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Abstract

Fisheye image rectification and estimation of intrinsic
parameters for real scenes have been addressed in the lit-
erature by using line information on the distorted images.
In this paper, we propose an easily implemented fisheye im-
age rectification algorithm with line constrains in the undis-
torted perspective image plane. A novel Multi-Label Ener-
gy Optimization (MLEO) method is adopted to merge short
circular arcs sharing the same or the approximately same
circular parameters and select long circular arcs for cam-
era rectification. Further we propose an efficient method to
estimate intrinsic parameters of the fisheye camera by au-
tomatically selecting three properly arranged long circular
arcs from previously obtained circular arcs in the calibra-
tion procedure. Experimental results on a number of real
images and simulated data show that the proposed method
can achieve good results and outperforms the existing ap-
proaches and the commercial software in most cases.

1. Introduction

As a basic step for higher level tasks, such as structure
from motion [17], visual navigation and SLAM [16], ac-
tive research work has been carried out on automatic recti-
fication and calibration for metric information from fisheye
images in recent years. Their efforts have led to a remark-
able improvements in this field. For example, various open-
source omni-directional camera calibration toolboxes have
been released123 since the launch of the unifying theory for
the central panoramic system [15]. These toolboxes are ei-
ther based on 2D or 3D calibration patterns [1, 20] with
prior knowledge or the line features manually selected from
the fisheye image [4]. Recently, some automatic rectifica-
tion and calibration algorithms for the single fisheye image
have been proposed [5, 9], which mainly focus on the usage

1http://www.robots.ox.ac.uk/˜cmei/Toolbox.html
2http://webdiis.unizar.es/˜lpuig/DLTOmniCalibration
3http://www.isr.uc.pt/˜jpbar/CatPack/main.htm

of line information from the distorted image.
It has been a trend that a variety of features on the fish-

eye image plane are taken into account for rectification and
calibration, which introduce an additional challenge for au-
tomatic rectification and calibration of the omni-directional
camera. A dominant paradigm in rectification and calibra-
tion for fisheye images is to use line features extracted from
distorted fisheye images [3, 18]. These approaches compute
the image of absolute conic from which the intrinsic param-
eters of the omni-directional camera are recovered. Gener-
ally speaking, given at least three conics on the fisheye im-
age, the camera intrinsic parameters, consisting of the focal
length, the image center and the aspect ratio, can be recov-
ered from the decomposition of absolute conics. However,
despite its geometric success, the rectification and calibra-
tion techniques still suffer from the problem of automatic
extraction of conics from the fisheye image. In order to
address the conic extraction issue, Burchardt and Voss [10]
proposed to simplify the conic extraction problem as the cir-
cle extraction problem by assuming that the edge segmen-
tations belonging to the same circle have the same distance
to the center of the circle. Still a huge number of small arcs
that are consistent with the same circle could not be correct-
ly merged.

Some approaches try to make full use of the characteris-
tic of lines on the unit sphere [6, 23]. These methods first
detect the connected edge pixels and then project them on
the sphere to verify whether they are restrained by the same
great circle. Ying and Hu proposed to use the hough trans-
form to detect line images which are then refined by mini-
mizing the orthogonal distances to the conic [23]. However,
these approaches suffer from the common limitation as per-
spective cases such as the expensive computation and im-
portance of parameters sampling [6]. The conic detection
algorithm proposed by Bukhari and Dailey [9] avoids the
expensive computation and detects the circular arcs from
the fisheye image directly. Their proposed algorithm ex-
tracts the connected components from the edge image and
then finds the maximum pixels belonging to the same circle
defined by three randomly selected points on the contour.



(a) (b)

(c) (d)

Figure 1. Incorrect estimation of intrinsic parameters due to the
local minimum estimation of circular arcs: (a) Circular arcs with-
out clustering; (b) Local minimum estimation of circular arcs; (c)
Clustered circular arcs; (d) Correct estimation of circular arcs.

Nevertheless, this approach does not take into consideration
the problem of merging the small circles sharing the same or
the approximately same parameters. And thus it may lead
to a local minimum estimation of intrinsic parameters as
shown in Figure 1. Many approaches [21, 22] are proposed
recently to solve this problem and obtain state-of-the-art re-
sults by using the line constrain between the projection on
the viewing sphere of a space point and its catadioptric im-
age.

Recently, one promising direction for automatic correc-
tion and calibration of the fisheye image from plumb-lines
has emerged with the exploitation of the RANSAC tech-
nique [11, 18, 14]. Some of these approaches proposed to
extract line images with 2-point RANSAC, which is suit-
able for different classes of omnidirectional systems. An-
other promising technique, the RANSAC Uncapacited Fa-
cility Location (UFL) method [18], simultaneously detects
lines in natural images and estimates the camera parame-
ters. However, this approach dose not take the problem of
automatic selection of the conic arcs and the relationship of
detected lines in the perspective plane into account. There-
fore, it can not work as expected in some situations.

In this paper, we describe an easily implemented ap-
proach for fisheye image rectification using the line con-
strain in the undistorted perspective plane. Inspired by the
approaches proposed in [9, 18, 12, 8, 7], we develop an
algorithm to automatically merge short circular arcs shar-
ing the same circular parameters and select long circular
arcs using the Multi-Label Energy Optimization (MLEO)
method. We also describe a framework for automatic cal-
ibration of the fisheye camera based on the previous work
proposed in [2, 19]. Our approach mainly involves three
steps: automatic circular arcs extraction from the fisheye

image, the image rectification using clustered circular arc-
s, and the estimation of camera intrinsic parameters based
on the selected conics. The general pipeline is illustrated in
Figure 2.

Our approach proposed in this paper utilizes a similar arc
detection technique proposed in [9] but in different merging
and optimizing manners. Instead of simply detecting the
arcs of the same contour without considering the similar-
ity between contours, we formulate the circular arc merg-
ing and optimizing process as a multi-label optimization
problem. Each detected circular arc is regarded as a label
that can be represented by the circular center and radius
while the circular points corresponding to the same label
are served as input data. Our approach is motivated by [12],
which provides a general model for optimization. In our
cases, the data term can be represented by the deviation-
s of each input data to its estimated center, which can be
also regarded as its corresponding label. The smooth term
can be computed from the Euclidean distances between the
circular centers and the differences of the circular radii. In
addition, we also consider the penalty cost that should be
assigned to the label with the assumption that the circular
arcs with small arc lengths should be merged.

Beside the initial circular arc extraction process de-
scribed in [9], which can be regarded as a local circle find-
ing and fitting procedure, we propose to apply the Multi-
Label Energy Optimization (MLEO) algorithm as the glob-
al merging function to find the long circular arcs from the
detected circular points. Therefore, our approach can ob-
tain the more robust estimation of intrinsic parameters of
the fisheye image due to the use of more long circular arcs.

Unlike the technique proposed in [18], our work in this
paper extends this previous work in two aspects. Firstly, our
approach adopts a general energy optimization framework
similar to graph cuts to detect the circular arcs on the fish-
eye image. Secondly, we develop a simplified fisheye image
correction algorithm with line constrains on the perspective
image plane and present a camera calibration algorithm by
automatically selecting the three properly arranged circu-
lar arcs. The main difference is that our automatic circular
arc selection algorithm not only considers the relationship
between lines in the fisheye image plane but also the line
relations in the perspective plane. This provides an effi-
cient and robust manner of simultaneously clustering the
line contours and estimating the camera intrinsic parame-
ters, which avoids local minimum calibration of the param-
eters.

The remaining parts of this paper is organized as follows.
In Section 2, we describe the circular arcs extraction and
selection procedure for the fisheye image rectification and
calibration. The fisheye image rectification algorithm based
on line constrains is presented in Section 3. The camera
calibration algorithm based on the three selected circular



arcs is developed in Section 4. The experimental results
and evaluation are provided in Section 5 followed by the
conclusion drawn in Section 6.

2. Circular Arcs Extraction and Selection

To automatically rectify the fisheye image and estimate
its camera intrinsic parameters, we need to extract and se-
lect at least three candidate circular arcs from it in the im-
age plane. It is obvious that the connected components in
the edge image are the possible candidates. So we start by
applying the edge detector such as the Canny operator on
the fisheye image, followed by using the connected compo-
nents extraction algorithm to obtain possible circular arcs
from the edge image. We aim at detecting the circular arc
ω belonging to the fisheye image plane ΠF and assigning
it a label L represented by a circular center c = (cx, cy)
and its corresponding radius r with minimum energy costs
in an energy optimization framework. The above step can
be regarded as a circular arc extraction process. Further, in
order to automatically select three circular arcs from a set
of N detected ones represented by W = {ωi|ωi ∈ ΠF }Ni=1,
we need to select three circular arcs {Ωs}3s=1 from W on
the fisheye image plane ΠF with longer radii {rs}3s=1 and
their corresponding lines {ls}3s=1 should not totally parallel
to each other on the perspective image plane ΠP . The ra-
dius ri is estimated from the detected circular arc ωi ∈ ΠF

and the parallelism which is denoted by the line slope κi is
computed from the corresponding line li on the perspective
image plane (i.e., the rectified image plane) ΠP . These se-
lected circular arcs {Ωs}3s=1 should support possible labels
representing grouped circular arcs. This procedure can be
viewed as a circular arc selection process. Following these
assumptions, we can model the circular arc clustering and
selection problem as an instance of Multi-Label Energy Op-
timization (MLEO) problem [12, 8, 7].

2.1. Multi-Label Energy Optimization Framework

Given a set of observations P and a finite set of labels
L correlated to observations, the Multi-Label Energy
Optimization (MLEO) problem aims at assigning each
observation p ∈ P a label fp ∈ L minimizing some
function E (f) over the joint labelling f . The mathematical
formulation of the MLEO function is represented as:

E (f)=
∑
p∈P

Dp (fp)+
∑

(p,q)∈N
Vp,q (fp, fq)+

∑
l∈L

hl·δl (f), (1)

where the first term
∑

p∈P Dp (fp) denotes the da-
ta costs over all observations, the second term∑

(p,q)∈N Vp,q (fp, fq) represents the smooth costs over all
pairs of observations , and the final term

∑
l∈L hl · δl (f)

means the label costs whose indicator function defined on

the label set L as:

δl (f) =

{
1, ∃p : fp ∈ L,
0, otherwise. (2)

The data term often indicates a standard deviation in the
candidate data group and the smooth term is often known
as a prior that positively indicates the correlations between
observation groups. While the label term gives a penalty to
observations meaning that the objective function should use
as fewer labels as possible.

Our innovation is inspired by this generalized MLEO
method, and we will discuss how this method can be used
for circular arcs clustering and selecting in details in the fol-
lowing subsections.

2.2. Circular Arcs Extraction

Let the set of circular arcs W = {ωi|ωi ∈ ΠF }Ni=1 be
the detected connect components to be further clustered,
and ci =

(
cix, c

i
y

)
and ri be the corresponding circular

center and radius of the i-th circular arc ωi, respectively.
Our objective is to find the minimum number of labels
denoted by the corresponding circular parameters (i.e., cir-
cular centers and radii) by clustering circular arcs with the
same or the approximately same circular parameters that fit
the given set of circular arcs on the fisheye image plane.
This problem can be regarded as the Multi-Label Energy
Optimization (MLEO) problem. Let ski = ‖pk − ci‖ be the
distance between the k-th circular point pk = (xk, yk) and
the circular arc center ci =

(
cix, c

i
y

)
, and cki = |ski − ri| be

the deviation of ski and ri. The energy function is denoted as

E
(
f, θ̂c

)
=Edata

(
f, θ̂c

)
+Esmooth

(
f, θ̂c

)
+Elabel

(
f ; θ̂c

)

=

N(f)∑
i=1

Mi∑
k=1

(
ski − r̂i

)2
+

N(f)∑
i=1

N(f)∑
j=1

|r̂i − r̂j |

+

N(f)∑
i=1

N(f)∑
j=1

‖ĉi − ĉj‖2 +
N(f)∑
i=1

δiLη
1

M2
i

,

(3)

where the optimized parameters consist of the joint la-
belling f and the parameters θ̂c = {r̂i, ĉi}N(f)

i=1 of the
set of N(f) clustered circular arcs Ŵ = {ω̂i}N(f)

i=1 , Mi

represents the number of points within the i-th clustered
circular arc ω̂i, δiL has the same meaning as in Eq. (2),
and η is the coefficient used to augment the penalty cost
of the label (η = 100 was used in this paper). The E-
q. (3) corresponds to the minimization of Eq. (1). Specif-
ically, the data term Edata(f, θ̂c) =

∑N(f)
i=1

∑Mi

k=1 dc
k
i =∑N(f)

i=1

∑Mi

k=1

(
ski − r̂i

)2 represents the total deviation of
the circular points to their corresponding circular centers,
the smooth term Esmooth(f, θ̂c) =

∑N(f)
i=1

∑N(f)
j=1 scji =
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Figure 2. The general framework for our proposed fisheye image rectification and calibration algorithms.

∑N(f)
i=1

∑N(f)
j=1

(
|r̂i − r̂j |+ ‖ĉi − ĉj‖2

)
denotes the total

difference between all pairs of labels (Li, Lj), which al-
so represents the difference between different circular arc-
s parametrized by their circular centers and radii. While
the label penalty term Elabel(f, θ̂c) =

∑N(f)
i=1 lci =∑N(f)

i=1 δiLη
1

M2
i

regulates the penalty assigned to each cir-
cular arc model, meaning that the candidate circular arcs
with short lengths should be merged.

This formulated model can also be depicted by Fig-
ures 3(a)-(b). These two figures illustrate the graph cut like
process corresponding to Eq. (3). Given a set of circular
points {pk} and a set of circular arcs {ω̂i ∈ ΠF }, each cir-
cular point has n− link to its neighbour circular arc points
and each circular point also connects to all terminals, name-
ly labels {ω̂i} (i.e., the circular arcs), with the label cost lci.
In our case, the data term corresponds to the t − link in
the graph and the cost of which is dcki , the smooth term is
consistent with the n− link in the graph, which indicates a
hidden difference between two circular arcs ω̂i and ω̂j with
the smooth cost scji . While the label term sums up the label
cost lci of each potentially clustered circular arc ω̂i. The
minimum cut is reached until these terms obtain its local
minimum values respectively. This means that all the circu-
lar arc points sharing the same or the approximately same
circular parameters are clustered and the candidate long cir-
cular arcs used for intrinsic camera calibration are detected.
The results with simulated data and real images are illus-
trated in Figures 3(c)-(d) and Figures 3(e)-(f), respectively.
It can be observed that this formulation applied to simulated
and real images successfully clusters the circular arc points
belonging to the same circle. The shorter circular arcs are
correctly detected and clustered and the segments sharing
the same label (i.e., the same circular center and radius) are
identified and merged.

2.3. Circular Arcs Selection

In previous subsection, we propose an algorithm to de-
tect and cluster the circular arcs using the MLEO approach.
At the second stage, we need to properly automatically se-
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Figure 3. Illustrative graphs and examples for the MLEO energy
optimization: (a) Initial graph corresponding to the terms in E-
q. (3); (b) Minimum cut of circular arcs after optimization; (c)
Initial circular arcs to be clustered for simulated data; (d) Clus-
tered result of simulated data for initial circular arcs; (e) Initially
detected circular arcs for the fisheye image before clustering. (f)
Clustered result for the fisheye image.

lect the three circular arcs which are served to estimate the
camera intrinsic parameters. We formulate the energy func-
tion in the similar manner but for different goal. Assuming
that the circular arcs Ŵ = {ω̂i ∈ ΠF }N(f)

i=1 are correct-
ly detected and clustered, our goal is to find three circular



arcs {Ωs ∈ Ŵ}3s=1, which can be used for camera calibra-
tion. The main baffle is that the selected circular arcs with
their corresponding lines in the perspective image plane ΠP

should not absolutely parallel to each other, that is to say,
for some lines {li ∈ ΠP } sharing the similar slopes need
to be assigned as the same label. Furthermore, the select-
ed circular arcs should be the ones with longer radii and
lengths in the sense that the arcs deviating from the image
center should be selected with higher priority. Finally, the
distribution of these selected arcs ought to be in different
directions on the fisheye image. Based on these assump-
tions, we formulate the Multi-Label Energy Optimization
function for the circular arcs selection as:

Es

(
f, θ̂s

)
=

4∑
c=1

∑
ω̂i∈Gm

(
ln γ(r̂i−r̄c)

2
+lnβ(κ̂i−κ̄c)

2
)

+
4∑

m=1

4∑
n=1

λ|r̄m−r̄n|,
(4)

where the optimized parameters consist of the joint la-
belling f and the parameters θ̂s = {r̄c, κ̄c}4c=1, r̄c and κ̄c

represent the optimized radius with respect to the fisheye
image plane ΠF and the slope value with respect to the per-
spective plane ΠP of the c-th clustered group, r̂i and κ̂i de-
note the radius and slope of the candidate circular arc ω̂i on
the planes ΠF and ΠP , respectively, and the coefficients γ,
β and λ are used for regulating the weights of three terms
in the MLEO method. In Eq. (4), we apply the log like
function to the data term in order to augment the difference
between each selected group. This equation is solved by
using the MLEO method mentioned in the previous section.

Four groups could be clustered using the optimization
Eq. (4), which takes the three baffles mentioned above into
consideration. Each of these four groups contains a set of
candidate circular arcs to be selected. To select three cir-
cular arcs from these four groups, we start by sorting each
group according to the lengths of circular arcs within this
group. Four candidate circular arcs can be chosen from
the four groups. Again, we sort them according to their
arc lengths and the final three circular arcs {Ωs}3s=1 with
longer lengths are selected from them, which can be served
as the circular arcs used for estimating the fisheye image in-
trinsic parameters. Figure 4 illustrates the results of our arc
selection algorithm. It is obvious that the arcs that can be
properly used for estimating the camera intrinsic parameters
have been correctly selected.

3. Line-Based Fisheye Image Rectification
The main goal of the fisheye image rectification is to

transform the distorted fisheye image to the so-called per-
spective image plane which preserves the majority of vi-
sual effects as we have usually seen. For example, the s-
traight line on the perspective plane has to be straight [13].

(a) (b)

(c) (d)

Figure 4. Circular arc selection results: (a)-(c) Clustered circular
arcs; (b)-(d) Selected circular arcs for estimating the camera in-
trinsic parameters.
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Figure 5. The fisheye image rectification model. The fisheye image
point m = (x, y) on the fisheye image plane ΠF is the orthogonal
projection of the point M on the sphere, which is the intersection
of the ray PO and the sphere. The point m′ = (u, v) is the
corresponding point on the perspective image plane ΠP .

We use a simplified spherical projection model with line
constrains on the perspective plane to automatically trans-
form the fisheye image to the perspective image plane.
This model is depicted in Figure 5. Assume that a point
P = (X,Y, Z) ∈ �3 lies on a ray through the sphere center
O which intersects the sphere surface on the point M. The
fisheye image point denoted by m = (x, y) can be viewed
as the orthogonal projection of the point M. The corre-
sponding point m′ = (u, v) on the perspective plane can
be regarded as the intersection of the ray through the sphere
center and the point P and the plane is parallel to the fisheye
image plane.

The function that maps the distorted point m on the
fisheye image plane ΠF to the corresponding point m′ on
the perspective plane ΠP and its inverse map are defined as:

[
u
v

]
=

z0√
R2 − x2 − y2

[
x
y

]
, (5)



[
x
y

]
=

R√
u2 + v2 + z20

[
u
v

]
, (6)

where R is the radius of the sphere, z0 is the location of the
perspective plane ΠP parallel to the fisheye image plane
ΠF , (x, y) denotes a point on the plane ΠF , and (u, v) rep-
resents a point on the plane ΠP . This simplified model has
the same meaning as the model proposed in [2] in which the
camera position denoted by the parameter ξ in the function
� (x) moves to infinite along the z axis. Let {ωi ∈ ΠF }Ni=1

be a set of circular arcs and {li ∈ ΠP }Ni=1 be their corre-
sponding lines in the perspective plane. The transformation
relationship between the points lie on the circular arcs and
their corresponding points lie on the lines can be expressed
by Eqs. (5)-(6).

Given the fact that the straight line in the perspective
plane remains to be straight, we use the line constrains on
the perspective plane to denote the possible hidden distor-
tion parameters. That is, when the line on the perspective
plane is kept as straight after optimization, the distortion on
the fisheye image is removed. In fact, the hidden distortion
parameters with line constrains in this model are determined
by the radius R of the sphere. So the problem of removing
distortion is to find the radius R that minimizes the weight-
ed sum of deviations of the lines in the perspective plane
defined as:

E(d,R)=

N∑

i=1

Mi∑

k=1

wi |d(pk, li)|2=
N∑

i=1

Mi∑

k=1

wi

∣∣∣∣∣
aiuk+bivk+ci√

a2
i +b2i

∣∣∣∣∣

2

,

(7)
where d(pk, li) is the deviation of a point pk = (uk, vk) in
the circular arc ωi with respective to the line li = (ai, bi, ci)
in the perspective space, and wi is the weight factor of the
line li in proportion to its length.

Now the objective function is fully defined, the parame-
ter R which represents the hidden distortion variable can be
estimated as a global minimum:

R̂ = argminE (d,R) . (8)

The minimization is done using the Levenberg-Marquardt
(LM) non-linear least square method. Once the optimized
parameter R̂ is obtained using this non-linear optimization
method, the fisheye image can be rectified.

4. Line-Based Camera Intrinsic Calibration
In order to present a complete rectification and calibra-

tion framework, we briefly describe the intrinsic parame-
ters estimation algorithm proposed by [2] from three cir-
cular arcs. Assuming that the circular arcs, which can be
regarded as conics, used for estimating the camera intrinsic
parameters have been clustered and selected from detected
contours, our goal is to estimate the camera intrinsic param-
eters comprised of the focal length, the image center and the
aspect ratio.
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Figure 6. Rectified results of our algorithm and the algorithm
in [9]: (a) Source fisheye image to be rectified; (b) Root Mean
Square (RMS) of our algorithm and the algorithm proposed in [9].
(c) Extracted circular arcs from the source image using the algo-
rithm proposed in [9]; (d) Extracted and clustered contours from
the source image using our algorithm. (e) Corrected fisheye image
using the algorithm proposed in [9]; (f) Rectified fisheye image
using our algorithm.

The main steps involving in the catadioptric camera
calibration from three circular arcs consists of:
1) Determine the conics {Ωs}3s=1 from the selected

circular arcs;
2) Estimate the points {Ps}3s=1 which are the intersec-

tions of the polar lines and the conic locus;
3) Estimate the absolute conic Ω̂∞ going through the

points {Ps}3s=1;
4) Perform the Chollesky decomposition of Ω̂∞ to

estimate the intrinsic matrix K.
For details reasoning and calculation, please refer to [3].

5. Experimental Results
The proposed fisheye image rectification and calibration

algorithm was tested on a number of images, including the



(a) (b)

(c) (d)
Figure 7. An example which can not be correctly rectified by the
method presented in [9]: (a) Source fisheye image to be recti-
fied; (b) Extracted circular arcs using algorithm proposed in [9];
(c) Rectified fisheye image using our method; (d) Clustered circu-
lar arcs using our algorithm.

Figure 8. Rectified results of our algorithm and the commercial
software DxO. From top to bottom are the source images, the man-
ually rectified results with the commercial software DxO, and our
automatically rectified results.

fisheye images in real scenes and the images downloaded
from the Internet. To evaluate the performance of our al-

gorithm, we made a comparison between our results and
the commercial software DxO 4. Also we verified the s-
tandard deviations of lines in the perspective image plane
between our clustering results and the algorithm proposed
in [9] when applying the LM optimization algorithm. For
the cases where the number of circular arcs extracted from
the single image are relatively insufficient to estimate in-
trinsic parameters, we used a synthetic method to combine
the circular arcs from a variety of images captured by the
same fisheye camera. We first extracted the circular arcs
with our proposed technique for each fisheye image respec-
tively. Then the synthetic circular arcs (see Figure 10(a))
were utilized for the fisheye image rectification. Finally, the
three circular arcs selected from synthetic ones are served
for estimating the camera intrinsic parameters using the ex-
isted algorithm presented in Section 4.

In Figure 6, we show the comparative results of our
method and that obtained by the algorithm presented in [9].
It can be observed from Figure 6(d) that the RMS of the
clustered circular arcs obtained by our method (denoted by
red curve) is much smaller than that of the arcs without clus-
tering obtained by the method in [9] (represented by green
curve). In addition, we observed that the LM iteration times
of our method is relatively short. Figure 7 shows an ex-
ample which cannot be correctly rectified by the method
in [9] because of the incorrect detection of circular arcs on
the out rings edges. However, our method can successfully
rectify it based on our clustering results. In Figure 8, we
compared our automatically rectified results with manually
rectified results of the commercial software DxO. Our line
constrained method produced the similar results as the DxO
did. Figure 9 presents the results for images downloaded
from the Internet. These rectified images produce the visu-
al effects as we have expected. Our method well preserves
the line properties in the perspective plane and the straight
lines on the rectified image plane remains straight. As the
synthetic method mentioned previously, Figure 10 depicts
the corresponding results. The circular arcs in different col-
ors represent the circular arcs detected in different fisheye
images. From Figure 10, we observed that the RMS of line
deviation of our synthetic method becomes more and more
steady with the increase of the synthetic frame number. The
three circular arcs are correctly selected from the synthetic
line image using our proposed algorithm. This makes sense
for the situation where the line information is infertile on
a single fisheye image and provides a flexible way for esti-
mating the camera intrinsic parameters.

The proposed fisheye image rectification and
calibration algorithm was implemented in C++
with the OpenCV library. The source code and
more experimental results are publicly available at
http://cvrs.whu.edu.cn/projects/FIRC/.

4http://www.dxo.com/



Figure 9. Rectified results of the images from the Internet: the source images downloaded from Internet in the first row, the clustered
circular arcs using our proposed algorithm in the second row, and the rectified results in the last row.
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Figure 10. Synthetic data for the fisheye image rectification and calibration: (a) Synthetic circular arcs from 20 frames captured by the
same fisheye camera; (b) Selected circular arcs used for estimating the camera intrinsic parameters (γ = 1

100
, β = 1.0, λ = 1.0); (c) Root

mean square (RMS) vs the number of frames used..

6. Conclusion

In this paper, we proposed an algorithm for automat-
ic fisheye image rectification and calibration and devised a
pipeline based on the pump-line approach. Circular arcs are
automatically detected and clustered by using the MLEO
approach. In addition, we presented an automatic circular
arcs selection algorithm, which considers both the property
of lines on the perspective image plane and the character-
istic of circular arcs on the fisheye image plane. Our pro-
posed algorithm was tested in various situations, including
fisheye images captured in real scenes and images down-
loaded from Internet. We also made a comparison between
our results and the existed approaches. Experimental re-
sults demonstrate the robustness of our proposed algorith-

m. However, our method still has a limitation that a rea-
sonable initial value should be provided for the Levenberg-
Marquardt (LM) iteration process. Our future work will fo-
cus on this issue and provide a time-saving approach for es-
timating the camera intrinsic parameters from multiple fish-
eye images captured by the same catadioptric camera.
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