
Low-level Vision by Consensus in a Spatial Hierarchy of Regions

Ayan Chakrabarti1, Ying Xiong2, Steven J. Gortler2, Todd Zickler2
1TTI-Chicago 2Harvard University

ayanc@ttic.edu, yxiong@seas.harvard.edu, sjg@cs.harvard.edu, zickler@seas.harvard.edu

Abstract

We introduce a multi-scale framework for low-level vi-
sion, where the goal is estimating physical scene values
from image data—such as depth from stereo image pairs.
The framework uses a dense, overlapping set of image re-
gions at multiple scales and a “local model,” such as a
slanted-plane model for stereo disparity, that is expected to
be valid piecewise across the visual field. Estimation is cast
as optimization over a dichotomous mixture of variables,
simultaneously determining which regions are inliers with
respect to the local model (binary variables) and the cor-
rect co-ordinates in the local model space for each inlying
region (continuous variables). When the regions are orga-
nized into a multi-scale hierarchy, optimization can occur
in an efficient and parallel architecture, where distributed
computational units iteratively perform calculations and
share information through sparse connections between par-
ents and children. The framework performs well on a stan-
dard benchmark for binocular stereo, and it produces a dis-
tributional scene representation that is appropriate for com-
bining with higher-level reasoning and other low-level cues.

1. Introduction
Low-level vision is the estimation of depth, motion,

shape, and other physical scene properties from visual mea-
surements. Since it is ill-posed, methods often employ a
local model that is expected to apply piecewise across the
scene, and that restricts the variation of scene values within
each applicable piece or region. Slanted planes for binoc-
ular disparity, affine optical flows, and families of smooth
shapes for surface normals are common examples. The re-
striction on scene variability in applicable regions allows
image cues to be aggregated spatially across each region,
thereby reducing the ambiguity that exists point-wise. The
fundamental challenge lies in identifying—automatically
from the image input—the sizes and shapes of the aggrega-
tion regions that are right for each part of a scene. Regions
that are too small do not sufficiently reduce the underlying
ambiguity, while those that are too big or the wrong shape

span abrupt scene changes that violate the local model and
make estimates unreliable (e.g., Fig. 1 (a)).

We introduce a computational framework to address this
challenge. Called the consensus framework, we apply it to
the binocular stereo problem while also presenting it gen-
erally as a way to attack a variety of low-level tasks. The
framework explicitly considers a large set of dense, overlap-
ping regions of many sizes that redundantly cover the image
plane (Fig. 1 (b)). It simultaneously determines which re-
gions are inliers to the local model (binary variables) and,
for each inlying region, the correct coordinates in the local
model space for that region (continuous variables). Esti-
mation is cast as optimizing an objective that requires each
inlying region to be supported by its local image data while
also having scene estimates that are consistent with its over-
lapping neighbor regions. The output of the framework—
the inlier statuses of all regions and the local estimates from
the inliers—offers a rich, multi-scale representation of the
physical scene. This includes spatial grouping information,
a global scene map, and a point-wise measure of confi-
dence, all of which are desirable when seeking to combine
multiple low-level cues or integrate higher-level processes.

Compared to traditional approaches based on Markov
random fields (MRFs), the consensus framework reasons
in a much larger variable space, and more critically, with
orders of magnitude more links between variables. This is
because it enforces simultaneous consistency between the
thousands of regions that overlap any single pixel. De-
spite this complexity, two properties make estimation not
only feasible, but efficient. First, since the dense region-
set embodies an over-complete scene representation—with
many more internal variables than values in the output scene
map—good solutions can often be reached by a simple
alternating algorithm similar to expectation-maximization.
Second, we show analytically that when the regions are or-
ganized hierarchically by scale (e.g. Fig. 1 (c)), each region
only needs to sum information from its parents and children
(Fig. 1 (d)). This leads to a significant reduction in compu-
tation because the hierarchical connections constitute only
a minuscule fraction of the total links that exist in the con-
sensus objective.
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Figure 1. Consensus framework for low-level vision, using binocular stereo as an example. (a) Window-based stereo matching with a
slanted-plane model reduces ambiguity, but it requires guessing the correct window shapes and sizes throughout the scene. Consensus
addresses this by explicitly considering all regions at all locations (depicted as a 2D cartoon (b) and in 1D organized by scale (c)). It
reasons simultaneously about which regions are inliers to the slanted-plane model and the correct slanted plane for each inlying region.
The regional slanted planes must agree where they overlap, and in the objective this implies high-order factors that link the variables of
thousands of regions that overlap each pixel (blue in (b) and (c)). When regions are organized hierarchically (red/pink in (b)), optimization
becomes parallel and efficient. (d) The result is a distributed architecture, with computational units that iteratively perform the same set of
computations and share information sparsely between parents and children. The framework can be applied to a variety of low-level tasks
using a variety of regional models.

The estimation architecture ends up being composed of
a large network of computational units, one for each re-
gion. Regardless of its region’s scale, each unit carries out
identical operations at each iteration, and these operations
happen in parallel at each scale. By sharing information
through sparse connections between parents and children,
the units collaborate to produce a consistent scene represen-
tation over the image plane. From an implementation per-
spective, this structure allows estimation to be trivially par-
allelized across multiple cores and single instruction mul-
tiple data (SIMD) channels. Experiments on the binocular
stereo problem show that the consensus framework achieves
greater accuracy on the KITTI benchmark [6] than compa-
rable state-of-the-art variational and MRF approaches.

2. Related Work

There are many techniques for low-level vision prob-
lems like binocular stereo, optical flow, and shape-from-
shading. While they vary greatly in the way they derive
information point-wise from image cues, their mechanisms
for spatial aggregation tend to follow one of three differ-
ent paradigms. The simplest paradigm is purely local—

a single support region is explicitly defined around each
pixel [10, 17, 31, 21, 28]. These regions are typically deter-
mined using intensity and texture information, either inde-
pendently for each pixel or jointly for all pixels via segmen-
tation, and they succeed when color and texture boundaries
are well aligned with boundaries in the latent scene map.

Variational methods form another category. Estimation
involves minimizing a per-pixel data cost along with a spa-
tial regularization term that penalizes large derivatives in
the scene map [3, 4, 9, 12, 16, 18]. The derivative filters
are designed to measure deviations from some implied local
model, and the penalty is chosen to promote piecewise ad-
herence while still being convex. Some variational methods
employ multi-scale reasoning, through sequential coarse-to-
fine optimization [4] or simultaneous penalization of deriva-
tives at multiple scales [1].

The third dominant paradigm are MRF-based meth-
ods [13, 20, 23, 25, 26, 27]. These explicitly encode piece-
wise adherence to the local model (as opposed to the con-
vex penalties in variational methods, which do so implic-
itly), by making hard decisions about the local model be-
ing valid across an edge or clique. Since they often con-
sider continuous label spaces and non-submodular smooth-



ness terms, these methods tend to rely on expensive ap-
proximate algorithms for optimization. Computation can
be reduced by defining graphs on super-pixels instead of
pixels [25, 26, 27], and this does not substantially reduce
accuracy as long as the super-pixel boundaries happen to be
well aligned with scene boundaries.

The consensus framework is different from traditional,
single-scale MRF techniques because it is defined on over-
lapping regions at multiple scales. It is also different from
multi-scale MRF formulations that have been used for seg-
mentation [14], where parent nodes encode semantic con-
text for co-occurring labels of their children. In consensus,
all regions at all scales are self-similar. They all make direct
predictions about pixel-level scene values, and they all use
the same local model.

Consensus is inspired by our previous work on shape-
from-shading [24]. The objective in that paper can be seen
as a special case of the one proposed here. Here, we in-
troduce an encoding of local models that broadens the ap-
proach to a variety of low-level vision tasks. We also show
that this encoding, when combined with a hierarchical orga-
nization that can be applied to a broad class of region sets,
dramatically reduces computational expense by sharing in-
formation between parent and child regions in the hierarchy.

We use an alternating algorithm to minimize our objec-
tive. This is similar to “divide and concur” optimization
algorithms like the alternating direction method of multi-
pliers (ADMM) [7] that modify an objective to create mul-
tiple copies of a variable—one for each term in the origi-
nal objective that includes that variable—and then enforce
consistency between these copies. Our consensus objec-
tive resembles these modified, split objectives. A crucial
part of our approach is the hierarchical organization of re-
gions across scales, which makes the aggregation steps in
the alternating minimization tractable. It is worth noting
the approach of [11] here, which also uses an efficient data-
structure for message aggregation during mean-field infer-
ence in a densely connected graph.

3. Framework Elements
We begin with a formal description of the three main

components of the proposed framework. First, there is the
global scene map. This is a function Z(n) ∈ Rd on the two-
dimensional image plane, with n = (x, y) indexing dis-
crete spatial locations. Z(n) may be scalar-valued (d = 1)
for properties such as stereo disparity, or vector-valued for
properties such as motion and 3D surface orientation.

Second, there is a dense set P of overlapping regions
p ∈ P within the image plane, each one a collection of loca-
tions n. Set P has regions atK different scales, and symbol
Pk represents the subset of regions at scale k ∈ {1 . . .K}.
By convention, larger values of k correspond to larger re-
gions. Moreover, the regions can be organized hierarchi-

cally: for every region p ∈ Pk at scale k > 1, it is possible
to select a set Hp of non-overlapping “child regions” from
scales smaller than k, such that p can be written exactly as
their disjoint union. Figure. 1 (c,d) shows an example of
such a region set for a one-dimensional image plane, where
each Pk is the set of overlapping regions of length 2k, and
each p ∈ Pk, k > 1 is the union of two children from Pk−1.

The final component is the local model. It is expected
to apply piecewise across most of the scene, and it restricts
accordingly the allowable choices for scene values within
any region p. It is encoded in a mathematical form that en-
compasses all sorts of local models proposed in computer
vision [2, 24], while also enabling the system to exploit
the computational redundancy inherent to a hierarchy of re-
gions. The local model says that scene values within any
region p must satisfy:

Z(n) = U(n)θp, ∀n ∈ p, (1)

where U(n) ∈ Rd×M is some pre-defined matrix-valued
function on the image plane, and θp ∈ RM is a variable
associated with region p. Algebraically, this restricts local
scene values to an M -dimensional linear sub-space, regard-
less of region size; and as a consequence of using a common
U(n), local scene estimates from two overlapping regions p
and p′ agree whenever θp = θp′ . Here are some examples
of functions U(n) and their corresponding physical inter-
pretations:

U(n) = [x y 1], d = 1,M = 3,
(disparity of locally-planar surfaces),

U(n) =

[
∂/∂x
∂/∂y

]
[x2 y2 xy x y], d = 2,M = 5,

(normals of locally-quadratic surfaces),

U(n) =

[
x y 1 0

0 x y 1

]
, d = 2,M = 6,

(flow vectors for locally-affine motion).

With the three components in hand, estimation requires
determining: a) which regions p ∈ P are inliers with re-
spect to the local model; and b) for all inlying regions, val-
ues of the per-region variables θp that are supported by the
image data and consistent with each other. Inliers are indi-
cated by a binary variable Ip ∈ {0, 1} associated with each
patch. Once determined, the values of {Ip, θp} together pro-
vide a rich and over-complete representation of the physical
scene. At each point n, local grouping information is avail-
able through the subset Jn of (potentially thousands of) in-
lying regions covering that point:

Jn = {p: p 3 n, Ip = 1}. (2)

An estimate Z̄ of the global scene map is induced as the
point-wise average, or consensus, of the local estimates



from inlying regions:

Z̄(n) =
1

|Jn|
∑
p∈Jn

U(n)θp =
1∑
p3n Ip

∑
p3n

U(n)θp Ip.

(3)
The count |J(n)| represents the degree of consensus at each
point, and provides a point-wise measure of confidence in
the estimate Z̄.

Estimation is then cast as a minimization of the follow-
ing cost over variables {Ip, θp}:

L({Ip, θp}p∈P ) =
∑
p:Ip=0

τp +
∑
p:Ip=1

Dp(θp)

+ λ
∑
n

|Jn| Var
[
{U(n)θp}p∈Jn

]
.

(4)

The first term applies a cost τp for declaring region p an
outlier, in line with intuition that the local model is often
valid. The second term scores local variables θp in each in-
lying region using data cost Dp(·), typically measuring the
ability of restricted local scene estimates U(n)θp,∀n ∈ p
to explain the relevant image data. Both τp and Dp(·) can
optionally be augmented to encode prior information about
the scene or context from semantic visual processes. The
final λ-weighted term promotes consistency between over-
lapping regions by penalizing, at every point, the variance
of the scene predictions from inlying regions that cover it.

4. Optimization Algorithm
To minimize (4), we re-write the consistency term in

terms of the global scene map Z, creating a related cost L′:

L′({Ip, θp}p∈P , Z) =
∑
p:Ip=0

τp +
∑
p:Ip=1

(
Dp(θp)

+λ
∑
n∈p
‖U(n)θp − Z(n)‖2

)
, (5)

where the two costs are equal when Z is set to the consen-
sus, i.e. L′({Ip, θp}, Z̄) = L({Ip, θp}). In this new cost,
the per-region summations are quadratic functions of vari-
ables θp:

Cp(θp, Z) =
∑
n∈p
‖U(n)θp − Z(n)‖2

= θTp Qpθp − 2φTp θp + ep, (6)

with each Qp =
∑
n∈p U(n)TU(n) a pre-computed M ×

M matrix permanently associated with region p; and each
φp, ep an M -vector and a scalar, respectively, derived from
Z as:

φp =
∑
n∈p

U(n)TZ(n), ep =
∑
n∈p
‖Z(n)‖2. (7)

Cost L′ is minimized iteratively, with each iteration hav-
ing two steps. The first step is a minimization over region
variables {Ip, θp} with Z fixed. Conveniently, this can be
done independently—and in parallel—for each region since
there are no cross-region terms in L′ when Z is fixed. These
independent minimizations are achieved by setting

θp = arg min
θ

[Dp(θ) + λCp(θ, Z)], (8)

and then,

Ip =

{
0, if [Dp(θp) + λCp(θp, Z)] > τp,
1, otherwise . (9)

In other words, the best model-based explanation is found
for each region p, and then the region is declared outlier if
the error-of-fit exceeds the outlier cost τp.

The second step at each iteration is a minimization over
Z with region variables fixed at their new values. This is
achieved simply by setting Z = Z̄ as per (3), and it is thus
guaranteed that L({Ip, θp}) = L′({Ip, θp}, Z) at the end
of every iteration. Consequently, beginning with any initial
estimate of the scene map Z, each iteration decreases the
value of L′, and therefore of L, which converges to a (local)
minimum whenever {Dp(·)} have finite lower bounds.

Convergence to a good local minimum is promoted by
beginning the iterations with a smaller value for the con-
sistency weight λ, and then increasing it to its final value
across the initial iterations. Interestingly, this induces a tem-
poral coarse-to-fine refinement of the scene map during the
optimization. Early-on, smaller λ values allow more inly-
ing regions, causing the consensus to be smoothed across
larger areas. As λ increases, more regions that span scene
discontinuities become outliers, and the consensus exhibits
progressively finer detail.

4.1. Hierarchical Computation

The computational cost of this optimization depends on
the complexities of the three parts of every iteration:

1. Computing intermediate regional consistency terms
{φp, ep} from Z as per (7).

2. Updating (θp, Ip) for every region p as per (8),(9).
3. Setting Z = Z̄ as per (3).
The complexity of the second part depends on the forms

of functions Dp(·), but it usually scales well because it in-
volves parallel optimization over M -dimensional domains
(regardless of region size). The first and third parts would
scale poorly if implemented naively, but this can be averted
by exploiting the hierarchical structure of P .

First, consider the computation of {φp, ep} from Z. Us-
ing the fact that every region p is partitioned by its child
regions c ∈ Hp, we can write

φp =
∑
n∈p

U(n)TZ(n) =
∑
c∈Hp

∑
n∈c

U(n)TZ(n) =
∑
c∈Hp

φc,

(10)



and similarly, ep =
∑
c∈Hp

ep. This reduces the number
of additions significantly—from the size of the region p
to just the number of its children. To ensure that values
of {φc, ec}c∈Hp

are available, calculations of {φp, ep} are
scheduled in an upward sweep through the hierarchy, using
explicit summation over n for regions at scale k = 1, and
the cheaper right-most expression of (10) for progressively
larger scales.

The hierarchical structure can also be leveraged to effi-
ciently compute the consensus Z̄ from the current values
of the region variables {θp, Ip}. Note that for every region
p 3 n at scale k > 1, there is one and only one child region
in Hp that also includes n. For the simple case with only
two scales (K = 2), we see that the summation of local
estimates from inlying regions can be simplified to∑

{p3n}∩P1

U(n)θpIp +
∑

{p3n}∩P2

U(n)θpIp

=
∑

{p3n}∩P1

U(n)

θpIp +
∑

r∈H−1
p

θrIr

 , (11)

where H−1p = {r : Hr 3 p} denotes the set of parents for
any region p1. In the more general case with K scales, we
recursively define augmented variables {θ+p , I+p } for every
region p as

θ+p = θp Ip +
∑

r∈H−1
p

θ+r , I+p = Ip +
∑

r∈H−1
p

I+r , (12)

which can be computed by a downward sweep through the
pyramid. Then, it is easy to see that the numerator and de-
nominator of the expression for Z̄(n) in (3) are given by(∑

p3n
U(n)θp Ip

)
= U(n)

∑
{p3n}∩P1

θ+p ,(∑
p3n

Ip

)
=

∑
{p3n}∩P1

I+p . (13)

Thus, instead of computing summations over all overlap-
ping regions at all scales for each location n, the consen-
sus can be computed using summations over the augmented
variables {θ+p , I+p } of regions at just the smallest scale.

The gains from using these recursive computations is
substantial, and can be interpreted as reducing the effective
connectivity of the framework to just the sparse set of hier-
archical links. For the network in Fig. 1 (c,d), it represents
a reduction, in the number of required summations for (3)
and (7), from O(2KN) to O(KN). Moreover, while the
recursion requires different scales to be processed sequen-
tially, note that the computations in (10) and (12) can still be
carried out for all regions p ∈ Pk at each scale k in parallel.

1Note that for a region p ∈ PK at the largest scale, H−1
p = ∅.

Therefore, as visualized in Fig. 1 (d), computation hap-
pens in a distributed architecture, requires the identical op-
erations of (8),(9),(10), and (12) at each region, with oper-
ations at each scale happening in parallel and information
being passed through hierarchical links between scales—all
of which arises naturally as an efficient way to optimize a
well-defined mathematical objective. A complete listing of
the algorithm is included in the supplementary material.

5. Application to Stereo
In this section, we describe the application of the con-

sensus framework to the task of stereo estimation, and its
evaluation on the KITTI benchmark [6]. We reason with a
planar local model (i.e., U(n) = [x y 1]), and define our
region set P to be a two-dimensional equivalent of the pyra-
mid in Fig. 1(b,c), with five scales consisting of all overlap-
ping patches of sizes 4 × 4, 8 × 8, 16 × 16, 32 × 32, and
64 × 64, where patches at all but the finest scale can be
partitioned into four children from the next lower scale.

We follow the approach of [25, 26, 27] in defining our
data cost Dp(·). In particular, we use the implementa-
tion from Yamaguchi et al. [27], that implements semi-
global matching (SGM) [8] with a cost based on absolute
differences of gradients and the Census transform [29], to
compute an initial set of approximate disparity estimates
ZSGM(n) at a semi-dense set of locations n ∈ ΩSGM . The
data costs for every region p are then defined as:

Dp(θ) =
∑
n∈p

wSGM(n)

(
U(n)θ − ZSGM(n)

)2

, (14)

where wSGM(n) = 0 if n /∈ ΩSGM, 1/4 if there is a discon-
tinuity in ZSGM around n, and 1 otherwise. Note that since
eachDp(·) above is also a quadratic function of θ, the mini-
mizations in (8) simply involve solving a 3×3 linear system
for each region (and moreover, we can re-use the results of
LDL decompositions across iterations when λ is constant).

The scalar outlier costs {τp} for various patches are de-
fined to be proportional to their size |p| as:

τp = τ0 × |p| ×max
(
0.5, exp

(
−0.25V 2

p

))
. (15)

Here, Vp measures if p’s children are a better fit to a differ-
ent parent based on intensity variance, and is the count of
the number of patches that share a child with p and whose
intensity variance is lower than that of p. Through cross-
validation, we set τ0 = 1.44 and the consistency weight
λ = 0.4, and as described in Sec. 4, we begin the iterations
with a lower value of λ′ = 2−18λ, and increase it by a factor
of eight every six iterations till it reaches its final value.

Finally, we add a way to incorporate reasoning about oc-
clusions. While one could achieve this encoding using more
sophisticated definitions ofDp(·) or τp, we find that a much
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Figure 2. Framework output for three image pairs from the KITTI training set. (Row 1) Scene map formed through consensus of predictions
from all inlying regions. (Row 2-6) Inlier statuses of regions at different scales, superimposed on the left images of each stereo pair. For
clarity, we only show the statuses of a non-overlapping subset of regions at each scale. (Row 7) Boundaries (in red) of the support region
for various points n (in blue), formed as the union of their inlying consensus set Jn. (Row 8) Degree of consensus |Jn| (blue saturation)
and sites of erroneous estimates (red), defined as estimates with error greater than 3 pixels. (Erroneous estimates whose ground truth
disparities place them outside the field of view of the right camera are shown as dark red.)

simpler approach suffices. We use the fact that the pixels
missing in ΩSGM correspond to those that have failed a left-
right consistency check, and are likely occluded. Using the
data costs defined as above, the consensus framework usu-
ally yields a scene map where disparity values in occluded
regions, in the absence of any input data, are interpolated
between the occluded and occluding planes either smoothly,
or with a discontinuity at an arbitrary location within the re-
gion. In order to incorporate the intuition that occluded pix-
els are likely to be part of the occluded background, we run
the alternating minimization for fifty iterations; then set the
values of the consensus Z(n), at the potentially occluded
points in n /∈ ΩSGM, to the lower of their current value and

that of the background pixel on the same epipolar line (i.e.,
the nearest pixel on the same horizontal line in ΩSGM); and
then run the minimization for another thirty iterations.

A reference implementation (available on the project
page), designed to make use of thread-based parallelism and
SIMD instruction sets, takes an average of only six seconds
(1.5 seconds for the initial SGM step) on a 1240× 370 im-
age, when running on a CPU with six cores. Moreover,
since the computations in the framework have a degree of
parallelism roughly equal to the resolution of the input im-
age, we expect execution time will continue to decrease
with access to larger numbers of cores.



5.1. Evaluation on KITTI

We evaluate the proposed algorithm on the KITTI bench-
mark [6] which contains a total of 389 grayscale image pairs
of rural road scenes, captured using an autonomous driving
platform equipped with a pair of high-resolution cameras.
A Velodyne laser scanner provides ground truth at a subset
of pixels in each scene. This ground truth is made avail-
able for a subset of 194 image pairs—the training set—and
withheld for the remaining image pairs that form the test-
ing set. A website associated with the database tracks the
performance of stereo algorithms on the testing set. Note
that while the benchmark also contains temporally-adjacent
stereo frames that allow simultaneous reasoning about opti-
cal flow and stereo, we ignore those extra frames and con-
sider the pure stereo problem here.

Figure 2 visualizes various aspects of the internal repre-
sentation of our framework on convergence, for three scenes
in the KITTI training set. The top row shows the consensus
global disparity map, and Rows 2–6 visualizes a regularly-
spaced subset of in the inlier statuses Ip. Row 7 provides
another view of variables Ip, by explicitly showing some
of the “support regions” formed as the union of all patches
in Jn, for various pixels n. These regions by-and-large
group together points whose disparity values would be well-
explained by a slanted plane model. As expected, there is
significant variation in the size and shapes of the support
regions across each scene, matching the scale of the under-
lying scene structures. This highlights the distinction from
superpixel-based MRF approaches [25, 26, 27], which re-
quire choosing a single scale for the entire scene. Also note
that for many pairs of points that do not directly lie in each
others’ support regions, the regions themselves have signifi-
cant overlap. Through such overlap, the consensus estimate
at a point has benefited from aggregation across regions that
are larger than the union of the set of patches that include it.

The final row in Fig. 2 visualizes the degree of consen-
sus |Jn| at all points (blue saturation), simultaneously with
locations of erroneous estimates (red). We see that many
of the errors occur around object boundaries and near small
scene structures, which are also points where |Jn| is low.
We quantify this observation in Fig. 3, and find that average
estimation error drops rapidly as we discard points with the
lowest values of |Jn|. This an other benefit of the rich inter-
nal representation: In addition to providing a global scene
estimate, it also provides a natural measure of point-wise
confidence in this estimate.

Next, we visualize the progression of the alternating
minimization algorithm. Figure 4 shows the evolution of the
consensus Z̄(n) across iterations. In the early iterations as
the consistency weight λ is increased toward its final value,
the map undergoes a coarse-to-fine refinement, with image
boundaries becoming sharper. After the fiftieth iteration,
the occlusion correction is applied to propagate disparity
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Figure 3. Error vs. degree of consensus |Jn|. Blue curve shows
percentage of points with |Jn| above different thresholds, and red
curve their corresponding error rate, in terms of percentage with
error > 3 px. These are computed over all pixels with ground
truth data available, across all images in the KITTI training set.

estimates from background planes into potentially-occluded
regions. Since this is a simple correction applied indepen-
dently along each epipolar line, it introduces inconsistencies
within occluded regions. The scene map therefore benefits
from further refinement through another thirty iterations of
minimizing the consensus cost, yielding a final estimate that
is more accurate. The supplementary material includes ad-
ditional results showing the evolution of the objective (4)
for different initial values and update schedules for λ.

Table 1 compares the consensus framework with other
state-of-the-art stereo algorithms2 in terms of various error
quantiles on the KITTI testing set. The most direct compar-
isons of our results are with those of [22, 25, 26, 27], since
these methods all use the same approach to derive their data
costs (census transform and gradient-based matching with
SGM). These only differ—from us, and from each other—
in their approach to spatial aggregation. The consensus
framework outperforms all of these methods on all error
metrics, while also having a low execution time.

Table 1 also reports the performance of the recently re-
leased MC-CNN [30] algorithm, which computes point-
wise matching costs using a multi-layer convolutional neu-
ral network. This produces lower error values than all
other methods, including ours, in exchange for greater com-
putation (the method takes 100 seconds on a GPU with
2880 CUDA cores). This is encouraging, because improved
pixel-wise data costs like this one can be directly substituted
into the consensus framework to enhance accuracy.

Finally, we demonstrate the benefit of the pixel-wise
confidence measure in our framework by reporting a sec-
ond set of results in Table 1. This is simply produced by
discarding a small number of pixels with the lowest degree
of consensus |Jn| (i.e. those with degree less than 200 out of
the maximum possible value of ∼ 5500). This second set

2This table only includes methods that use just one stereo pair as input.



Iteration #15 Iteration #30 Iteration #50 Occlusion-based Correction Iteration #80 (Final)

Figure 4. Evolution of the scene map across iterations. The first two frames correspond to iterations when the consistency weight λ is
still being increased towards its final value, causing the map to undergo a coarse-to-fine refinement. After iteration #50, we apply the
occlusion-based correction step, and then run the minimization for another 30 iterations.

Method
Avg. Error > 2px > 3px > 4px > 5px

Exec. Time
All NOC All NOC All NOC All NOC All NOC

ATGV [16] 1.6px 1.0px 9.05% 7.08% 6.88% 5.02% 5.76% 3.99% 5.01% 3.33% 6min: 8 cores
wSGM [19] 1.6px 1.3px 8.72% 7.27% 6.18% 4.97% 4.89% 3.88% 4.11% 3.25% 6s: 1 core

AARBM [5] 1.2px 1.0px 8.70% 7.36% 5.94% 4.86% 4.56% 3.67% 3.69% 2.96% 0.25s: 1 core
*PCBP [25] 1.1px 0.9px 7.62% 5.08% 5.37% 4.04% 4.29% 3.14% 3.64% 2.64% 5min: 4 cores

*StereoSLIC [26] 1.0px 0.9px 7.20% 5.76% 5.11% 3.92% 4.04% 3.04% 3.33% 2.49% 2.3s: 1 core
*DDS-SS [22] 1.0px 0.9px 6.96% 5.91% 4.59% 3.83% 3.49% 2.90% 2.83% 2.36% 1min: 1 core

*PCBP-SS [26] 1.0px 0.8px 6.75% 5.19% 4.72% 3.40% 3.75% 2.62% 3.15% 2.18% 5min: 1 core
*SPS-St [27] 1.0px 0.9px 6.28% 4.98% 4.41% 3.39% 3.52% 2.72% 3.00% 2.33% 2s: 1 core

MC-CNN [30] 1.0px 0.8px 5.39% 4.30% 3.84% 2.61% 3.01% 2.04% 2.52% 1.75% 100s: GPU

*Proposed: All n 0.9px 0.8px 5.88% 4.85% 4.10% 3.30% 3.26% 2.59% 2.74% 2.16%
6s: 6 cores

Only |Jn| ≥ 200
(96.4% density)

0.8px 0.6px 4.59% 3.50% 2.98% 2.14% 2.26% 1.56% 1.85% 1.24%

Lowest Second Lowest Third Lowest *: Same Matching Cost

Table 1. Comparison with the state-of-the-art on the KITTI testing set. Performance is measured in terms of average error, as well as
percentage of estimates with error greater than different thresholds. For each metric, the “All” column reports values computed over all
ground truth pixels, and “NOC” over only those those that are within the field-of-view of the right camera. The last row reports the accuracy
of our method’s estimates that have confidence measure |Jn| above a threshold, and correspond to errors values computed over 96.4% of
the points with ground truth available.

of error quantiles—computed now on the high-confidence
set with only ∼ 3.6% fewer pixels—are the smallest of all
methods. In this mode, the proposed algorithm efficiently
produces very reliable disparity estimates, at all but a small
fraction of locations. This also suggests a strategy for lever-
aging sophisticated matching strategies such as [30] when
execution time is a bottleneck (such as for automated driv-
ing applications)—one where the more expensive match-
ing costs are computed only for the small number of low-
confidence pixels.

6. Conclusion

In this paper, we introduced a framework for low-level
visual estimation with local scene models that reasons with
a large overlapping, multi-scale set of regions, to determine
which of them are outliers, and which of them can generate
model-based scene value estimates while being consistent
with each other. Despite the larger variable space, and the
greater complexity of the consensus objective, we showed

that optimization can be carried out efficiently by recog-
nizing that the regions can be organized hierarchically. An
evaluation on stereo estimation found that the framework
outperforms existing approaches to spatial reasoning.

An important direction of future research lies in apply-
ing the framework to problems involving estimating differ-
ent physical properties of the same scene (such as material
and shape), with different piecewise local models for each,
when the aggregation regions of one property suggest, but
do not determine, those of the other.

On a different note, many properties of the consensus
framework—multi-scale collaboration, implementation as
a distributed architecture of computational units carrying
out the same operations, coarse-to-fine evolution of the
scene map, etc.—mimic behavior observed in biological
systems [15]. It would be interesting to explore these links
systematically—to investigate whether the framework, or
some variation of it, can serve as a faithful model for bio-
logical processing; as well as whether insights from biology
can be used to further improve the framework.
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