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Abstract

We present a novel, continuous, locally optimal calibra-

tion scheme for use with head-worn devices. Current cal-

ibration schemes solve for a globally optimal model of the

eye-device transformation by performing calibration on a

per-user or once-per-use basis. However, these calibra-

tion schemes are impractical for real-world applications

because they do not account for changes in calibration dur-

ing the time of use. Our calibration scheme allows a head-

worn device to calculate a locally optimal eye-device trans-

formation on demand by computing an optimal model from

a local window of previous frames. By leveraging naturally

occurring interest regions within the user’s environment,

our system can calibrate itself without the user’s active par-

ticipation. Experimental results demonstrate that our pro-

posed calibration scheme outperforms the existing state of

the art systems while being significantly less restrictive to

the user and the environment.

1. Introduction

We are now at the verge of ubiquitously available

consumer-grade head-wearable devices, with Google Glass

serving as an early example. These devices enable new

ways of interacting with the environment but also present

challenges for meaningful interaction with the device. Cur-

rently, the most dominant mode of interaction with head-

worn devices is voice control, which allows for the trigger-

ing of preset tasks. However, this form of control is tedious

for applications such as photography (for example, taking

a controlled snapshot of a scene by zooming in on only a

particular part of the scene; see Figure 1 for an example of

a controlled photo). A natural alternative in controlling the

camera’s viewpoint is to allow the user’s gaze to guide the

photo-taking process. This becomes especially interesting

now that there are cameras available that allow full digital

zoom at the native sensor resolution by only selecting a part

of the sensor for the photo; such a camera is already found

on-board in the Nokia Lumia 1020. For these devices, it is
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Figure 1: A diagram of a photography scenario in which

the captured image’s focal point is controlled by the user’s

gaze.

critical to select the correct sensor region based on the user’s

gaze at the time of capture. We propose a gaze tracking

system for head-worn devices using a user-facing camera

to extract the user’s gaze. In addition, the proposed system

can generally be used to determine the direction of user’s at-

tention by estimating their 3D point of regard (PoR) in the

environment. The PoR can in turn be used for photography,

safety notifications, analyzing user’s social interaction, and

other aids to the human visual system. Our PoR estimation

technique is especially useful to a number of emerging re-

search fields, including those focused upon human behavior

and social interaction; these fields are forced to choose be-

tween overly cumbersome gaze tracking hardware (which

may affect the subjects’ behaviors or interactions) or at-

tempting gaze estimation from face pose alone, losing out

on gaze subtleties from eye-only gaze adjustments [18, 8].

Recent video-based eye tracking systems can be divided

into two groups: 1. Appearance-based methods use the eye
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Figure 2: From left to right: 1) The front view of Google

Glass paired with our custom eye tracking hardware. 2)

The right-side view of the device. 3) A left-side view of

the device. 4) A view of the device through the eyes of the

user; the camera (center of the custom hardware) can focus

as close as 1

2
” away, minimizing the light output required

from the LEDs to produce glints on the corneal surface.

image as a descriptor to obtain the gaze position [26, 13].

This method is sensitive to changes in illumination and

eye/head position, making it prone to errors without careful

calibration. 2. Shape-based methods track portions of the

eye anatomy such as corneal reflection, pupil contour, and

iris contour [15]. Corneal reflection and pupil contour meth-

ods require infrared ray (IR) active illumination [20, 5].

User gaze information is undoubtedly a useful input

mode for controlling head-worn devices , but it is detrimen-

tal to the user’s experience when it is inaccurate. Calibration

between the device and the user’s eye is a critical but sig-

nificant challenge. Take, for example, devices that assume

a glasses-type form factor: even a small adjustment in the

position of the device on the user’s nose inherently changes

its pose. Parameters of the eye which are used for gaze es-

timation also vary on a user-to-user basis. Thus, for gaze

estimation to remain accurate at all times, it is necessary

to constantly update the transformation between the device

and the eye. To address this challenge, we propose a novel

calibration scheme for the head-worn device to allow ac-

curate gaze tracking with a simple head-worn system. The

proposed calibration scheme leverages naturally occurring

regions of interest instead of traditional calibration mark-

ers in order to generalize to arbitrary scenes. This calibra-

tion can be continuously performed during normal use of

the head-worn device, as it does not require any active user

participation. Our calibration operates over a window of re-

cent frames in order to provide a highly accurate, locally

optimal model for the current eye-device transformation.

2. System Overview

Our gaze detection system as shown in Figure 2 contains

a user-facing camera that is used to capture user’s eye move-

ment. IR LEDs are positioned beside the camera to produce

glints on the eye and also produce a dark-pupil effect that

helps differentiate the pupil from the iris [15]. Our sys-

tem also uses a scene-facing camera that captures the user’s

environment synchronously with the user-facing camera.

These cameras are internally calibrated, and their views do

Figure 3: The proposed framework for eye-camera parame-

ters estimation pipeline.

not overlap, similar to the system of Kumar et al. [9]. Our

method (shown in Figure 3) then estimates the user’s gaze

from each pair of frames received from the above system.

Adaptive thresholding is performed on the frames in order

to filter out the IR reflections (glints) and the pupil from the

rest of the eye. The Laplacian of the image is then used to

calculate the pupil’s convex hull. An ellipse is subsequently

fitted to the hull in order to produce the final pupil boundary.

This approach produces an accurate pupil estimate even if

eyelashes, eyelids, or specular reflections slightly occlude

the pupil. With two glints and the projected pupil center

found in the eye image, along with a coarse approximation

of the physical parameters of the system, we are able to suc-

cessfully estimate the user’s gaze.

Once the gaze is found in the coordinate system of the

user-facing camera, it is projected upon the scene-facing

camera’s image plane. Ideally, the projected gaze would

pass through the pixels of the scene image corresponding

to the user’s PoR. However, the projected gaze is likely to

have errors for two reasons: 1) the user’s eye parameters

are initially unknown (initial estimates are used before the

system is calibrated), and 2) the transformation between the

eye and the device and the transformation between the two

cameras are only initial approximations. To remedy this, we

can perform an automatic calibration using naturally occur-

ring regions of interest found within the scene image. Much

research has focussed on obtaining good saliency maps that

well approximate the points in an image at which an aver-

age user is inclined to look. Results obtained by Alnajar et

al. [1] and Shi et al. [24] have been quite promising, and

Chen et al. [2] have used these cues to obtain a probabilistic

estimate of the user’s gaze and its parameters by calibrat-

ing the cameras from the saliency maps obtained from the

above methods and combining it with the 3D eye model.

3. Related Work

Traditionally, gaze estimation techniques predict a user’s

gaze in scenarios where they can move in front of a com-

puter screen [15, 31, 14]. A significant portion of gaze es-

timation research is either focused upon improving human-

computer interaction or on advancing assistive technology



Figure 4: Simulated eye (left) and a Point of Regard square

box object (right) in the scene which the simulated eye fol-

lows.

for the impaired [29, 10, 3, 11]. As wearable devices have

become more widely used, gaze estimation has also been

explored for systems with see-through displays [27, 17];

however, all these gaze tracking systems require a careful

pre-calibration and rely upon a stable calibration throughout

their use. For head-worn devices, the calibration typically

changes during use as well as when the device is taken off or

put on. It is not practical to have the user actively perform a

calibration procedure every time the device’s pose changes.

In contrast to the existing state-of-the-art approaches, our

technique performs a continuous calibration of the device

in a simple way by utilizing the user’s natural gaze in pre-

vious frames and observing salient areas of interest within

the scene.

Hansen et al. [5] compared several different approaches,

most of which estimate the user’s point of regard (PoR).

The PoR techniques presented in their paper map a user’s

gaze onto a computer screen that is in a fixed relative pose

with respect to the user [15]. On the contrary, our approach

finds the PoR by relating the user’s gaze to automatically

detected salient regions of interest within the scene, break-

ing the requirement for a known scene geometry and known

user-to-camera settings.

Typically, the initial calibration required for accurate

gaze tracking involves the user’s active cooperation by look-

ing at a number of predefined points [30, 16]. Sugano et al.

[25] achieved an error-corrected two-eye gaze estimate by

showing natural images/videos to the user and leveraging

saliency maps to determine what object was being looked

at by the user. Their results show that combining saliency

metrics, including face detection, allows for better modeling

of the human visual system. Our method takes this concept

further by using salient areas found within the real world as

an indication of the user’s gaze direction during our calibra-

tion process.

Tsukada et al. [28] presented a system that determines

the user’s PoR by extracting the gaze from a single eye and

leveraging an appearance code book for the gaze mapping.

This appearance code book is very sensitive to the calibra-

tion, which is performed in a constrained environment and

assumed to be constant throughout use. This assumption

is not always valid due to configuration and environmental

changes. In contrast, our method does not require a global

calibration and is continuously recalibrating the configura-

tion of the user with respect to the head-worn device .

Nakazawa et al. [16] demonstrated a gaze estimation sys-

tem which projects a coded light pattern upon the scene

using a multispectral LED array. Martinez et al. [13] in-

ferred the gaze by relying upon appearance-based gaze es-

timation; they handled relative pose changes between the

device and the user by estimating the eye-device transfor-

mation using a motion capture system in their testing envi-

ronment. These techniques produce state-of-the-art results

but rely upon specialized hardware that is not found in gen-

eral environments.

Pirri et al. [21, 22] proposed a procedure for calibrating a

scene-facing camera’s pose with respect to the user’s gaze.

While effective, the technique’s dependence upon artificial

markers in the scene prevents generalization. Santner et al.

[23] built upon the research done by Pirri et al. by combin-

ing 3D saliency with a dense reconstruction of the user’s

environment for the purposes of user localization. Aside

from requiring the gaze from both eyes, their method as-

sumes a static environment premapped by a Kinect sensor,

and it thus is unable to handle dynamic scenes. In contrast,

our proposed approach neither relies on static scenes nor

requires any knowledge of scene depth.

In recent years, many researchers have devised models to

generate better-quality saliency maps. Among these, Graph

Based Visual Saliency (GBVS) [6], Adaptive Whitening

Saliency (AWS) [12], and Image Signature (ImgSig) [7]

usually exhibit the best performance. Recently, Shi et al.

[24] proposed a Reverse Hierarchy Model (RHM) for pre-

dicting eye fixations. This method also provides a compu-

tational model for saliency detection in images.

Chen et al. [2] estimated the probability distributions of

the eye parameters and eye gaze by combining an image

saliency map with the 3D eye model. They used an incre-

mental learning framework and avoided any personal cal-

ibration for the user. Our approach also uses a similar but

different framework. Alnajar et al. [1] also developed an ap-

proach to auto-calibrate gaze estimators in an uncalibrated

setup. Although this method used information from both

eyes, additional stimulus signals were exploited to estimate

gaze patterns obtained from specific users.

4. Background

Next, we introduce the basic concepts used in our ap-

proach for automatic continuous calibration of head-worn

devices.

4.1. Gullstrand Model of the Eye

The Gullstrand model is a simplified representation of

the human eye. This model is used in the geometric model-
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Figure 5: Top: A ray-traced diagram that, for illustrative

purposes, depicts a geometric-based gaze estimation sys-

tem for one light and one camera. The eye model pictured

adheres to the Gullstrand model. Bottom: A 3D diagram

depicting how the corneal center can be found from two

planes, each defined by one LED, the corresponding glint,

and the user-facing camera’s position.

based gaze estimation technique that we employ in our ap-

proach.

A high-level illustration of the Gullstrand model is

shown in Figure 5. For analytical purposes, the exterior

corneal surface can be approximated by a spherical convex

mirror. Additionally, the dominant refraction of light enter-

ing the eye is due to the air-corneal surface boundary [15].

The Gullstrand model defines the eye’s optical axis as the

vector which begins at the center of the cornea and passes

through the center of the pupil. However, an individual’s

actual 3D PoR lies along their visual axis, since the fovea

is offset on the rear of the eye [15]. The visual axis is re-

lated to the optical axis by two predefined rotations about

the eye’s corneal center. For our purposes, the visual axis is

simply the user’s normalized gaze vector.

The Gullstrand model of the eye also provides some ini-

tial estimates of the eye’s structure. The model states that

the cornea has an average radius ofRc = 7.7 mm and an av-

erage index of refraction of η1 = 1.3375. The distance from

the pupil to the corneal center is approximately dc,p = 4.2
mm. Note that these parameters are user-specific and need

to be optimized on an individual basis.

4.2. Leveraging the Gullstrand Model of the Eye

Our gaze estimation method is inspired by Guestrin et al.

[4]. The goal of our technique is to estimate a user’s visual

axis in the coordinate system of a user-facing camera. The

following discussion outlines the mathematical formulation

of the gaze estimation problem. In the paper, we denote all

3D points in bold and lower case.

Consider a user-facing camera, o, positioned at the ori-

gin of the system. Additionally, consider a number of light

sources, lj, that are coplanar with the camera. Each light

source, lj, produces a reflection, gj, on the user’s corneal

surface, known as a glint. Each glint intersects the image

plane at a distinct point, uj. The relationships between each

of these points is presented in Figure 5. If the corneal center,

c, has radiusRc then each glint, gj, satisfies ‖gj−c‖ = Rc.

Guestrin derived, through the law of reflection, two ad-

ditional constraints:

(lj − gj) · (gj − c) · ‖o− gj‖ =

(o− gj) · (gj − c) · ‖lj − gj‖
(1)

(lj − o)× (gj − o) · (c− o) = 0 (2)

Equation (2) reveals that the corneal center is a point that

lies on all planes defined by the camera, an LED, and that

LED’s glint. For a two-LED system, this implies that the

corneal center lies on a line, b, defined by the intersection of

the two distinct planes. Refer to Figure 5 for an illustration

of the intersecting planes. The corneal center, c, can be

found by moving a distance of do,r + Rc from the user-

facing camera towards the user’s eye along the line b (where

do,r is the current distance from the user-facing camera to

the corneal surface). With the corneal center found, our task

becomes finding the pupil center, p. Snell’s law provides a

constraint that allows us to solve for the pupil center from

the positions of the user-facing camera and the glints, uj,

provided that we first find the point of refraction on the air-

cornea boundary, r:

η1 · ‖(r− c)× (p− r)‖ · ‖o− r‖ =

‖(r− c)× (o− r)‖ · ‖p− r‖
(3)

Solving Equation (3) for the pupil center allows us to find

the user’s optical axis and, subsequently, to compute the

visual axis. We approach this solution by temporarily

changing the coordinate system to that shown in Figure 6

and solving for the pupil center with a sampling-based ap-

proach. This is opposed to the convention made by Guestrin

et al. [4], who placed the eye’s center of rotation, e, as the

center of the new coordinate system. Placing the corneal

center at the origin of the system reduces the total number

of coordinate system changes and provides a more conve-

nient way to calculate the visual axis. The optical axis is

associated with angles θ and φ. The Gullstrand model of

the eye dictates that the visual axis is approximately ±5 de-

grees to the side of the optical axis of the eye (call this angle

α), and about ±1.5 degrees above it (call this angle β). The

equation for calculating the values of θ and φ is derived
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Figure 6: A depiction of the coordinate system used for the

calculation of the visual axis.

from Figure 6 and is given by Equation (4)

p− c

‖p− c‖
=





cos(φ)sin(θ)
sin(φ)

−cos(φ)cos(θ)



 (4)

The visual axis can be found by offsetting the pupil center,

p, to a nearby, adjusted pupil center, p′. Figure 6 depicts

this offset. The adjusted pupil center is chosen to be a dis-

tance of dc,p away from the corneal center and must lie on

the line passing through the corneal center, c, and the center

of the fovea, f . Guestrin presented a method for calculat-

ing the offset pupil center p′ using the user-specific angles

α and β. Finding the ray originating at the corneal cen-

ter and passing through the adjusted pupil center yields the

visual axis. This is the ray that is projected upon the scene-

camera’s image plane when determining the user’s 3D PoR.

5. Locally Optimal Eye-Camera Calibration

To accommodate the changes in the eye-device trans-

formation during its usage, we augment the user-specific

parameters of the Gullstrand model by the device specific

camera calibration parameters representing its degree of

freedom. We expect that users will subconsciously fixate

upon salient regions of the environment for multiple frames,

meaning that the eye-device transformation will remain ap-

proximately constant for several frames. To leverage this

observation, we optimize over a small window of recent

frames and subsequently apply these locally optimal param-

eters to estimate gaze direction for next frames. We accom-

plish this by projecting the user’s visual axis onto the im-

age of the scene using an estimate of the current eye-device

transformation. This effectively establishes an epipolar ge-

ometry between the eye and the camera. Then, by cor-

recting each frame’s gaze to the image’s nearest calibration

area of interest, we are able to find an eye-camera transfor-

mation that is optimal for all frames within the window of

frames. This eye-camera transformation is then used to esti-

mate gaze errors in the frames that occur immediately after

the calibration window. When performed continuously or

at high enough frequency, these calibration updates reduce

the gaze projection error even as the eye-device relationship

changes during use. Moreover, the continuous adjustment

of the calibration accounts for the approximation error of

the model due to the continuous re-estimation of the eye-

camera parameters. The latter cannot be achieved with stan-

dard calibration techniques given that they estimate a global

model whereas our proposed method effectively estimates a

local model using the global model in short range of frames.

5.1. Problem Description

The user’s estimated gaze must be accurately related to

their PoR within the scene. Because head-worn devices

tend to move about a user’s face during typical use, a lo-

cal calibration scheme is desirable. To accomplish this, the

system must be capable of accurately estimating an optimal

parametric model of the eye-device relationship at any time,

t. We define model optimality to mean that, when projected

upon the scene-facing camera’s image plane, the Euclidian

distance between the visual axis and the nearest calibration

area of interest in the image plane is minimized at time t.

Recall that the Gullstrand model of the eye provides six

main parameters to optimize over: the corneal radius, Rc,

the eye’s index of refraction, η1, the distance from the pupil

center to the corneal center of the cornea, dc,p, the distance

between the user-facing camera and the eye, do,r, and the

two angular offsets used to find the visual axis from the op-

tic axis: α and β. Refer to Figure 5 and Figure 6 for the

relationships between each of these parameters. In addition,

given the internal camera calibration the head-worn device

has six degrees of freedom itself: three dimensions of trans-

lation (x, y, and z) and three dimensions of rotation (φ, θ,

and ψ). Hence, the parameters of an eye-camera model at a

time t can be described as

Pt =< x, y, z, φ, θ, ψ, do,r, Rc, dc,p, η1, α, β > (5)

5.2. Salient Regions of Interest

In order to make our system less cumbersome and more

practical, we cannot rely upon markers placed throughout

the user’s environment for calibration. Hence, our system

leverages salient features in the environment and it can au-

tomatically calibrate itself using gaze data collected during

normal operation of the device. Combined with our contin-

uous calibration approach, this yields all the benefits of a

calibrated system while never interrupting or inconvenienc-

ing the user with manual device calibration.

Recently, much work has been done to improve the de-

tection of salient regions [12, 7, 24, 6] in an image that

closely correspond to the points where an average user is

most likely inclined to look. Our system does not have any

knowledge of the 3D geometry of the user’s environment so

it relies on a 2D saliency map of the scene in order to pick

out these interest areas for calibration.



Figure 7: Input scene images (2 real environment, 1 simu-

lation) and corresponding Saliency maps obtained by com-

bination of GBVS and face detection.

Given a video stream of the user’s eye, U , and scene

facing camera, S, the saliency map, Mj , can be found for

frame Sj [25]. The user’s projected visual axis, vj , is found

by obtaining the visual axis of the eye from jth frame of

U using the method described in Section 4.2 and projecting

into frame Sj . We then threshold Mj to find the set of most

salient blobs of pixels, S = {s1, · · · , sn} for that frame. In

our system, interest point sj ∈ S for an estimated gaze di-

rection of vj is obtained simply by taking its nearest interest

point from set S obtained on Mj .

5.3. Approach

Next, we introduce the calibration equation for the eye-

camera transformation. The eye-camera relationship at time

t, described by the parametric model Pt (Eq.5), allows for

direct calibration between the user’s eye and the scene-

facing camera without having to know the exact extrinsic

relationship between the user and scene-facing cameras.

Our technique only assumes that the cameras are intrinsi-

cally calibrated; the only a priori knowledge that is required

about the cameras’ extrinsic relationship is a rough estimate

of their transformation. Ordinarily, this extrinsic relation-

ship could be found through mirror-based calibration tech-

niques for cameras with non-overlapping views (for exam-

ple, the algorithm proposed by Kumar et al. [9]). However,

since our calibration scheme directly relates the visual axis

with points on the scene-camera’s image plane, accurate ex-

trinsic camera calibration is unnecessary.

However, a user’s fixation upon a region of the scene

causes the user’s visual axis to have frame-to-frame spa-

tiotemporal constraints. By considering the set of possible

models over the window, we can disambiguate the locally

optimal solution. This locally optimal parametric solution,

Pt, is then accurate for the current eye-device model at time

t and for small perturbations around that model (i.e. tempo-

rally close frames). Pt is assumed to be constant over the

window from which it is derived.

In order to optimize the eye-camera transformation, and

to ensure that our calibration remains causal, our system

minimizes the sum of absolute differences in the x and y

directions between the projected visual axis, vj , and the

nearby salient interest point, sj , for all frames within a short

window of frames preceding time t. For a window of size

k, the cost function, C(pt) can be written as:

C(pt) =





















dx(vt−1, st−1)
dy(vt−1, st−1)
dx(vt−2, st−2)
dy(vt−2, st−2)

· · ·
dx(vt−k, st−k)
dy(vt−k, st−k)





















(6)

where dx(vj , sj) is the absolute difference in the x-direction

and dy(vj , sj) is the absolute difference in the y-direction

for the projection of point sj on the gaze direction vj .

We obtain the locally optimal solution, Pt, by solving

the following least-squares optimization problem:

Pt = argmin
pt

k
∑

j=1

Cj(pt)
2 (7)

Optimizing over the eye-camera model parameters in the

window yields an estimate of the locally optimal paramet-

ric model, Pt, at time t. The resulting parametric model

effectively maximizes calibration accuracy while minimiz-

ing gaze estimation error. Pt is further used as an initial

estimate of the model parameters for the next window.

An important part of this approach is determining a good

value of the window size k for this optimization. As k in-

creases, the optimization approaches a single globally op-

timal eye-camera model. In our experiments, we study the

performance of our system over a range of window sizes.

6. Experimental Results

Next, we evaluate the accuracy of our proposed local

eye-camera calibration system. In all of the following ex-

periments, the head-worn device’s calibration was initial-

ized with the initial eye parameters and pose parameters

from the Gullstrand model (see Section 4.1) which roughly

aligns the user-facing camera with the user’s right eye. We



use this generic setup to show that our system can adapt to

any feasible head-device relationship.

Datasets. The performance of the proposed adaptive

eye-camera calibration framework was evaluated on 10

datasets (5 human subjects and 5 simulations). Each dataset

consists of 150-200 frames obtained from the user- and

scene-facing camera. The scene-facing camera observed a

point of regard approximately 1.1 - 1.5 meters away from

the participant. To limit the influence of confounds in the

gaze error calculation, the users were instructed to look at

the PoR and move their head in a circular fashion. For the

human subject trials, the PoR was the face of another indi-

vidual, seated at the same head level as the user. We used the

specific class of faces for the salient region detection, but

this setup could easily be generalized using saliency maps

[12, 7, 24], which would also impose similar constraints

for the eye-camera transformation. All experimental setups

have a known distance between the user and the calibration

point, which is unknown to the system and is used only for

determining our estimated gaze error. For all experiments

the head-worn device was loosely attached to user’s head to

allow natural movement during use. For quantitative evalu-

ation, we created a simulation of the whole system (see Fig-

ure 4), which generates image frames for an eye that follows

an object moving along a specified path in the 3D world.

The simulated data also contains a small, smooth perturba-

tions of the camera pose, modeling real-world changes in

the eye-camera relationship. This approach helps remove

the bias when the user is looking at a specified PoR, also it

provides a good error measurement. This model serves as

a ground truth to check the accuracy of the system, as we

have the labeled data for the gaze direction. This allows us

to obtain accurate gaze estimation errors for our system as

the ground truth is known.

Parameters. Our general eye-camera model has 12 un-

known parameters at any time t (see Section 5.1). However,

in our experiments, we fixed the refractive index η1 to a

value of 1.3375 and the cornea-to-pupil distance dc,p to 4.5

mm. As a result, we have 10 unknowns in our system that

are estimated from a window of k previous frames using the

approach specified in previous section.

After finding the locally optimal model for time t over

the window of frames at t− 1 to t− k, we analyze their ac-

curacies; each window serves as an independent calibration

set. Results for each experiment are presented as a graph

(see Figure 8 and Figure 9) with three criteria plotted: 1)

in blue, the re-projection error from applying the locally

optimal model to the window that produced it (calibration

error), 2) in red, the error produced at time t when apply-

ing the locally optimal model (next-frame error), and 3) in

green, the mean error produced when the locally optimal

model is applied to the next five frames. We have also stud-

ied the behavior of window size k over the accuracy of the

system (Tables 1 and 2).

Table 1: Observed mean and standard deviation error (de-

grees) over all windows for a fixed window size k (simu-

lated dataset)

k 5 10 15 20 25 30

Sim 1 3.436 4.522 3.620 5.400 9.501 10.019

Sim 2 1.075 5.884 3.975 10.185 7.102 3.331

Sim 3 2.470 0.051 0.168 0.287 0.324 0.509

Sim 4 0.208 0.836 0.804 3.004 3.444 3.067

Sim 5 0.278 0.935 0.837 1.777 1.790 7.534

Mean 1.4935 2.445 1.880 4.130 4.432 4.890

Std 1.417 2.585 1.774 3.868 3.796 3.813

Table 2: Observed mean and standard deviation error (de-

grees) over all windows for a fixed window size k (human

dataset)

k 5 10 15 20 25 30

Subj 1 0.129 0.143 0.465 0.380 0.688 1.00

Subj 2 0.118 0.145 0.257 0.267 0.316 0.395

Subj 3 0.274 0.470 1.040 0.917 1.390 1.280

Subj 4 0.097 0.041 0.027 0.028 0.038 -

Subj 5 0.221 0.218 0.241 0.380 0.511 0.592

Mean 0.168 0.203 0.407 0.394 0.589 0.653

Std 0.076 0.162 0.388 0.326 0.509 0.501

We compare our method to a variety of state-of-the-art

techniques [19, 4, 1, 26, 2], though all of these require more

restrictive setups than our approach and are not able to op-

erate in loosely constrained scenarios. However, they still

provide a good reference for the proposed approach. Given

the dearth of less constrained methods, we compared the re-

ported mean calibration errors of these approaches with our

own results.

In general, a window size of 5 frames gave the best

performance for our method, with a mean accuracy of

1.493 ± 1.417 for the simulated dataset and 0.168 ± 0.076
for the human subject dataset. As shown in Figure 10, ac-

curacy tends to decrease as window size increases, possi-

bly due to change in the eye-camera model parameters over

longer windows of observation. Our system achieved a per-

formance of 4-5 fps with an unoptimized matlab implemen-

tation1.

For comparison, we note that Pfeuffer et al. [19] achieve

gaze estimation errors as low as 0.55 degrees by estimating

the visual axis with 4 glints and having the user initially par-

ticipate in active calibration procedure. Guestrin et al. [4]

achieve an average gaze error of 0.9 degrees with one cali-

bration point. Recent works such as Alnajar et al. [1] have

1Code is available at http://cs.unc.edu/˜jmf/

publications/gaze_release.7z.

http://cs.unc.edu/~jmf/publications/gaze_release.7z
http://cs.unc.edu/~jmf/publications/gaze_release.7z
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Figure 8: Different Calibration Errors for Subject 1 and

Subject 2 using a window size of 5.

produced calibration-free gaze estimation systems, but their

errors are on the order of 1.3 to 7.8 degrees. Other cali-

bration techniques such as Tan et al. [26] manage to report

gaze estimation errors as low as 0.23 degrees but require

over 250 calibration points; Chen et al. [2] reported quite

impressive errors in order of 1.77 to 2.4 degrees without

any active-calibration. Our system produces gaze estimates

with significantly lower error than similar methods. In ad-

dition, similar to Chen et al. [2], our technique does not

require any calibration before use. As such, our technique

is very useful in real-world scenarios.

Figures 8 and 9 plot the gaze estimation errors w.r.t the

observation window in time for real and simulated datasets.

The solid lines show the calibration error for each window,

for the next frame based on the previous window parame-

ters, and for the five next frames. These measures of error

give an idea of how well the proposed local gaze estimation

technique works. As is evident in the figures, our approach

was able to achieve quite reasonable accuracies. These re-

sults indicate that our continuous calibration scheme sig-

nificantly outperforms a global calibration scheme for the

same setup. Intuitively, these results imply that continu-

ous recalculation of the eye-device calibration allows for

a tighter fit to changes in the eye-device model over time.

Generally, the performance of our method was consistent

across multiple users who had different eye shapes and iris

colors. The error for the human datasets was mainly due

to large pupil occlusions and IR lighting inconsistencies,

which would cause comparable errors in other gaze estima-

tion systems. Note that a different user-facing camera ori-

entation could reduce occlusion and improve performance

further.

The results of our approach for Subjects 1 and 2 are plot-

ted in Figure 8 along with the mean performances of state-

of-the-art techniques. Table 1 shows how our system main-

tains high calibration accuracy for different window sizes

used for calibration despite the head-worn device starting in

an unknown pose (hence higher error in the start). As shown

in Figure 10, the error estimation for the gaze detection

system increases as the local window size is increased and

the system converges to a global calibration performance.
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Figure 9: Different calibration errors for Simulation 1 and

Simulation 2 using a window size of 10.
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Figure 10: Plot of mean calibration error (degree) vs Win-

dow Size.

This is an effect of the continuously changing eye-device

configuration due to the loose fit of the device, which can-

not be explained by the global transformation frameworks.

However, our continuous calibration approach handles this

transformation by performing adaptive calibration over lo-

cal windows and consistently outperforms the more restric-

tive setups of existing state of the art methods.

7. Conclusion

Gaze estimation techniques provide a wide array of new

possibilities for head-worn devices and are in high-demand

for providing additional user inputs to consumer-grade elec-

tronic systems. We believe that head-worn devices will be

the next battleground for improving user interaction. In this

paper, we proposed a novel, continuous, automatic calibra-

tion scheme which operates upon locally optimal models

of the eye-device relationship at any given time. Calibra-

tion can be performed in a large number of unconstrained

environments since our system relies upon natural calibra-

tion interest areas instead of traditional calibration mark-

ers. Our experiments demonstrate that our system produces

highly accurate estimates of the user’s gaze with respect to

the user’s scene, allowing for a head-worn device to up-

date its calibration if the device-eye pose changes over time.

Our results show that our continuous calibration technique

is robust and can outperform state-of-the-art global calibra-

tion schemes by automatically adapting to variations in eye-

camera pose.
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