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Learning semantic attributes for person re-identification and description-
based person search has gained increasing interest due to attributes’ great
potential as a pose and view-invariant representation. However, existing
attribute-centric approaches have thus far underperformed state-of-the-art
conventional approaches. This is due to their non-scalable need for ex-
tensive domain (camera) specific annotation. In this paper we present a
new semantic attribute learning approach for person re-identification and
search. Our model is trained on existing fashion photography datasets –
either weakly or strongly labelled. It can then be transferred and adapted
to provide a powerful semantic description of surveillance person detec-
tions, without requiring any surveillance domain supervision. The result-
ing representation is useful for both unsupervised and supervised person
re-identification, achieving state-of-the-art and near state-of-the-art perfor-
mance respectively. Furthermore, as a semantic representation it allows
description-based person search to be integrated within the same framework.

Person re-identification (re-id) and description-based search are crucial
tasks in visual surveillance. They underpin many fundamental applications
including multi-camera tracking, crowd analysis and forensic search. Both
tasks aim to retrieve images of a specific person, but differ in the query
used. Person re-identification queries using an image from a different view
(e.g., in multi-camera tracking), while person search uses a textual person
description (e.g., eyewitness description). Despite extensive research [3, 6],
these tasks remain unsolved due to various challenges including the vari-
ability of viewpoints, illumination, pose, partial occlusion, low-resolution
and motion-blur [2].
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SDC [9] 25.1 44.9 56.3 70.9 15.1 25.4 31.8 40.9 23.7 38.4 46.1 58.5

SDALF [1] 19.9 38.9 49.4 65.7 9.9 22.6 30.3 41.0 17.4 30.9 40.8 55.2

Our unsupervised 27.7 55.3 68.3 79.7 23.3 35.8 46.6 60.7 28.5 48.9 59.6 71.3

fu
se

d SDC Final (eSDC) [9] 26.7 50.7 62.4 76.4 19.7 32.7 40.3 50.6 25.5 40.6 48.4 61.4

Our unsupervised Final 29.3 52.7 66.8 79.7 22.4 35.9 47.9 64.5 29.0 49.4 58.4 69.8

Table 1: Person re-id performance evaluated by matching accuracy @ rank r
(%): unsupervised learning approaches. The best results for single-cue and
fused-cue methods are highlighted in bold separately.
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KML [7] 32.3 65.8 79.7 90.9 24.0 38.9 46.7 55.4 32.4 54.4 62.4 69.6

KISSME [5] 19.6 48.0 62.2 77.0 8.4 25.1 38.7 50.2 26.5 47.8 57.6 68.5

SCNCD [8] 33.7 62.7 74.8 85.0 - - - - 41.5 66.6 75.9 84.4

Our supervised 31.1 68.6 82.8 94.9 32.7 51.2 64.4 76.3 43.1 70.5 78.2 86.3
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KML Final [7] 36.1 68.7 80.1 85.6 - - - - - - - -

SCNCD Final [8] 37.8 68.6 81.0 90.5 - - - - 41.6 68.9 79.4 87.8

Our supervised Final 41.6 71.9 86.2 95.1 31.5 52.5 65.8 77.6 44.9 71.7 77.5 86.7

Table 2: Matching accuracy @ rank r (%): supervised learning approaches
on re-id.

In this paper we contribute a new framework that is capable of learning a
semantic attribute model from existing fashion datasets, and adapting the re-
sulting model to facilitate person re-identification and search in the surveil-
lance domain. In contrast to most existing approaches to attribute detection
which are based on discriminative modelling, we take a generative mod-
elling approach based on the Indian Buffet Process (IBP) [4]. The genera-
tive formulation provides key advantages including: joint learning of all at-
tributes; ability to naturally exploit weakly-annotated (image-level) training
data; as well as unsupervised domain adaptation through Bayesian priors.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Visualisation of our model output. Each patch is colour-coded to
show the inferred dominant attribute of two types.

Importantly a IBP-based model provides the favourable property of combin-
ing attributes factorially in each local patch. This means that our model can
differentiate potentially ambiguous situations such as Red-Shirt+Blue-Jeans
versus Red-Jeans+Blue-Shirt (See Fig. 2). Moreover, with this representa-
tion, attribute combinations that were rare or unseen at training time can be
recognised at test time so long as they are individually known (e.g. Shiny-
Yellow-Jeans).

Our framework overcomes the significant problem of domain shift be-
tween fashion and surveillance data in an unsupervised way by Bayesian
adaptation. It can exploit both strongly and weakly annotated source data
during training, but is always able to produce a strong (patch-level) attribute
prediction during testing (See Fig. 1). The resulting representation is highly
person variant while being view-invariant, making it ideal for person re-id,
where we obtain state-of-the-art results (See Table 1 and Table 2). More-
over, as the representation is semantic (nameable or describable by a hu-
man), we are able to unify description based person search within the same
framework, where we also achieve state-of-the-art results.
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Figure 2: Person search qualitative results. The top ranked images for each
query are shown. Red boxes are false detections.
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