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MPI Tübingen

andreas.geiger@tue.mpg.de

Abstract

Stereo techniques have witnessed tremendous progress
over the last decades, yet some aspects of the problem still
remain challenging today. Striking examples are reflect-
ing and textureless surfaces which cannot easily be recov-
ered using traditional local regularizers. In this paper, we
therefore propose to regularize over larger distances us-
ing object-category specific disparity proposals (displets)
which we sample using inverse graphics techniques based
on a sparse disparity estimate and a semantic segmentation
of the image. The proposed displets encode the fact that
objects of certain categories are not arbitrarily shaped but
typically exhibit regular structures. We integrate them as
non-local regularizer for the challenging object class ’car’
into a superpixel based CRF framework and demonstrate
its benefits on the KITTI stereo evaluation. At time of sub-
mission, our approach ranks first across all KITTI stereo
leaderboards.

1. Introduction
“In many cases it is sufficient to know or conjecture that

an object exhibits certain regularities in order to correctly
interpret its perspective image as a 3D shape.”

Hermann von Helmholtz, 1867

Since David Marr’s influential investigations into the hu-
man representation and processing of visual information
[39], stereo matching has been considered primarily a low-
level process that builds upon bottom-up representations
like Marr’s primal sketch. And indeed, the vast majority
of binocular stereo matching algorithms that have been pro-
posed in the literature rely on low-level features in combi-
nation with relatively simple first or second order smooth-
ness assumptions about the world. Little is known about the
importance of recognition for this problem and the leading
entries in current benchmarks such as Middlebury [50] or
KITTI [13] even completely ignore semantic information.
This is in stark contrast to current trends in single image
reconstruction [8, 19, 32, 35, 49] where recognition plays a
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Figure 1: Resolving Stereo Matching Ambiguities: Cur-
rent state-of-the-art stereo methods often fail at reflecting,
textureless or semi-transparent surfaces (top, [68]). By us-
ing object knowledge, we encourage disparities to agree
with plausible surfaces (center). This improves results both
quantitatively and qualitatively while simultaneously recov-
ering the 3D geometry of the objects in the scene (bottom).

central role. Thus how important are Helmholtz’s early ob-
servations [59] for binocular stereo matching after all?

In this paper we investigate the utility of mid-level pro-
cesses such as object recognition and semantic segmenta-
tion for stereo matching. In particular, we focus our atten-
tion on the reconstruction of well-defined objects for which
the data term is weak and current methods perform poorly,
such as cars. Due to their textureless, reflective and semi-
transparent nature, those object categories represent a ma-
jor challenge for current state-of-the-art algorithms, as il-
lustrated in Fig. 1 (top). While the reconstruction of purely
specular surfaces has been successfully demonstrated using
multiple frames [21,62], such techniques are hard to employ
in our setting due to the superposition of several deteriorat-
ing visual effects in real-world scenes.

In contrast, as humans we are able to effortlessly extract
information about the geometry of cars even from a single

1



image thanks to our object knowledge and shape represen-
tation. Inspired by this fact, we introduce object knowledge
for well-constrained object categories into a slanted-plane
MRF and estimate a dense disparity map. Towards this
goal, we leverage semantic information and inverse graph-
ics to sample a set of plausible object disparity maps given
an initial semi-dense disparity estimate. We encourage the
presence of these 2.5D shape samples (or “displets”) in our
MRF formulation depending on how much their geometry
and semantic class agrees with the image observations. Our
experiments indicate that the proposed framework is able to
resolve stereo ambiguities on challenging stereo pairs from
the KITTI benchmark as illustrated in Fig. 1 (center). At
the same time our method is able to extract 3D object repre-
sentations which are consistent with the estimated disparity
map and may serve as input to higher-level reasoning, see
Fig. 1 (bottom) for an illustration. In combination with re-
cently proposed deep features [68], our model ranks first in
all KITTI stereo evaluation tables. We make our code and
object annotations available on our project website1.

2. Related Work

As one of the oldest and most fundamental problems in
computer vision [22], computational stereo has witnessed
great progress making it nowadays an attractive alternative
to costly laser scanners for outdoor environment perception,
e.g., in autonomous driving [11, 12]. The recent success
of stereo methods can be attributed to the development of
benchmarks such as Middlebury [50]. More recently, the
KITTI benchmark [13] has pushed limits even further by
providing a larger and more realistic stereo dataset with
meaningful object classes and ground truth annotations.

Local stereo methods [14, 20, 23, 27, 37, 46, 50, 67] of-
ten fail in challenging scenarios as they suffer from match-
ing ambiguities in weakly textured, saturated or reflec-
tive regions. Thus, recent efforts mainly focus on global
methods [2, 16, 40, 41, 54, 60] which are able to over-
come some of these problems by imposing smoothness
constraints between adjacent pixels or superpixels. On
the pixel-level, approaches based on semi-global matching
(SGM) [17, 18, 52, 53] enjoy great popularity due to their
computational efficiency, accuracy and simplicity. As first-
order approaches such as SGM are not able to express pla-
narity priors, second-order models have recently been in-
vestigated either by introducing triple cliques into the for-
mulation [63], by increasing the parameter space [34,43] or
by following a total generalized variational (TGV) approach
[30, 45]. In contrast, superpixel-based methods [51, 64–66]
model each entity as a slanted plane, thus enforcing pla-
narity implicitely and allowing for larger ranges of interac-
tion, depending on the size of the superpixels. In this paper,

1http://www.cvlibs.net/projects/displets/

we follow this second line of work, but go beyond pairwise
interactions by modeling constraints connecting up to sev-
eral hundred superpixels.

Planes, B-splines and quadratic surfaces have been pro-
posed in [3–5, 24, 69] to better constrain the underlying
problems and simplify inference. Given a set of geomet-
ric proposals, the stereo matching problem can be cast as a
discrete labeling problem where each pixel is assigned to a
proposal. This allows the application of standard tools for
discrete optimization such as belief propagation or graph
cuts. While promising, such regularizes ignore the semantic
context which heavily constrains the shape of the geometric
primitives. In contrast, the method proposed in this paper
explicitely conditions on the semantic class, thus allowing
for richer geometries and interactions spanning a larger re-
gion in the image.

While the mutual benefits of recognition and reconstruc-
tion have been shown using simple priors and multiple
views [15,29], little work has addressed the binocular stereo
problem in this context with notable exceptions [33,48,61].
Saxena et al. [48] proposed to directly integrate depth-
from-appearance constraints into the data term. In contrast,
Ladicky et al. [33] model stereo estimation and semantic
segmentation jointly by learning the dependency between
height over ground and the semantic class. Wei et al. [61]
follow a data-driven approach which directly transfers dis-
parity information from regions with similar appearance in
the training data using SIFT flow [36]. Unfortunately, the
nature of interaction in these models is very local and thus
cannot constrain large ambiguous regions well enough. We
thus propose to leverage object knowledge, akin to [1, 7]
where geometric priors are used to improve multi-view re-
construction for single objects. In contrast to [1,7], the num-
ber of objects is unknown in our case. We jointly infer the
disparity map, the number of objects and their geometry.

The proposed method also borrows ideas from binary
segmentation approaches leveraging pattern-based poten-
tials [26,42,47] to encourage plausible label configurations.
While our displet masks can be interpreted as pattern poten-
tials, we differ in that we optimize a continuous label space
and model interactions far beyond the typical 10× 10 pixel
patches used in segmentation approaches.

3. Stereo Matching using Displets
In this paper, we tackle the classical task of binocular

stereo matching. That is, given the left and right images
of a synchronized, calibrated and rectified stereo camera,
we are interested in estimating the disparity at each pixel
of the reference image (e.g., left image). We assume that
the image can be decomposed into a set of planar superpix-
els which we obtain using the StereoSLIC algorithm [65].
In addition to unary and pairwise constraints, we also in-
troduce long-range interactions into our model using dis-
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Figure 2: Illustration of Displets: We sample 3D CAD
model configurations ξk (top+center) and extract the plane
parameters N̂k = (n̂k,1, . . . , n̂k,|Sk|)

T of the correspond-
ing displet k ∈ D by fitting planes to the rendered disparity
map for all involved superpixels Sk (bottom).

plets, a set of physically plausible disparity maps of a cer-
tain semantic class, associated with an image mask and a
score (see Section 4 for further details). Intuitively, displets
can be thought of as a representative finite subset of the in-
finitely large set of disparity maps for that class conditioned
on the image. For example, car displets should cover the
most likely 3D car shapes given the two input images. In
this section, we show how displets can be incorporated as
soft constraint into a CRF model. This allows us to jointly
optimize for the displets and the disparity map in a princi-
pled manner.

More formally, let S and D denote the set of super-
pixels and displets in the reference image. Each super-
pixel i ∈ S is associated with a region Ri in the image
and a random variable ni ∈ R3 describing a plane in 3D
(nTi x = 1 for x ∈ R3 on the plane). Each displet k ∈ D
is associated with its class label ck ∈ L\{background},
a fitness value κk ∈ R, a set of superpixels Sk ⊆ S on
which it is defined and the corresponding plane parameters
N̂k = (n̂k,1, . . . , n̂k,|Sk|)

T . The plane parameters are ob-
tained by local plane fitting to the rendered disparity map
of the corresponding CAD model (Fig. 2). An additional
random variable dk ∈ {0, 1}, which can be interpreted as
auxiliary variable in a high-order CRF, denotes the pres-
ence (dk = 1) or absence (dk = 0) of the displet in the
scene. Furthermore, we assume that we have access to a
rough semantic segmentation of the image S ∈ LW×H with
|L| the number of semantic labels2 and W × H the image
dimensions. We obtain this segmentation using ALE [31]
and refer the reader to Section 5 for further details.

Given the left and right image, our goal is to infer all
superpixel plane parameters ni as well as the presence or
absence of all displets dk in the scene. We specify our CRF

2While keeping our exposition general, we only consider “car” vs.
“background” in our experiments as cars are the most challenging object
category in KITTI while still sufficiently restricted in terms of geometry.

in terms of the following energy function

E(n,d) =
∑
i∈S

ϕSi (ni) +
∑
i∼j

ψSij(ni,nj) +

∑
k∈D

ϕDk (dk) +
∑
k∈D

∑
i∈Sk

ψDki(dk,ni) (1)

where n = {ni|i ∈ S} and d = {dk|k ∈ D} and i ∼ j
denotes the set of adjacent superpixels in S.

3.1. Data Term

The data term models the fact that corresponding points
in the left and right image should be similar in appearance.
While many options are possible, we simply penalize devia-
tions from an initial sparse disparity map Ω̂, calculated with
a semi-dense feature matching algorithm:

ϕSi (ni) =
∑

p∈Ri∩ Ω̂+

ρτ1(ω(ni,p)− ω̂(p)) (2)

Here, Ω̂+ denotes the set of valid pixels in Ω̂, ω(ni,p)
is the disparity of plane ni at pixel p, and ω̂(p) repre-
sents the value of the reference disparity map Ω̂ at pixel
p. Note that given the calibration parameters, the function
ω(ni,p) is straightforward to derive and we specify all nec-
cessary details in the supplementary material. To account
for outliers, we chose ρτ (·) as the robust l1 penalty function
ρτ (x) = min(x, τ). In Section 5 we further evaluate and
compare two state-of-the-art feature matching algorithms
which yield the initial sparse disparity map Ω̂.

3.2. Local Smoothness

We encourage local smoothness in our formulation by
penalizing discontinuities at superpixel boundaries as well
as by encouraging similar orientations of adjacent superpix-
els. In particular, our smoothness term decomposes as

ψSij(ni,nj) = θ1

∑
p∈Bij

ρτ2 (ω(ni,p)− ω(nj ,p)) +

θ2 ρτ3
(
1− |nTi nj |/(‖ni‖‖nj‖)

)
(3)

where Bij denotes the set of shared boundary pixels be-
tween superpixel i and superpixel j and the other functions
are defined as above. The weights θ1, θ2 control the im-
portance of each term with respect to the other terms in
Eq. 1. Inspired by contrast-sensitive smoothness priors, we
downweight θ1 and θ2 if neighboring superpixels i and j
are likely to be separated by an occlusion boundary. This
likelihood is computed by simply detecting large changes
in the gradient of the input disparity map Ω̂.

3.3. Displet Potentials

In order to encode long-range interactions, we intro-
duce displet potentials which encourage plausible geome-
tries in regions corresponding to a certain semantic class.



The unary potential for displet dk is defined as

ϕDk (dk) = −θ3 [dk = 1] · (|[S = ck] ∩Mk|+ κk) (4)

where [·] denotes the (element-wise) Iverson bracket, Mk

represents the pixel mask corresponding to the set of super-
pixels Sk, and κk is a fitness score assigned to displet k (see
Section 4 for further details). Intuitively, this potential tries
to explain as many regions in the image which have been
assigned the semantic class label ck using displets whose
shape corresponds to typical objects in class ck.

Furthermore, we define a potential between each displet
and all superpixels it comprises as follows

ψDki(dk,ni) = λki [dk = 1] · (1− δ(ni, n̂k,zi)) (5)

where zi denotes the index of the plane corresponding to
superpixel i in Nk and δ(·, ·) = 1 if both arguments are
equivalent and 0 otherwise. Further, λki is a penalty value
which takes λki =∞ inside the object (hard constraint) and
λki < ∞ at the object boundaries (soft constraint) to bet-
ter account for inaccuracies in the displet mask Mk. While
many choices are possible, we define λki as a sigmoid func-
tion of the distance transform of Mk and estimate its pa-
rameters from training data. It is important to note that the
hard constraint avoids evidence undercounting, i.e., it en-
sures that displets don’t overlap and explain the same region
in the image.

3.4. Inference

Minimizing Eq. 1 is a non-convex mixed continuous-
discrete optimization problem which is NP-hard to solve.
We leverage greedy max-product particle belief propagation
(MP-PBP) [44,55] with sequential tree-reweighted message
passing (TRW-S) [25] using 30 particles and 50 iterations
to find an approximate solution. At every iteration, plane
particles are sampled from a normal distribution around the
previous MAP solution and using the plane parameters of
spatially neighboring superpixels. Both strategies comple-
ment each other and we found their combination important
for efficiently exploring the search space. To ensure that
displets are selected with non-zero probability, we augment
the proposal set for a superpixel by the plane parameters of
all overlapping displets. We initialize all superpixel planes
using the StereoSLIC algorithm [65].

4. Rapid Inverse Graphics
This section describes how we subsample the infinitely

large space of disparity maps using inverse graphics, yield-
ing the set of displets D used in the previous section. We
make use of MCMC to draw a set of representative samples
corresponding to a certain object category (e.g., cars). In
contrast to [38], our generative process produces disparity
maps from CAD models using the camera intrinsics. Our

(a) 3D Warehouse Model (b) Semi-Convex Hull

(c) QSlim (d) MATLAB

Figure 3: Mesh Simplification. For efficient rendering, we
simplify 3D CAD Models with∼100k faces (a) by a smooth
semi-convex approximation using 1k faces only (b). The
application of generic mesh simplification algorithms using
the same number of faces produces undesirable holes and
self-intersections in the mesh as illustrated in (c+d).

likelihood model compares the rendered disparity map with
the input disparity map Ω̂ and returns a score depending on
the level of agreement. This makes our algorithm invariant
to the actual image intensities which are hard to model in a
generative way, in particular in the presence of reflecting or
translucent surfaces.

4.1. Semi-Convex Hull

We start with a set of representative CAD models from
Google 3D Warehouse3 which capture most of the 3D shape
variability of the object category. Unfortunately, CAD mod-
els downloaded from Google Warehouse are not directly
applicable as they are often designed with love of detail re-
sulting in hundreds of thousands of vertices and faces, slow-
ing down the rendering process significantly. We found that
tools like MATLAB’s reducepatch function4 or QSlim
[10] are not able to simplify these models to an affordable
level of detail without introducing holes or artifacts as illus-
trated in Fig. 3. In this section, we thus propose a simple
method which reduces a CAD model of geometrically sim-
ple classes such as cars to around 1000 faces while preserv-
ing the hull of the object and removing all interior elements
which are not affecting the rendered depth map.

We initialize a mesh using the convex hull of the object
and gradually relax it to a smooth approximation, subject
to the constraint that the volume of the model comprises
all surface points. We call this representation the “semi-
convex hull” of an object. In particular, we minimize the
squared point-to-point distances between all vertices of the
mesh and densely sampled points on the original 3D model.

3https://3dwarehouse.sketchup.com/
4http://www.mathworks.de/help/matlab/ref/reducepatch.html

https://3dwarehouse.sketchup.com/
http://www.mathworks.de/help/matlab/ref/reducepatch.html


Algorithm 1: Mesh Simplification
Input: 3D CAD model
Output: Semi-convex hull (M,x)

1 P ← draw samples from 3D CAD model
2 (M,x)← convex hull of 3D CAD model
3 (M,x)← remeshing of (M,x) using [9]
4 while not converged do
5 x← x− γ∇E(x)
6 if P * Vol(M,x) then
7 α← min({α > 0 | P ⊆ Vol(M, αx)})
8 x← (α+ ε)x
9 (M,x)← remeshing of (M,x) using [9]

10 (M,x)← simplification of (M,x) using [10]

More formally, let P denote the set of 3D points obtained
by uniformly sampling a large number of 3D points from
the union of all surfaces of the object (full resolution CAD
model). Let furtherM = {V,F} denote a mesh with ver-
tices V , facesF and edges E(F). Each vertex i ∈ V is asso-
ciated with a variable xi ∈ R3 specifying the location of the
vertex. We initializeM and x = {xi|i ∈ V} by uniformly
remeshing the object’s convex hull using isotropic surface
remeshing [9] and formulate our objective as minimizing

E(x) =
∑
i∈V
‖xi − nn(xi)‖2 +

∑
(i,j)∈E

(
‖xi − xj‖2 − l̄0

)2

s.t. P ⊆ Vol(M,x) (6)

where nn(xi) denotes the nearest neighbor of xi in P , l̄0 is
the average edge length of the initial mesh, and Vol(M,x)
denotes the set of 3D points inside the mesh. We solve Eq. 6
using gradient descent and enforce the closure constraint
P ⊆ Vol(M,x) by mesh rescaling and uniform remeshing
on violation. After convergence, we obtain a smooth semi-
convex hull of the object which we simplify to 1k faces us-
ing QSlim [10]. See Algorithm 1 for further details.

4.2. Sampling the Space of Displets

For a given object category c, we are interested in sub-
sampling the space of plausible displets given a semi-dense
disparity image Ω̂, a semantic segmentation S, and the
semi-convex hull of all CAD models of this object category.
We approach this inverse graphics problem using MCMC,
i.e., we sample pose parameters ξ ∈ SE(3) directly from
the observation model p(ξ|Ω̂) ∝ exp(−EΩ̂(ξ)) with

EΩ̂(ξ) =
∑

p∈Ω̂+∩O

min (|ω̄(p, ξ)− ω̂(p)|, τ1)

|Ω̂+ ∩ O|

+ β
∑

p∈Ω̂+

[ω̄(p, ξ) > ω̂(p) + τ2] (7)

Here, O denotes a 2D object instance in the image, ω̄(p, ξ)
is the disparity of the CAD model in pose ξ rendered at

pixel p, and β, τ1, τ2 > 0 are parameters of the model.
Intuitively, EΩ̂(ξ) encourages displets to explain all pix-
els within object region O in terms of disparity (first term)
while avoiding the occlusion of other objects (second term).
In principle, the use of object proposalsO could be avoided
by directly sampling according to the semantic labeling S,
but we found instance level information to improve the di-
versity of the displet set. While a large number of generic
object proposal algorithms [6, 28, 56, 70] can be applied to
obtain the set of object proposal regions {O}, we found a
much more simple strategy to be sufficient for our goals:
First, we project all valid pixels of class c (p ∈ Ω̂+ ∩ [S =
c]) into 3D. Next, we apply kernel density estimation (KDE)
along the principal coordinate axes x and z of the camera.
As object boundaries frequently coincide with minima of
the KDE, we propose one object region O for each pair of
adjacent minima by projecting all 3D points in this range
back into the image. It is important to note that we do not
assume precise object boundaries for the proposals due to
the robust term in Eq. 7.

We run one Markov chain for each combination of
CAD models and object proposals using Metropolis-within-
Gibbs (MWG) sampling (5.000 iterations) with randomly
chosen blocks. For each combination, we select the 8 most
dominant modes after burn-in and combine all results to
yield the final set of displets. An illustration is given in
the supplementary material. As our semi-convex mesh has
a low number of vertices and faces, we are able to draw a
large number of samples on commodity graphics hardware.
In practice, we achieve ∼ 8200 fps on a single NVIDIA
Quadro 4000 GPU using 12 threads.

5. Experimental Results

This section provides a thorough quantitative and quali-
tative analysis of the proposed displet model. As the num-
ber of images and objects per category in Middlebury [50]
is too small to allow for a meaningful evaluation, we chose
the more recent and challenging KITTI stereo dataset [13]
as testbed for our experiments. Following the KITTI evalu-
ation protocol, we perform all ablation studies on the train-
ing set from which we randomly select 50 images for train-
ing the parameters in our model. The remaining images
are used for validation. In addition we submit our best per-
forming configuration to the KITTI server for evaluation on
the test set. We perform block coordinate descent on the 50
training images to obtain the model parameters {θ} and {τ}
which we fix throughout all our experiments. For further
details we refer the reader to the supplementary material.

Image Features: We manually annotated the training and
test sets with pixel-wise car versus background labels and
trained the associative hierarchical random fields model
[31] for semantic segmentation. In order to obtain sparse



but high-quality input disparity maps we process all stereo
pairs using the semi-global matching framework [18] fol-
lowed by a simple left-right consistency check to remove
outliers. For calculating the matching costs, we use a com-
bination of Census and Sobel features (“SGM”, [64]), as
well as more recently proposed features based on convolu-
tional neural networks (“CNN”, [68]).

Ablation Study: Our first set of experiments conducted
on the KITTI training set aims at assessing the contribution
of each individual term in our energy. As we expect most
notable improvements at reflective surfaces, we evaluate the
error in all image regions (Table 1b) as well as the error
only in reflective regions (Table 1a) using the KITTI ground
truth. Unless otherwise stated, we report the percentage of
outliers using the default outlier threshold of 3 pixels.

The first row in 1 shows the results of the input disparity
maps, interpolated using the KITTI development kit. The
following rows show our results when using only the unary
term or combining it with one of the pairwise smoothness
terms for superpixel boundaries (“Pair (Boundary)”), ori-
entations (“Pair (Orientation)”) and both (“Pair”), respec-
tively. In combination, both smoothness terms are able to
reduce the error by 16.6% for reflective and by 5.7% for all
image regions considering the better performing CNN fea-
tures. Adding the occlusion sensitive weight further reduces
the error in all image regions but makes results slightly
worse at reflective surfaces. This can be attributed to the
fact that the input disparity maps contain holes and errors at
reflective regions which are sometimes erroneously identi-
fied as occlusion boundaries hence lowering the smoothing
effect for these regions. Finally, adding the proposed dis-
plets to the model dramatically improves the results, reduc-
ing the number of outliers by additional 53.3% in reflective
regions and by 8.6% in all regions.

Next, we evaluate the influence of the number of object
proposals as well as the variety of CAD models used for
generating the displets. For these experiments, we focus
our attention on the reflective regions as those are most af-
fected by limiting the number of displets. As we obtain
a different number of displet proposals in each image, we
randomly draw subsets and plot the error with respect to the
acceptance probability of a displet in Fig. 4 (left). Here,
P = 0 corresponds to the case without displets and P = 1
corresponds to the case when making use of all available
proposals for inference. The performance with respect to
the number of CAD models used is shown in Fig. 4 (right).
For this experiment, we randomly select a subset of models
for each image (ranging from 0 to all 8 models) and discard
all the proposals from all other models. Both plots illustrate
that reasonable results can be obtained with a small number
of displet proposals and 3 models only. However, in both
cases performance keeps increasing when adding more dis-
plets.
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Figure 4: Number of Proposals and Models. This figure
shows the performance in reflective regions when limiting
the number of object proposals (left) and models (right).
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Figure 5: Number of Superpixels. These figures show the
impact when varying the number of superpixels for all re-
gions (left) and for reflective regions (right).
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Figure 6: Convergence of Error and Energy. This figure
shows the decrease in error and energy on all image regions
vs. MP-PBP iterations using CNN (left) and SGM (right).

In Fig. 5, we investigate the impact of the number of
superpixels on the performance of our model. Similarly
to [64], we observe diminishing returns beyond 500 super-
pixels and chose 1000 superpixels as a reasonable trade-
off between accuracy and performance for all other experi-
ments.

As our inference procedure is an iterative process with
runtime linear in the number of iterations we plot the en-
ergy and errors through the iterations to determine the point
of convergence. Fig. 6 shows the average energy and error
over the images in validation set using CNN (left) and SGM
(right) as input disparity maps. As both the error and the en-
ergy stabilize after about 40 iterations, we set the maximum
number of iterations to this value throughout all our experi-
ments.

Results on the KITTI Stereo Benchmark: This section
compares our performance with respect to the current state-



CNN SGM
Out-Noc Out-All Out-Noc Out-All

Input Ω̂ (Interpolated) 19.84 % 22.98 % 22.60 % 25.52 %
Unary Only 17.72 % 21.72 % 19.38 % 23.36 %
Unary + Pair (Boundary) 15.96 % 19.67 % 16.18 % 19.94 %
Unary + Pair (Normal) 17.06 % 20.80 % 18.24 % 21.86 %
Unary + Pair 14.78 % 18.77 % 14.91 % 18.85 %
Unary + Pair + Occ 15.32 % 19.32 % 15.79 % 19.60 %
Unary + Pair + Disp 7.08 % 9.30 % 7.45 % 9.98 %
Unary + Pair + Occ + Disp 7.16 % 9.41 % 7.59 % 10.02 %

(a) Reflective Regions

CNN SGM
Out-Noc Out-All Out-Noc Out-All

Input Ω̂ (Interpolated) 3.35 % 4.28 % 5.13 % 6.08 %
Unary Only 3.31 % 4.60 % 4.71 % 5.96 %
Unary + Pair (Boundary) 3.21 % 4.15 % 4.28 % 5.23 %
Unary + Pair (Normal) 3.28 % 4.31 % 4.52 % 5.60 %
Unary + Pair 3.12 % 3.95 % 4.13 % 4.93 %
Unary + Pair + Occ 3.04 % 3.88 % 4.07 % 4.80 %
Unary + Pair + Disp 2.87 % 3.64 % 3.87 % 4.57 %
Unary + Pair + Occ + Disp 2.78 % 3.55 % 3.76 % 4.50 %

(b) All Regions

Table 1: Importance of Different Terms in the Model. This table shows the performance of various model configurations
on the validation set of KITTI for reflective regions (a) and for all regions (b) using the default error threshold of 3 pixels.

Rank Method Out-Noc Out-All Avg-Noc Avg-All
1 Our Method 8.40 % 9.89 % 1.9 px 2.3 px
2 VC-SF * [57] 11.58 % 12.29 % 2.7 px 2.8 px
3 PCBP-SS [65] 14.26 % 18.33 % 2.4 px 3.9 px
4 SPS-StFl * [66] 14.74 % 18.00 % 2.9 px 3.6 px
5 CoP 15.30 % 19.15 % 2.7 px 4.1 px
6 SPS-St [66] 16.05 % 19.34 % 3.1 px 3.6 px
7 DDS-SS [61] 16.23 % 19.39 % 2.5 px 3.0 px
8 PCBP [64] 16.28 % 20.22 % 2.8 px 4.4 px
9 PR-Sf+E * [58] 17.85 % 20.82 % 3.3 px 4.0 px

10 StereoSLIC [65] 18.22 % 21.60 % 2.8 px 3.6 px
11 MC-CNN [68] 18.45 % 21.96 % 3.5 px 4.3 px
12 PR-Sceneflow * [58] 19.22 % 22.07 % 3.3 px 4.0 px
...

...
...

...
...

62 ALE-Stereo [33] 83.80 % 84.37 % 24.6 px 25.4 px

(a) Reflective Regions

Rank Method Out-Noc Out-All Avg-Noc Avg-All
1 Our Method 2.47 % 3.27 % 0.7 px 0.9 px
2 MC-CNN [68] 2.61 % 3.84 % 0.8 px 1.0 px
3 SPS-StFl * [66] 2.83 % 3.64 % 0.8 px 0.9 px
4 VC-SF * [57] 3.05 % 3.31 % 0.8 px 0.8 px
5 SPS-St [66] 3.39 % 4.41 % 0.9 px 1.0 px
6 PCBP-SS [65] 3.40 % 4.72 % 0.8 px 1.0 px
7 CoP 3.78 % 4.63 % 0.9 px 1.1 px
8 DDS-SS [61] 3.83 % 4.59 % 0.9 px 1.0 px
9 StereoSLIC [65] 3.92 % 5.11 % 0.9 px 1.0 px

10 PR-Sf+E * [58] 4.02 % 4.87 % 0.9 px 1.0 px
11 PCBP [64] 4.04 % 5.37 % 0.9 px 1.1 px
12 PR-Sceneflow * [58] 4.36 % 5.22 % 0.9 px 1.1 px
...

...
...

...
...

...
62 ALE-Stereo [33] 50.48 % 51.19 % 13.0 px 13.5 px

(b) All Regions

Table 2: Quantitative Evaluation on the KITTI Stereo Benchmark. This table shows the KITTI stereo leaderboards at
time of submission using the default error threshold of 3 pixels. Evaluation is performed separately for reflective regions (a)
and for all regions (b) of the KITTI test set. The numbers represent outliers (in %) and average disparity error (in pixels).
Methods marked with an asterisk are scene flow methods which use two or more stereo image pairs as input.

of-the-art. We submitted our results for the KITTI test set
using the best performing configuration according to Ta-
ble 1b (CNN+Full model) to the KITTI evaluation server.
As shown in Table 2, our method ranks first amongst more
than 60 competitors in all evaluation categories. As ex-
pected, our improvements are particularly pronounced in re-
flective regions, but also improve overall performance even
with respect to scene flow methods which take two or more
stereo pairs of the sequence as input. The relatively weak
performance of ALE-Stereo [33] can be attributed to the
simple semantic interaction model as well as the subopti-
mal graph-cuts based inference procedure.

Qualitative Results: Fig. 7 shows some qualitative re-
sults of our method without displets (left column in each
subfigure) as well as our full model including displets (right
column in each subfigure). As evidenced by the error im-

ages in the last row of each subfigure, the proposed displet
significantly reduces errors for the category car in a large
number of images and even in extremely challenging sce-
narios such as the subfigure in row 2, column 2. Two failure
cases are highlighted at the bottom: In the left scene, er-
rors on the caravan increase slightly as our collection of 3D
CAD models doesn’t contain an instance of this rather rare
vehicle type. In the right scene the trunc of the car is extrap-
olated towards the building due to failures in the semantic
segmentation (indicated in green) while the overall recon-
struction of the trunk has improved.

Runtime: Our non-optimized MATLAB implementation
with C++ wrappers requires on average 60 seconds for sam-
pling the displets (parallelized using 12 cores), 5 seconds
for initialization and 2.5 seconds for each of the 40 MP-
PBP iterations, including graph construction (2.2 seconds)



Figure 7: Qualitiative Results. Each subfigure shows from top-to-bottom: The input image, the superpixels and the semantic
segments which our method takes as input (first row), our inference results without and with displets (second row), and the
corresponding error maps from ≤ 1 pixel error in black to ≥ 5 pixels error in white (third row). We mark regions with
big improvements using red and blue rectangles. Two failure cases where the displets do not fit the data in terms of depth
(bottom-left) and shape (bottom-right) are illustrated below the horizontal line.

and TRW-S inference (0.3 seconds). In addition, ALE [31]
requires 3.5 second per binary image segmentation and we
obtain our initial disparity maps in 5 seconds for SGM or
100 seconds for CNN. We thus require 265 seconds in total
for processing a single image using the full model in com-
bination with CNN based matching costs.

Supplementary Material: We encourage the reader to
look at our project website as well as the supplementary ma-
terial5 where we provide an analysis of performance with
respect to variation of parameters, number of particles as
well as additional qualitative results on the KITTI stereo
validation set. The project page also provides two videos
comparing our 3D reconstruction performance to that of
Zbontar et al. [68] and demonstrating the optimization of
the semi-convex hull.

5http://www.cvlibs.net/projects/displets/

6. Conclusion and Future Work

We propose displets as expressive non-local prior for re-
solving ambiguities in stereo matching. By conditioning
on the semantic class of an object, displets provide valu-
able category specific shape information which allows for
regularizing the solution over very large distances in the
image. Our displet model for cars attains state-of-the-art
performance on the challenging KITTI stereo benchmark,
lowering errors in reflective and textureless regions by 50%.
While in this paper we deliberately focused on this particu-
lar object category, we plan to investigate the applicability
of displets to other geometrically well constrained object
classes in the future. Buildings, for instance, often lack tex-
ture but their shape can be well described by a set of planes
or 3D box primitives. Another interesting future direction is
the extension of displets to flowlets for serving as non-local
category specific prior in optical flow and scene flow.

http://www.cvlibs.net/projects/displets/
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