σ2

r+log |Kr|,(16)

in which the computation of inverse is inO
(
(BM)3

)
. Here,

Kr = Q>Q + σ2
rIBM is BM ×BM matrix.

When σ2
r is estimated, σ2

k can be estimated in a closed
form as follows:

σ2
k =

S>(σ−2
r IN − σ−2

r QK−1
r Q>)S

N
. (17)

Prediction of GPRT In GPRT, predictive variable f∗ of
the input x∗ is a Gaussian random variable with the predic-
tive mean and variance given in Equations (10) and (9), re-
spectively. Computation of Equation (10) is in O(N); how-
ever, this can be more efficient as follows:

f̄∗ =

N∑
i=1

αik(xi,x∗) (18)

=

M∑
m=1

N∑
i=1

αiσ
2
kκ

m(xi,x∗) (19)

=

M∑
m=1

ᾱm,τ
m(x∗), (20)



Algorithm 1 Greedy stage-wise learning of cGPRT.
Input: training data {si, Ii}Ni=1

Output: cGPRT parameters for prediction {ᾱt, τ t}Tt=1

Procedure:
1: Initialize ŝ0

1, · · · , ŝ0
N

2: for t = 1 to T do
3: Set regression residuals for i = 1, · · · , N

rti ← sti − ŝ
t−1
i

4: Extract features {xti}Ni=1

5: Learning tree split functions {τ t,m}Mm=1

6: Optimize t-th stage GPRT
(a) GPRT model:

rti = f t(xti) + rt+1
i ,

f t ∼ GP(0, kt(x,x′)),
rt+1
i ∼ N (0, σ2

n))
(b) Optimize σ2

n, σ
2
k using Equations (14), (17)

(c) Compute {ᾱt,m, σ̄t,m}Mm=1

7: Re-weighting {ᾱt,m}Mm=1 for b = 1, · · · , B
ᾱt,m,b ← (σ̄t,m,b

k )−2

(σ̄t,m,b
k )−2+σ−2

n
ᾱt,m,b

8: Update estimates for i = 1, · · · , N
ŝti ← ŝt−1

i +
∑M
m=1 ᾱ

t,m,τt,m(xt
i)

9: end for

where ᾱm,b = σ2
k

∑
i:τm(xi)=b

αi is a summation of all αi
that the corresponding xi falls into the leaf b. More intu-
itively, ᾱm,b can be interpreted as a predictive mean of the
pseudo input that falls on leaf b of the m-th tree and does
not fall on the other trees.

Also, to measure the uncertainty of predictions of each
leaf of trees, we consider (σ̄m,b)2 that is a predictive vari-
ance of the pseudo input that falls on leaf b of the m-th tree
and does not fall on the other trees.

Using Equations (20), the predictive mean can be com-
puted inO(M logB), and the computation of the predictive
mean to be performed in the same framework with predic-
tion in the CRT.

Cascade GPRT The cGPRT consists of T number of
GPRTs and combines GPRTs based on the following
product-based rule [6]:

p(f∗|x∗,M) ∝
T∏
t=1

p(f∗|xt∗,Mt), (21)

whereM, andM1, · · · ,MT are cGPRT model and the T
number of GPRT models, respectively. Because each pre-
dictive variable from GPRTs are Gaussian random variables
with means {f̄ t∗}Tt=1 and variances {(σt∗)2}Tt=1, the predic-
tive variable from cGPRT f∗ is still a Gaussian random vari-

Algorithm 2 Prediction of cGPRT.
Input: test input I∗
Output: shape estimate ŝT∗
Procedure:

1: Initialize ŝ0
∗

2: for t = 1 to T do
3: Extract feature xt∗
4: Update estimates ŝt∗ ← ŝt−1

∗ +
∑M
m=1 ᾱ

t,m,τt,m(xt
∗)

5: end for

able with predictive mean and variance defined by

f̄∗ = σ−2
∗

T∑
t=1

(σt∗)
−2f̄ t∗, (22)

σ2
∗ =

( T∑
t=1

(σt∗)
−2

)−1

. (23)

In Equation (22), f̄∗ is defined by a weighted summation of
{f̄ t∗}Tt=1 with the weights that represent the uncertainty of
predictions of each GPRT.

The additive form of the predictive mean in Equation
(22) explicitly induces a greedy stage-wise learning of cG-
PRT using regression residuals as described in Algorithm
1. Each GPRT is optimized through line 6–(a) to 6–(c),
and re-weighted through line 7. The intuition behind this
re-weighting process is to model the current residual rt as
a summation of the regression function f t and the subse-
quence residual rt+1

i that is assumed to be a Gaussian ran-
dom variable with zero mean and variance σ2

n. Then, Equa-
tion (22) explicitly induces the re-weighting process. Note
that the computation of predictive mean of test input can be
utilized in the CRT prediction framework as described in
Algorithm 2.

2.3. Features & learning split functions

The shape-indexed difference of Gaussian (DoG) fea-
tures are extracted as follows: (1) smoothing images with
Gaussian filters at various scales as depicted in Figure 2–
(a), (2) computing the similarity transform that maps a mean
shape to the shape estimate, (3) applying similarity trans-
form into local retinal sampling patterns [1] as depicted in
Figure 2–(b), (4) computing global coordinates using trans-
formed local retinal sampling patterns and the reference
shape estimate, and (5) extracting Gaussian filter responses
by taking pixel values at the global coordinates on Gaussian
smoothed images corresponds to scale parameter of each
sampling point.

Here, the difference of extracted two Gaussian filter re-
sponses is a shape-indexed DoG feature which eventually
computes the response of predefined DoG filter as depicted
in Figure 2–(c). Note that by applying similarity trans-
form into the local retinal sampling patterns, computation
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Figure 2. A extraction procedure of the shape-indexed DoG features: (a) Smoothed images using Gaussian filters at various scales, (b) Local
retinal sampling pattern, where green dots and red circles represent sampling points and standard deviations for corresponding Gaussian
filters, respectively (each sampling point is assigned to particular smoothing scale which is determined to be proportional to the distance
between the local sampling point and the center point), and (c) DoG filters that are computed in practice during the feature extraction
procedure.

Figure 3. Counts of smoothing scale selections for split functions
at different stages. Only two smoothing scales, the outermost and
innermost except the center, are illustrated for better visualization.

of shape-indexed DoG features does not involve to trans-
form whole image but transforms only sparse coordinates
[5]. Also, computational complexity to obtain Gaussian-
smooth images is not too high because smoothing process
is performed only once: prior to the learning procedure.

The tree of cGPRT is learned with a single facial land-
mark [17]: the split functions of the tree are learned by
randomly sampling thresholds and the DoG features refer-
enced by l-th facial landmark. In order to obtain more dis-
criminative split function, several split functions are tested
and the best performing split function is selected. The per-
formances of the split functions are measured in terms of
squared loss on l-th facial landmark. Note that this proce-
dure only learns split functions of the trees, and regression
outputs are learned using cGPRT.

The learned trees at earlier stages tend to use the shape-
indexed DoG features computed from distant sampling
points while the trees at later stages tend to use the fea-

tures computed from nearby sampling points as depicted in
Figure 3. This is due to that the distant sampling points are
more stable against shape estimate errors than the nearby
sampling points because it cover larger regions. The nearby
points are less stable than the distant sampling points, but
much more discriminative when the shape estimate is ac-
curate. Thus, in the learning procedure, the shape-indexed
DoG features allows for each tree to adoptively select more
reliable features respect to the current shape estimate error.

3. Experiments

The objectives of our experiments are two-folds: (1) to
compare cGPRT using shape-indexed features with state-
of-the-art methods, and (2) to verity two key elements of
the proposed method: cGPRT and the shape-indexed DoG
features.

3.1. Experimental settings

Implementation details To obtain the training data, face
images are firstly cropped using the bounding boxes from
Viola & Jones face detector [19] as [13]. Then, shape es-
timates are initialized into randomly sampled ground truth
shapes from the other training data points. This initializa-
tion process is repeated twenty times for each face image
in the training procedure. In prediction, we used the mean
shape obtained from the training data points for the initial-
ization.

We consider two configurations: (1) “cGPRT” config-
uration which is configured to give lower mean error but
slower prediction and (2) “cGPRTfast” configuration which
is configured to give faster prediction time but higher mean
error. In cGPRT configuration, the number of trees for each
GPRT and the number of GPRTs are set to M = 10 and
T = 500, respectively. The cGPRT is formed by a two-
level cascading of GPRTs likes [4, 5, 13, 17], and the num-



Dataset ESR [5] RCPR [4] SDM [20] EST [13] LBF [17] cGPRT
LFPW (29 landmarks) 3.47 3.50 3.49 3.80 3.35 3.51
HELEN (194 landmarks) 5.70 6.50 5.85 4.90 5.41 4.63
300-W (68 landmarks) 7.58 - 7.52 6.40 6.32 5.71

Table 1. Comparison of accuracy between the cGPRT and state-of-the-art methods on LFPW, HELEN and 300-W datasets.

Method Error std fps
ESR [5] 7.58 - 120
SDM [20] 7.52 - 70
EST [13] 6.40 - 1000
LBF [17] 6.32 - 320
LBFfast [17] 7.37 - 3100
cGPRT 5.71 0.06 93
cGPRTfast 6.32 0.07 871

Table 2. Detailed comparison of prediction time and accuracy be-
tween cGPRT and state-of-the-art methods on 300-W dataset.

ber of first level cascade stages and the number of second
level cascade stages are set to 100 and 5, respectively. Note
that the total number of trees is same with the numbers used
in [4, 5, 13]. In cGPRTfast configuration, the number of
trees for each GPRT and the number of GPRTs are set to
M = 10 and T = 100, respectively. And the number of first
level cascade stages and the number of second level cascade
stages are set to 10 and 10, respectively. For both configu-
rations, the depth of trees is set to 5 that is also same value
used in [4, 5, 13]. Each split function is learned through
200 trials, and the number of smoothing scales is set to 8.
The number of retinal sampling points per smoothing scale
is set to 6, and the resulting number of sampling points is
6 × 7 + 1 = 43 for each facial landmark. All experiments
are performed on single core on i5-3570 3.40GHz CPU.

Datasets Most of the experimental results are reported on
the 300-W [18] dataset that is considered as the most chal-
lenging dataset. We also provide the comparison results
with state-of-the-art methods on the LFPW [2] and HELEN
[14].

• LFPW (29 landmarks): The LFPW [2] dataset con-
sists of 1, 132 images for training and 300 images for
testing. The LFPW dataset provides the URLs that link
to images, and the some URLs are broken. We are only
possible to collect 778 training images and 216 test im-
ages which make the direct comparison with the previ-
ously proposed methods are not possible.

• HELEN (194 landmarks): The HELEN [14] dataset
consists of 2, 330 high-resolution images with dense
194 facial landmark annotations. The HELEN dataset
provides a data division: 2, 000 for training and 330
for testing.

• 300-W (68 landmarks): The 300-W [18] is extremely
challenging due to the large variations in pose, expres-
sion, illumination, background, occlusion, and image
quality. It is created from existing popular datasets,
including the LFPW [2], AFW [23], HELEN [14],
XM2VTS [15], and the new dataset IBUG [18]. In
our experiments, the whole dataset is split into train-
ing and test images, following the previous work [17].
The training images consist of the AFW dataset and
the training sets of the LFPW and HELEN datasets.
The test images consist of the IBUG dataset and the
test images of the LFPW and HELEN datasets. The
number of images in the training and testing sets are
3,148 and 689, respectively.

Evaluation metric We measured the shape estimation er-
ror as a fraction of inter-ocular distance defined as the dis-
tance between ground truth shape and shape estimate nor-
malized by the distance between two pupils. For all experi-
ments, we reported averaged performances over 10 trials to
reduce the effect of the randomness.

3.2. Comparison with state-of-the-art methods

We compared cGPRT using shape-indexed DoG features
with the following state-of-the-art methods: explicit shape
regression (ESR) [5], robust cascade pose regression [4], su-
pervised descent method (SDM) [20], ensemble of regres-
sion trees (ESR) [13], and regression local binary features
(LBF) [17].

The comparison results are summarized in Table 1 and
2. The experimental results on HELEN and 300-W datasets
showed that cGPRT outperformed all other methods includ-
ing EST and LBF which are the two leading methods on
face alignment. The performance improvement was much
larger on the 300-W dataset which is the most challenging
dataset, and this demonstrated the better generalization of
cGPRT than the others. The example results are depicted in
Figure 6. The cGRPTfast, configured to give faster predic-
tion time but higher mean error, provided faster prediction
and same mean error compared with LBF [17].

The cGPRT performed comparatively compared to other
state-of-the-art methods on the LFPW dataset. However,
the LFPW dataset only provides links to the faces images,
and the number of broken links vary year to year. It was
not possible to make direct comparison to the previously
proposed methods.



Figure 4. Comparison results on the 300-W dataset between the
various regularization methods: the proposed cGPRT, shrinkage,
averaging, and Ridge regression based method.

3.3. Comparison with regularization methods

To verify the effectiveness of cGPRT, we compared cG-
PRT with the three base-line regularization methods used in
ERT [13] and LBF [17]. The first and second methods are
shrinkage and averaging, respectively, used in ERT. Third
method is Ridge regression based regularization method
used in LBF. We fixed the features to be the shape-indexed
DoG features, and the parameters for each method are set to
the same values with the original paper except the number
of trees and the depth of trees. These parameters are not
changed for the fair comparison, and the cGPRT configura-
tion is used for the experiment.

The comparison results are depicted in Figure 4. The
proposed cGPRT outperformed all the base-line regulariza-
tion methods. We obtained similar performance for shrink-
age and averaging methods as reported in [13]. Note that
with the same feature extraction method, all methods have
same computational complexity for prediction.

3.4. Comparison with features

To verify the effectiveness of the proposed shape-
indexed DoG features, we compared with the two base-
line shape-indexed features used in ERT and LBF. The first
method samples the local pixel coordinates in randomly
(RND) and selects relevant features using the exponential
priors [13] (RND+EXP). The second method also samples
the local pixel locations in randomly and learns the split
functions to fit the single facial landmark errors using the lo-
cal regions around the landmark (RND+LOCAL). We fixed
the regression method and the number of sampling points to
cGPRT and 68 × 43 = 2924, respectively, and the cGPRT
configuration is used for the experiment.

Figure 5. Comparison results on the 300-W dataset between the
various feature extraction methods: the proposed shape-indexed
DoG features (proposed), the randomly sampled shape-indexed
pixel difference features with the exponential prior based feature
selection method (RND+EXP) [13] and the local tree learning
method (RND+LOCAL) [17].

The comparison results are depicted in Figure 5. The
proposed shape-indexed DoG features performed best with
large amount of error reduction. All feature extrac-
tion methods consider the locality to obtain discriminative
trees, however, the difference is come from the correla-
tion among the trees. The shape-indexed DoG features and
RND+LOCAL method learn trees using a single facial land-
mark, and this reduces the correlation among the trees that
can lead to performance improvement.

4. Conclusion
For the face alignment, cGPRT using shape-indexed

DoG features has been proposed. The cGPRT is constructed
by combining a set of GPRTs and learned in a greedy stage-
wise manner. We have described the predictive mean of
cGPRT can be computed in the CRT framework with bet-
ter generalization. Further more, we have described the
shape-indexed DoG features that are designed through dif-
ference of Gaussian filter responses computed on local reti-
nal patterns referenced by shape estimates. The cGPRT us-
ing the shape-indexed DoG features has shown the best per-
formances on the HELEN and 300-W datasets.
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