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Multi-label image classification is to predict a binary label vector to in-
dicate the presence or absence of certain object categories in an image [1].
Exploiting label dependency can significantly boost the classification per-
formance. For example, if an instance of the ship category is present in an
image, it is very likely that the water category is also presented. To capture
the label dependencies, it is a common practice to use Probabilistic Graph-
ical Models (PGMs) [4], a standard workhorse for modelling dependencies
among random variables. However, the structure of graphical models in ex-
isting methods is either determined heuristically or learned from very lim-
ited information, and it is still a challenging task to correctly and efficient-
ly estimate a proper graph. People often use heuristics, such as manually
specified graph structures based on domain knowledge, or simple rules like
minimum spanning tree based on certain distance scores and the ChowLiu
Tree [2, 3] which uses mutual information between labels and ignores fea-
tures or visual contents of images completely.

In this paper, the graph is unknown initially, and we propose to learn
the graph structure and model parameters jointly from the data by consid-
ering input features and labels. In this way, the learned graph structure and
parameters will fit the data better.

Learning a graph can be seen as selecting relevant cliques from all pos-
sible cliques. Although there might be many potential cliques, only a few of
them are relevant to the output in the sense that, a label (e.g. an object) in
practice is often related to only a small number of other objects. To find the
relevant cliques, we introduce a 0-1 indicator vector into the SSVMs frame-
work to index the potential cliques, and we impose an `0-norm constraint on
the vector to induce sparse solutions. The resultant problem is non-convex,
but we transform it into a convex programming problem through a tight con-
vex relaxation. The relaxed problem has exponentially many constraints. To
address it, we propose a cutting plane algorithm, which iteratively activates
a group of cliques until the structural loss cannot decrease significantly. Our
approach, which is referred to as the clique generating machine (CGM),
exhibits both strong theoretical properties and a significant performance im-
provement over state-of-the-art methods on both synthetic and real-world
data sets.
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Figure 1: Performance variations v.s. # edges on Scene

In Figures 1 and 2, we show the performance changes of CGM versus
the number of edge cliques on Scene and PASCAL07. From the figures,
we draw two conclusions. Firstly, on the two data sets, adding relevant
label dependencies improves the performance in terms of Hamming loss
and F1 measures. Secondly, adding too many label dependencies does not
necessarily improve the performance significantly. Actually, on Scene, the
performance of CGM does not show significant improvement more than 10
edges. On PASCAL07, the performance of CGM in terms of Hamming loss
degrades when there are more than 12 edges. In other words, adding too

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 2: Performance variations v.s. # edges on PASCAL07

many edges (cliques), especially irrelevant edges (cliques), may degrade the
performance.
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(a) Graph by ChowLiu Tree [3]
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(b) Graph by proposed method

(c) Sample images of “plane" in PASCAL2007 database

Figure 3: Comparison of graphs obtained by ChowLiu Tree and proposed
method on PASCAL2007. Unlike the graph in Figure (3(a)), our learned
graph has some categories not connected with other nodes, e.g., “plane".
From Figure (3(c)), in general, the presence of a “plane" in an image is
independent of other objects except “sky".

An important concern for learning a graph is that, while it is essential to
find the relevant dependencies (cliques), it is also very important to identify
the independent labels and irrelevant or false dependencies. In Figure 3,
we show the graph constructed by ChowLiu Tree [3] (Figure 3(a)) and the
graph learned by our method (Figure 3(b)). Unlike the ChowLiu Tree graph
wherein all the labels are connected, some labels in our graph are isolated
(such as “plane"), which makes learning and inference faster and simpler.
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