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Abstract

Pose variation remains one of the major factors ad-
versely affect the accuracy of real-world face recognition
systems. Inspired by the recently proposed probabilistic
elastic part (PEP) model and the success of the deep hi-
erarchical architecture in a number of visual tasks, we pro-
pose the Hierarchical-PEP model to approach the uncon-
strained face recognition problem. We apply the PEP model
hierarchically to decompose a face image into face parts
at different levels of details to build pose-invariant part-
based face representations. Following the hierarchy from
bottom-up, we stack the face part representations at each
layer, discriminatively reduce its dimensionality, and hence
aggregate the face part representations layer-by-layer to
build a compact and invariant face representation. The
Hierarchical-PEP model exploits the fine-grained struc-
tures of the face parts at different levels of details to ad-
dress the pose variations. It is also guided by supervised
information in constructing the face part/face representa-
tions. We empirically verify the Hierarchical-PEP model on
two public benchmarks (i.e., the LFW and YouTube Faces)
and a face recognition challenge (i.e., the PaSC grand chal-
lenge) for image-based and video-based face verification.
The state-of-the-art performance demonstrates the poten-
tial of our method.

1. Introduction
In real-world face recognition, the difficulty comes from

all kinds of visual variations including changes in expres-
sion, illumination, pose, and etc. Pose variation is one of
the major challenges among these. The same face in dif-
ferent poses can look drastically different to each other as
shown in Figure 1, Early works by Turk et al. [47] and Bel-
humeur et al. [4] in this area focus on recognizing well
aligned frontal faces. They empirically demonstrate that
frontal faces can be projected to a low-dimensional sub-
space invariant to variation in illumination and facial ex-
pressions [4]. This observation highlights the importance

Figure 1. Pose variation: the same person looks different in varied
poses.

of addressing pose variation because it can greatly help re-
lieve the adverse effects of the other visual variations.

A line of research approaches this problem by generating
the same-view face images given a face pair in presence of
pose variations. For example, Prabhu et al. [40] use 3D face
models to rotate the face image to an unseen view. Zhu et
al. [54] recover the canonical-view faces with deep neural
networks directly trained to predict the transformation from
multi-view face images to their canonical views. In these
methods, they try to holistically align faces to relieve the
pose variation.

Another set of methods resort to locate facial landmarks
to build pose-invariant face representations [10, 15]. For
example, Chen et al. [15] concatenate dense features around
the facial landmarks to build the face representation. The
pose-invariance is achieved in this way, because it always
extracts features from the face part surrounded around the
facial landmarks regardless of their locations in the image.

The elastic matching methods [20, 29, 30, 50] general-
ize this design. Li et al. [29, 30] present a probabilistic
elastic part (PEP) model unsupervisedly learned from face
image patches. The PEP model is a mixture of part models,
each of which implicitly defines a face part. The PEP model
looks for the image patches from these face parts for faces
in varied poses. It then constructs the face representation by
concatenating features from these selected image patches.

This procedure – locating the face parts and stacking the
features to build face representation – is demonstrated to
be effective by both Chen et al. [15] and Li et al. [29].
In extracting feature of the face part, Chen et al. [15] use
the high-dimensional stacked SIFT [33] features and Li et
al. [29] simply use the SIFT feature. Although low-level
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features like SIFT present partial invariance to local varia-
tions, we argue that directly describing the face parts with
naive dense extraction of these low-level features may not
be optimal.

In this work, we propose to build a better face part model
to construct an improved face representation. We base our
method on the PEP model [29] to construct probabilistic
elastic part based representation for the face parts. In our
method, we model the face parts at different levels of de-
tails in a hierarchical fashion. And we build the face part
representation by locating subtle structures of the face part
and stacking the features from different levels together. In
this way, we construct the pose-invariant face representa-
tion in a hierarchical structure. We call the new model to be
a Hierarchical-PEP model and the new parts of parts face
representation to be POP-PEP.

The hierarchical structure may produce a very high di-
mensional face representation. We avoid this drawback by
discriminative dimensionality reduction in constructing the
face part representation. Moreover, this dimensionality re-
duction is applied from the bottom-level up to the holistic
face with a simple network of Principle Component Analy-
sis (PCA) and Linear Discriminant Embedding (LDE) [16].
The similar technique has been adopted by Simonyan et
al. [42] and Chan et al. [12]. Chan et al. [12] present a sim-
ple deep network with cascaded PCA. Simonyan et al. [42]
iteratively conduct PCA and spatial stacking to form a sim-
ple deep networks.

In this work, we further integrate the supervised informa-
tion in a similar structure in aggregating the part representa-
tions. We iteratively stack the representations of the subtle
face part structures and apply the discriminative dimension-
ality reduction. We empirically validated the effectiveness
of this design in our experiments (see Section 4 for details).

Our contributions in this work are three-fold:
• we present a Hierarchical-PEP model to exploit the sub-

tle face part structures at different levels of details for
improving pose invariance;

• we propose a simple network of discriminative dimen-
sionality reduction to integrate the face part representa-
tions to a compact and discriminative face representation;

• we achieve state-of-the-art performance on two public
face verification benchmarks and a face recognition chal-
lenge.

2. Related Work
Face recognition has been an active research topic for

tens of years. Recently, the well-designed challenging face
recognition benchmarks [24, 48] and emerging face tech-
nology applications foster the development of a number of
real-world face recognition methods [23, 3, 5, 6, 9, 13, 18,
28, 32, 34, 35, 44, 46].

To construct pose-invariant face representation, previous

work has proposed to explicitly address the pose variations
with 3D information. For example, Prabhu et al. [40] use
3D face models to rotate the gallery face image to the esti-
mated view of the probe image; Yi et al. [51] use a 3D de-
formable model to estimate the face pose and apply the pose
adaptive filters for feature extraction; Li et al. [31] propose
to learn the morphable displacement fields from 3D face
models to synthesize the probe face in the same view of the
gallery face.

With only the 2D information, Yin et al. [52] propose the
associate-predict model to transfer appearance of an alike
identity in the database to approximate the appearance of
the probe face at an unseen pose; Chen et al. [15] extract
features densely at the facial landmarks and stack the fea-
tures as the high-dimensional face representation.

The most relevant work to ours is the PEP model [29].
The PEP model consists of a set of face part models ob-
tained through unsupervised learning. Given a face im-
age, each face part model selects the most similar image
patch. The PEP model then achieves the pose invariance
by concatenating features extracted from the selected image
patches to represent the face image.

In this work, the Hierarchical-PEP model hierarchically
exploits the face parts and discriminatively integrate the
part representations. Besides producing more discrimina-
tive face representation, the Hierarchical-PEP model shares
the advantages of the PEP model that it builds represen-
tation for both face images and face videos in an unified
framework and it does not require massive training data.

Besides the methods based on conventional hand-crafted
features, a number of deep learning methods including the
DeepID [44], DeepFace [46] and Stacked Progressive Auto-
Encoders [25] are successfully applied to the face recog-
nition problem, which achieve significantly improved ver-
ification accuracy. Despite the highly accurate recognition
rate, these systems require a large number of labeled data in
the training stage.

In this work, we focus on understanding the face recogni-
tion problem without leveraging massive training data. And
we observe that the face recognition system based on the
conventional feature descriptors can benefit from a hierar-
chical structure. The similar observation is reported by Si-
monyan et al. [42] in the general image classification task
in which they present a 2-layer fisher vector encoding based
networks based on the SIFT feature.

3. Hierarchical-PEP model
3.1. Introduction to the PEP model

The Hierarchical-PEP model consists of a hierarchy of
PEP models. Formally, the PEP model [29] is denoted and
parameterized as

P(L, {Gk}Kk=1) (1)
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Figure 2. Image patches from the same face part are varied in vi-
sual appearance.

where P is the PEP model of K mixture components. Each
mixture component is a face part model Gk. L is the size of
the face part. Given a testing image, the face part model Gk
identifies the face part of size L× L. More specifically, Gk
is a spherical Gaussian model. Given a face image divided
as N L × L image patches {In}Nn=1, Gk chooses In? with
the highest probability. Formally,

pn = [an ln], (2)
Gk = N (pn|~µk, σ

2
kI), (3)

where pn is the representation of the image patch In; an is
the appearance feature descriptor extracted from In (e.g. a
SIFT descriptor); ln is the spatial location of the image
patch In in the full face image; I is an identity matrix; ~µk

and σ2
k are the mean and variance of the Gaussian model

respectively 1. Gk selects In?
k

that

n?k = arg max
n
N (pn|~µk, σ

2
kI). (4)

Given a face image f , the PEP model produces the
face representation FP(f) = B(P, f), where B denotes
the representation construction process. Specifically, the
k-th face part model Gk produces the face representation
FGk

(f) = B(Gk, f),

f = {pn}Nn=1, (5)
B(Gk, f) = an?

k
, (6)

B(P, f) = [ {B(Gk, f)}Kk=1], (7)

where n?k indicates the feature descriptor of the image patch
identified by the face part model Gk as in Equation 4. The
PEP model P then builds the face representation FP(f) as
the concatenation of FGk

(f), k = 1 . . .K.
One of the advantages of the PEP model is that it pro-

cesses image and video in an unified framework. Given an
1The covariance matrix is restricted to be spherical to mix the constraint

from the appearance feature and spatial location to balance the influence
from the two parts, as advocated in [29].
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Figure 3. Example 3-layer Hierarchical-PEP model: a hierarchy of
PEP models.

M -frame face video v = {fm}Mm=1, the PEP model builds
the video face representation FP(v) = FP(∪Mm=1fm). For
brevity, we only take face images as examples in the follow-
ing sections. The video face can be processed in the same
framework.

We refer readers to [29] for the detailed training process
of the PEP model. In brief, to obtain a PEP model param-
eterized by L and K, the training face images are first pro-
cessed into L× L densely sampled image patches; appear-
ance descriptors are extracted from the image patches and
concatenated with the spatial locations of the patches in the
full face image; a K-component Gaussian mixture model is
then learned through the Expectation-Maximization (EM)
algorithm from the training feature descriptors to be the PEP
model.

3.2. Hierarchical-PEP model

The effectiveness of the PEP model is originated from
its capability to locate the face parts. Previous works [29,
30] have empirically shown the PEP model builds pose-
invariant representations for faces. Given a face f , the PEP
model builds its representation as the concatenation of a se-
quence of appearance descriptors. However, describing the
face parts with the low-level feature descriptor (e.g.SIFT)
can be suboptimal for face verification.

As the example shown in Figure 2, although the same
face parts are correctly identified from the three face im-
ages, the pose change still adversely affects the matching
of the selected patches. Motivated by this observation, we
propose to further apply another PEP model at a more fine-
grained level, i.e., with smaller image patch sizeL, to match
the image patches identified by the face part models. In-
stead of extracting general low-level descriptor to describe
the face part, we build another layer of pose-invariant face
part PEP representations to describe each face part at the
previous level.

A T -layer Hierarchical-PEP model is shown in Figure 3
(T = 3). A Hierarchical-PEPHt at layer t consists of

1. the PEP model Pt of Kt mixture components operat-
ing on face parts in size Lt × Lt;
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Figure 4. Example training process of a 2-layer Hierarchical-
PEP model: image patches from the same face are in the same
color.

2. Kt Hierarchical-PEP models {Hk
t+1}Kt

k=1 at layer t+1
if t < T .

3.2.1 Training of the Hierarchical-PEP model

The training process of the Hierarchical-PEP model is il-
lustrated in Figure 4. Given a set of training face images
F = {fi}|F |

i=1, we recursively train the T -layer Hierarchical-
PEP model. We first learn a PEP model P from F . Follow-
ing the Equation 4, the k-th face part model processes all
|F | training face images and identifies |F | image patches
from F . The set of identified image patches by the k-th face
part model is denoted as Fk. Then we follow the same pro-
cess to train a (T − 1)-layer Hierarchical-PEP model from
Fk.

3.2.2 Top-down image patch selection

As shown in Figure 5, given an image I , we locate the face
parts and the sub-parts with the Hierarchical-PEP model
following the top-down work-flow.

For the Hierarchical-PEP model Ht, the input image is
denoted as It. the image is processed into a set of Lt × Lt

patches and Kt image patches are identified by the Kt face
part models in the PEP model Pt following the Equation 4.
The k-th face part model identifies the image patch Ikt+1. If
t < T , the Hierarchical-PEP model Hk

t+1 further processes
the image Ikt+1. The input image for the full Hierarchical-
PEP modelH1 is the full face image I .

A sample top-down image patch selection result for a
face pair along a path in the hierarchy is shown in Figure 6.
We can observe the elastic matching effects at different lev-
els of details.

3.2.3 Bottom-up representation construction

We follow the top-down image patch selection work-flow to
obtain the input images for all the Hierarchical-PEP models
and then start from the bottom to aggregate the representa-
tions.

Following the previous notations for the face representa-
tion, a Hierarchical-PEP at layer t can build representation

Layer-1 Layer-2 Layer-3

Figure 6. Example face parts selected in the top-down image patch
selection process: the leftmost pair is two patches selected from
the full face image by a face part model in the layer-1 of the
Hierarchical-PEP; the pair in the middle is selected from a sub-
structure of this face part; the rightmost pair describes a more sub-
tle structure. We can observe the matching becomes more fine-
grained and accurate in the later layers.

B(Ht, It) given the input image It,

B(Ht, It) =

 [ {B(Hk
t+1, I

k
t+1)}Kt

k=1 ], if t < T,

B(Pt, It), if t = T.
(8)

As shown in Figure 5 (ignoring the PCA/LDE legends intro-
duced later), in layer-2 the Hierarchical-PEP models build
the PEP representations (stacked SIFT descriptors describ-
ing the face parts) and the representations are then stacked
as the upper layer representations to represent the full face
image.

3.2.4 Discriminative dimensionality reduction

Following the above bottom-up representation construction
process, we build a face representation in the form of a
ΠT

t=1Kt × D dimensional vector, where D is the dimen-
sionality of the chosen appearance feature descriptor, i.e.,D
equals 128 for SIFT descriptor. This representation could be
of very high dimensionality in practice. Hence it is highly
favorable to reduce its dimensionality for efficient storage
and computation.

Given a set of matched and non-matched training face
pairs, Li et al. [30] propose to apply PCA to reduce the di-
mensionality of the PEP representation and utilize the Joint
Bayesian classifier [14] for verification. The same process
is applicable to the Hierarchical-PEP representation. How-
ever, we prefer to have a discriminative face representation
while the Joint Bayesian classifier produces a discrimina-
tive similarity measurement. We resort to the Linear Dis-
criminant Embedding (LDE) [16] method to find a sub-
space with smaller intra-class (matched faces) variations
and larger inter-class (non-matched faces) variations.

We first reduce the dimensionality of the Hierarchical-
PEP representations by PCA. We then look for the sub-
space which enlarges the distance between non-matched
face pairs and shrinks the distance between matched face
pairs, i.e.,

w̄ = arg max
w

wTAw

wTBw
, (9)
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Figure 5. Construction of the face representation with an example 2-layer Hierarchical-PEP model: PCA at layer t keeps dt dimensions.

where

F(Ii) = PCA(B(H, Ii)),
F(Ij) = PCA(B(H, Ij)),

A =
∑
lij=0

(F(Ii)−F(Ij))(F(Ii)−F(Ij))
T ,

B =
∑
lij=1

(F(Ii)−F(Ij))(F(Ii)−F(Ij))
T ,

where the PCA dimensionality reduction process is denoted
as PCA; lij = 1 when Ii,j is a matched face pair, lij = 0
otherwise. With the LDE projection, for one face image we
can obtain a low-dimensional discriminative representation
for face verification.

3.2.5 Integration of supervised information

The PCA and LDE projections discriminatively reduce the
dimensionality of the face representation. The same process
is also applicable in constructing representations at the face
part level.

Recursively from the bottom-up, we stack the part rep-
resentations and apply the PCA and LDE to construct the
upper-level representation. With the simple network of
PCA/LDE shown in Figure 5, the supervised information
is hierarchically integrated into the face representation.

In the integration process shown in Figure 5, we apply
the PCA and LDE to the PEP representations built at the
bottom layer of the Hierarchical-PEP model. Then instead
of aggregating the PEP representations, we aggregate the
low-dimensional discriminative representations to the upper
layer. In this way, all the aggregated representations in the
hierarchy are not only pose-invariant but also discriminative
for face verification.

The Equation 8 is updated for this process as

B(Ht, It) =

 DR([ {B(Hk
t+1, I

k
t+1)}Kt

k=1 ]), if t < T,

DR(B(Pt, It)), if t = T,
(10)

where DR(X) = LDE(PCA(X)).

3.3. Hierarchical-PEP model for Face Verification

The Hierarchical-PEP model builds the discriminative
low-dimensional POP-PEP face representation. In the face
verification task, given two face images I1 and I2 the T -
layer Hierarchical-PEP model constructs the face represen-
tations B(H1, I1) and B(H1, I2) following Equation 10.
The similarity score of the two faces is simply the cosine
similarity (or dot-product after normalization) of the two
face representations

s(I1, I2) =
B(H1, I1)B(H1, I2)

|B(H1, I1)||B(H1, I2)| . (11)

3.3.1 Multiple layers fusion

Given a T -layer Hierarchical-PEP model we can truncate
all the leaf PEP models to get a (T − 1)-layer Hierarchical-
PEP model. Given the (T − 1)-layer Hierarchical-
PEP model, it constructs the face representation at a dif-
ferent level of detail. The observation in the previous work
adopting a coarse-to-fine structure [17, 27] suggests that we
can benefit from fusing the representations or the scores
across the coarse-to-fine structure.

That is, in building the face representation, as shown in
Figure 5, we can follow the top-down work-flow to the last
but one layer above and aggregate bottom-up from there
to obtain the face representation. More specifically, given
the face pair I1 and I2 we can set the T in Equation 10 to
t′ < T to obtain the confidence score st′ with a t′-layer
Hierarchical-PEP model. The final confidence score of the
face pair is the average score s(I1, I2) = 1

T

∑T
t=1 st. In our

experiments, we observe consistent improvement with this
multiple layers fusion.

4. Experimental Evaluation
We evaluate the Hierarchical-PEP model for both the

image-based face verification and video-based face verifi-
cation. Sharing the same advantages of the PEP model, the



Table 1. Performance comparison with the baseline methods.

Algorithm Accuracy ± Error(%)
a) 1-layer, 4096-component 89.30± 1.33

b) 3-layer, w/o LDE 88.00± 1.80

Hierarchical-PEP model builds representations for face im-
ages and face videos in an unified framework.

4.1. Labeled Faces in the Wild
The Labeled Faces in the Wild (LFW) dataset [24] is de-

signed as a benchmark for uncontrolled image-based face
verification. This dataset contains 13, 233 images from
5, 749 people. LFW defines six protocols for fair compari-
son [22]. Without accessing outside training data, we train
our face recognition system in the restricted setting. Specif-
ically, we report the 10-fold average accuracy under the
image-restricted with no outside data protocol. In our ex-
periments, we set the parameters as a computation-accuracy
trade off instead of just focusing on accuracy. Potential im-
provement may be obtained with more aggressive setting.

4.1.1 Settings

Following the predefined protocol on LFW, we use the im-
ages roughly aligned by the funneling algorithm [21]. We
center crop the images to size 150× 150 to exclude most of
the background to focus on recognizing the face.

We train a 3-layer Hierarchical-PEP model (T = 3). The
first layer consists of a PEP model with 256 face part models
(K1 = 256) working on image patches of size 32 × 32
(L1 = 32). The second layer consists of PEP models with
4 face part models (K2 = 4) working on image patches
of size 24 × 24 (L2 = 24). The last layer consists of PEP
models with 4 face part models (K3 = 4) working on image
patches of size 16 × 16 (L3 = 16). We set d1 = 200,
d2 = 100, and d3 = 50. The final face representation is
of 200 dimensions. We keep other parameters consistent to
the Eigen-PEP [30] model for fair comparison.

The parameters are chosen under the consideration to
keep the computational expense acceptable on typical CPU
workstations. It takes 41 hours to train the Hierarchical-
PEP model including the PCA and LDE projections on a
PC with 12 CPU cores 2.

4.1.2 Results

As shown in Figure 7 and Table 2, we observe that the
Hierarchical-PEP model achieves very competitive accu-
racy. While Li et al. [30] combine the SIFT feature and Lo-
cal Binary Patterns (LBP) [1] to obtain an average 88.97%
accuracy, we achieve 91.10% accuracy with SIFT feature
only. In Table 1, we further present some baseline results to

2Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

Table 2. Performance comparison on LFW under the Image-
restricted with no outside data protocol.

Algorithm Accuracy ± Error(%)
APEM [29] 84.08± 1.20

Fisher vector faces [41] 87.47± 1.49

Eigen-PEP [30] 88.97± 1.32

Hierarchical-PEP (1-layer) 87.20± 1.39

Hierarchical-PEP (2-layer) 90.00± 1.29

Hierarchical-PEP (3-layer) 90.40± 1.35

Hierarchical-PEP (layers fusion) 91.10± 1.47

Hierarchical-PEP (3-layer)
with Joint Bayesian Classifier 90.37± 1.22

trained from labeled pairs
Published after submission:

MRF-Fusion-CSKDA[2] 95.89± 1.94

explore how the steps in the proposed method contribute to
the performance improvement.

In the baseline experiment a), we compare with a 1-layer
Hierarchical-PEP model with 4096 components (L1 = 16,
d1 = 200). Without the hierarchy but keeping the total
number of Gaussian components the same as the 3-layer
Hierarchical-PEP model, the 10-fold average accuracy de-
grades. It demonstrates the hierarchical architecture helps
improve the performance.

In the baseline experiment b), we remove the LDE pro-
cess from the bottom-up aggregation but still keep the PCA
for dimensionality reduction. We only apply the LDE for
the final face representations instead. We observe that with-
out the LDE in lower layers it underperforms the previous
method. It demonstrates the effectiveness of the simple dis-
criminative dimensionality reduction network in construct-
ing the face representation.

Arashloo et al. [2] achieve a higher accuracy by fus-
ing three kinds of descriptors MLBP [11], LPQ [45] and
BSIF [26]. With only the MLBP descriptor, their accuracy
is 90.68% while our result with solely SIFT is 91.1%. Be-
sides, their method relies on the Markov Random Field to
address the pose variation of which the optimization pro-
cedure is highly computationally expensive. In addition to
LFW, we also evaluate our method on other two datasets
(Section 4.2 and 4.3).

We also evaluate the Joint Bayesian classifier [14] with
the POP-PEP face representation to compare with the re-
sults in [30]. Within the image-restricted protocol, we fol-
low Li et al. [30] to train the Joint Bayesian classifier with
labeled face pairs to learn similarity scores for face pairs.
However, we observe no improvement compared with the
simple cosine similarity. In Section 4.3.3, we conduct more
experiments on the PaSC dataset to explore whether the
Joint Bayesian classifier can improve the recognition accu-
racy with the Hierarchical-PEP face representation.
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Figure 7. Performance comparison on LFW under the Image-
restricted with no outside data protocol.

Table 3. Performance comparison on YTF with different numbers
of frames per video with the 2-layer Hierarchical-PEP model.

# frames Accuracy ± Error(%)
10 85.40± 1.36

50 86.84± 1.35

all (181 on average) 87.00± 1.50

4.2. YouTube Faces

The YouTube Faces (YTF) dataset [48] follows the de-
sign of LFW as a benchmark for uncontrolled video-based
face verification. This dataset contains 3, 425 videos from
1, 595 people. Each video consists of faces of the same per-
son. On average, a video has 181 frames. We report our
results under the image-restricted with no outside data pro-
tocol. On this dataset, the Hierarchical-PEP model further
improves the state-of-the-art accuracy.

4.2.1 Settings

We center crop the video frames to be 100× 100 to exclude
most of the background and reduce computation. Consider-
ing the low resolution of the face videos, we train a 2-layer
Hierarchical-PEP model (T = 2). The first layer consists
of a PEP model with 256 face part models (K1 = 256)
working on image patches of size 32 × 32 (L1 = 32). The
second layer consists of PEP models with 16 face part mod-
els (K2 = 16) working on image patches of size 24 × 24
(L2 = 24). We set d1 = 400 and d2 = 200. The final face
representation is of 400 dimensions. Other settings are the
same as in Section 4.1.1.

4.2.2 Results

As shown in Figure 8 and Table 4, we observe the
Hierarchical-PEP model significantly improves the state-of-
the-art accuracy. The 2-layer Hierarchical-PEP model con-
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Figure 8. Performance comparison on YTF under the restricted
with no outside data protocol.

Table 4. Performance comparison on YTF under the restricted with
no outside data protocol.

Algorithm Accuracy ± Error(%)
MBGS [48] 76.4± 1.8

MBGS+SVM- [49] 78.9± 1.9

STFRD+PMML [53] 79.5± 2.5

VSOF+OSS(Adaboost) [38] 79.7± 1.8

APEM [29]) 79.10± 1.50

VF2 [39] 84.7± 1.4

DDML (combined) [18] 82.3± 1.5

Eigen-PEP [30] 84.8± 1.4

LM3L [19] 81.3± 1.2

Hierarchical-PEP (1-layer) 86.16± 1.11

Hierarchical-PEP (2-layer) 86.72± 1.51

Hierarchical-PEP (layers fusion) 87.00± 1.50

sistently improves the accuracy of a 1-layer model and the
multiple layers fusion can further improve the accuracy.

In Table 3, we show how the performance improves by
adding more frames in building the face video representa-
tions. We observe that with 10 frames randomly selected
for each face video, the Hierarchical-PEP model achieves
state-of-the-art performance.

4.3. Point-and-Shoot Face Recognition Challenge

Beveridge et al. [7] propose the Point-and-Shoot Face
Recognition Challenge (PaSC) to facilitate the development
of uncontrolled video face recognition algorithms. The
PaSC includes 9, 376 still images of 293 people and 2, 802
videos for 265 people balanced with varied factors such as
the distance to the camera, viewpoints, the sensor types and
etc. We refer the readers to the report by Beveridge et al. [7]
for more details.

There are two experiments defined in the PaSC, the
video-to-video experiment and the video-to-still experi-



Table 5. Evaluation on the PaSC of cosine similarity and Joint
Bayesian classifier trained with labeled pairs.

Experiment layer-1 layer-2 fusion
exp1 (cosine) 0.199 0.206 0.212

exp1 (Joint Bayesian) 0.195 0.251 0.258
exp2 (cosine) 0.259 0.284 0.299

exp2 (Joint Bayesian) 0.226 0.264 0.288

ment. In the video-to-video experiment, given the target
and query sets of videos respectively, the participants are
asked to report the pairwise video-to-video similarities of
the two sets and report the verification accuracy at the 0.01
false alarm rate. In the video-to-still experiment, the set-
tings are the same except that the target set contains still
images instead of videos. We evaluate our method on the
PaSC dataset and compare with the results reported in [8].

4.3.1 Settings

We use the eye-coordinates provided by the PaSC organiz-
ers to align faces and crop out to 150×150 images for a fair
comparison. Considering the low resolution of the videos,
we train a 2-layer Hierarchical-PEP model (T = 2) on the
LFW dataset. The first layer consists of a PEP model with
256 face part models (K1 = 256) with patch size 32 × 32
(L1 = 32). The second layer consists of PEP models with
16 face part models (K2 = 16) working on image patches
of size 24 × 24 (L2 = 24). We set d1 = 100 and d2 = 50.
The final face representation is of 100 dimensions. Other
settings are the same as in Section 4.1.1.

We train this Hierarchical-PEP model with the 6, 000
pairs of face images in LFW roughly aligned by the fun-
neling algorithm [21]. We then construct face representa-
tions for all the 13, 233 face images in LFW and train a
Joint Bayesian classifier with their identity labels following
Chen et al. [14].

4.3.2 Results

We report verification accuracy at 0.01 false alarm rate
in the PaSC in the video-to-video experiment (exp1) and
video-to-still experiment (exp2). Although the two datasets
are very different, our method shows very nice generaliza-
tion. When applying the system we trained on the LFW to
the PaSC directly our system largely outperforms the best
results in the two experiments, as shown in Table 6.

4.3.3 Joint Bayesian Classifier

The Joint Bayesian classifier models the extra-person and
intra-person variations as zero-mean Gaussians with two
different covariance matrices. Empirically, it outperforms

Table 6. Performance comparison on the PaSC.

Algorithm exp1 exp2
LPB-SIFT-WPCA-SILD [37] 0.09 0.23

ISV-GMM [36] 0.05 0.11

PLDA-WPCA-LLR [43] 0.19 0.26

LRPCA Baseline [7] 0.08 0.10

Eigen-PEP [30] 0.26 0.24

Hierarchical-PEP(1-layer) 0.261 0.275

Hierarchical-PEP(2-layer) 0.287 0.289

Hierarchical-PEP(2 layers fusion) 0.307 0.320

the Linear Discriminant Analysis (LDA) [4] in face recog-
nition. We refer readers to [14] for more details.

On LFW we observe that the Joint Bayesian classifier
trained from labeled face pairs performs comparable to the
cosine similarity with the Hierarchical-PEP face representa-
tions. On PaSC, the experimental results further support this
observation. We use the 6, 000 labeled face pairs in LFW
for training and compare the cosine similarity with Joint
Bayesian classifier in Table 5. The Joint Bayesian classi-
fier outperforms the cosine similarity in the video-to-video
experiment but underperforms the cosine similarity in the
video-to-still experiment.

This observation suggests that the simple PCA and LDE
networks can already exploit the supervised information to
build robust face representations when only the labels for
face pairs are available. With additional identity labels, the
Hierarchical-PEP face representation can benefit from more
discriminative similarity metric such as the scores from the
Joint Bayesian classifier for further improvement.

5. Conclusion
We propose a Hierarchical-PEP model for real-world

face recognition. From top-down, the Hierarchical-
PEP model hierarchically builds pose-invariant face repre-
sentation for both face images and face videos in an uni-
fied framework. The Hierarchical-PEP model builds pose-
invariant representations for face parts and its fine-grained
structures. The part-based representations are then ag-
gregated from bottom-up to construct the face representa-
tion. Supervised information is integrated in the aggrega-
tion process through a simple discriminative dimension re-
duction network. The Hierarchical-PEP model finally con-
structs low-dimensional discriminative full face represen-
tation for face verification. We observe a simple multi-
ple layers fusion method consistently improves the accu-
racy. We evaluate the Hierarchical-PEP model on the LFW,
YTF and PaSC datasets for the image-to-image, video-to-
video and video-to-image face verification. The state-of-
the-art performance demonstrates the effectiveness of the
Hierarchical-PEP model. How to speed up the computation
to efficiently adopt a more aggressive and potential setting
remains a question to be addressed in our future work.
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