
Joint calibration of Ensemble of Exemplar SVMs

Davide Modolo1, Alexander Vezhnevets1, Olga Russakovsky2, Vittorio Ferrari1

1University of Edinburgh 2Stanford University

Abstract
We present a method for calibrating the Ensemble of Ex-

emplar SVMs model. Unlike the standard approach, which
calibrates each SVM independently, our method optimizes
their joint performance as an ensemble. We formulate joint
calibration as a constrained optimization problem and de-
vise an efficient optimization algorithm to find its global
optimum. The algorithm dynamically discards parts of the
solution space that cannot contain the optimum early on,
making the optimization computationally feasible. We ex-
periment with EE-SVM trained on state-of-the-art CNN de-
scriptors. Results on the ILSVRC 2014 and PASCAL VOC
2007 datasets show that (i) our joint calibration procedure
outperforms independent calibration on the task of classify-
ing windows as belonging to an object class or not; and (ii)
this improved window classifier leads to better performance
on the object detection task.

1. Introduction
The Ensemble of Exemplar SVMs [1] (EE-SVM) is a

powerful non-parametric approach to object detection. It
is widely used [2–12] because it explicitly associates a
training example to each object it detects in a test im-
age. This enables transferring meta-data such as segmen-
tation masks [1, 7], 3D models [1], viewpoints [12], GPS
locations [10] and part-level regularization [4]. Further-
more, EE-SVM can also be used for discovering objects
parts [3, 5], scene classification [3, 9], object classifica-
tion [6], image parsing [7], image matching [2], automatic
image annotation [11] and 3D object detection [8].

An EE-SVM is a large collection of linear SVM clas-
sifiers, each trained from one positive example and many
negative ones (an E-SVM). At test time each window is
scored by all E-SVMs, and the highest score is assigned
to the window. Because of this max operation, it is nec-
essary to calibrate the E-SVMs to make their scores com-
parable. A common procedure is to calibrate each SVM
independently, by fitting a logistic sigmoid to its output on
a validation set [1]. Such independent calibration, however,
does not take into account that the final score is the max
over many E-SVMs. Moreover, calibrating one E-SVM in
isolation requires choosing which positive training samples

it should score high and which ones it can afford to score
low. Such a prior association of positive training samples
to E-SVMs is arbitrary, as there is no predefined notion of
how much and in which way a particular E-SVM should
generalize. What truly matters is the interplay between all
E-SVMs through the max operation.

In this paper we present a joint calibration procedure that
takes into account the max operation. We calibrate all E-
SVMs at the same time by optimizing their joint perfor-
mance after the max. Our method finds a threshold for
each E-SVM, so that (i) all positive windows are scored
positively by at least one E-SVM, and (ii) the number of
negative windows scored positively by any E-SVM is min-
imized. The first criterion ensures that there are no positive
windows scored negatively after the max, while the second
criterion minimizes the number of false positives.

We formalize these two criteria in a well-defined con-
strained optimization problem. The first requirement is for-
malised in its constraints, while the second comes in as
a loss function to be minimized. Each threshold defines
which training samples the respective E-SVM is scoring
positively. By lowering a threshold we cover more positives
and thereby satisfy more constraints, but we also include
more negatives and therefore suffer a greater loss. Any pos-
itive sample can be potentially covered by any E-SVM, but
at a different loss. This combinatorial nature of the problem
makes it difficult to find the global optimum. We propose
an efficient, globally optimal optimization technique. By
exploiting the structure of the problem we are able to iden-
tify areas of the solution space that cannot contain the op-
timal solution and discard them early on. Our globally op-
timal algorithm is able to calibrate a few hundred E-SVMs
quickly. In order to solve larger problems with thousands
of E-SVMs, we present a simple modification of our exact
algorithm to deliver high quality approximate solutions.

The rest of the paper is organized as follows. We start by
reviewing related work in sec. 2. Sec. 3 introduces the for-
mulation of our optimization problem, while sec. 4 presents
our algorithm for efficiently finding the global optimal so-
lution as well as its approximation. We train EE-SVM on
state-of-the-art CNN descriptors [23] and present experi-
ments on 10 classes of the ILSVRC 2014 dataset [13] and

on all 20 classes of PASCAL VOC 2007 [14] in sec. 5.
These experiments show that (i) our joint calibration pro-
cedure outperforms standard independent sigmoid calibra-
tion [1] on the task of classifying windows as belonging to
an object class or not; and (ii) this translates to better object
detection performance. Finally, we conclude in sec. 6.

2. Related Work
In the machine learning literature, classifier calibration

has been considered in the context of deriving probabilistic
output for binary classifiers [15–18] or multi-class classi-
fication [10, 19]. Multi-class problems are often cast as a
series of binary problems (e.g. 1-vs-all) and [1, 19, 20]
showed that calibrating these binary classifier often leads to
improved prediction.

The two most popular methods for calibrating binary
classifiers are Platt scaling [15] and isotonic regression [16].
They both fit a monotonic function of the classifier score
to the empirical label probability, obtaining an estimate
of the conditional probability of a class label given the
score. Platt scaling [15] uses a simple sigmoid function,
while [16] employs a more flexible isotonic regression. In
computer vision, Platt scaling is the most popular calibra-
tion tool [1, 5, 21]. We compare to both methods in sec. 5.3.

All these works [15–18] assume that the set of positive
training samples for each classifier is fixed and given be-
forehand, even if small. In contrast, in the EE-SVM model,
any positive sample can potentially be associated with any
E-SVM. In the original EE-SVM paper [1] this was resolved
in a greedy fashion, where each E-SVM was calibrated in-
dependently. The association of a positive sample to an E-
SVM was resolved by comparing its uncalibrated E-SVM
score to a fixed threshold. Instead, we calibrate E-SVMs
and associate positive samples with them jointly over all
positives and all E-SVMs. Our joint formulation (sec. 3)
ensures that every positive is associated with at least one
E-SVM, while the total number of false positives is mini-
mized. As an additional benefit, this enables removing up
to 25% of redundant E-SVMs that are not associated with
any positives after the global optimum is found.

Two interesting exceptions to the classic EE-SVM cal-
ibration procedure [1] were presented recently [10, 12].
Gronat et al. [10] learns a per-location classifier for vi-
sual place recognition, while [12] learns exemplar-based 3D
“chair” representations. Both works employ a calibration
strategy based purely on negative samples, sidestepping the
association of positive samples to E-SVMs. For complete-
ness, we compare to [12] in sec. 5.3. All techniques re-
viewed above calibrate each E-SVM independently.

3. Joint calibration formulation
In many object detection pipelines [22–24] a single lin-

ear classifier w ∈ Rd is applied to allK candidate windows

Figure 1: Example of window proposals used in our calibration
technique. P is the set of positive windows (�) and N is the set
of negative windows (�) in the training set. Finally, (�) indicates
E-SVMs ground-truth bounding-box. A window is positive if it has
an intersection-over-union ≥ 0.5 with a ground-truth box [14].

{x}Ki=1 in an image, where x ∈ Rd is the window descrip-
tor. The windows are then ranked according to the classifier
score w · x. An EE-SVM, instead, contains E classifiers:
{wj}Ej=1. The score of a window x is defined as the highest
score among all classifiers applied to it:

S(w) = max
j

(wj · x) (1)

Our goal is to find a threshold θj for each E-SVM ej such
that (i) all positive windows are scored positively by at
least one E-SVM, and (ii) the number of negative windows
scored positively by any E-SVM is minimized. A window
x is scored positively by E-SVM ej if wj · x− θj > 0. We
formalize these criteria in an optimization problem:

min
Θ={θj}Ej=1

L(Θ)︷ ︸︸ ︷∑
x∈N

1[max
j

(wj · x− θj)]

s.t. 1[max
j

(wj · x− θj)] > 0, ∀x ∈ P

(2)

where 1 is the indicator function and P and N are the sets
of positive and negative windows in the training set (fig. 1).
We refer to the top term as the loss function L(Θ) and the
bottom terms as the constraints.

Calibration is performed by adjusting the thresholds Θ.
Given a configuration of thresholds Θ = [θ1, θ2, . . . θE],
the loss L(Θ) counts the number of negative windows
scored positively after the max operation. Each constraint i
ensures that a positive window xi is scored positively by at
least one E-SVM. We refer to a configuration Θ satisfying
all the constraints as a feasible solution.

4. Globally optimal and efficient solution
In this section we develop a computationally efficient al-

gorithm to find the global optimal solution of (2). We start
in sec. 4.1 by analysing the space of all possible solutions of
(2). In sec. 4.2 we then introduce a data structure to repre-
sent this space, and finally in sec. 4.3 we present an efficient
algorithm to search this data structure for the globally opti-
mal solution.

Figure 2: Illustration of our joint calibration algorithm. (left) shows the window scores of the two E-SVMs e1 and e2. (middle) shows the
candidate thresholds for these two E-SVMs. These are [θ11, θ

2
1] and [θ12, θ

2
2, θ

3
3], respectively. Finally, (right) shows the tree representing

the space of all possible solutions. Note how the only feasible threshold configurations are those in the leaves.

4.1. Space of candidate thresholds
At first sight, (2) appears to be a continuous optimiza-

tion problem where each threshold can take any value in R.
However, since E-SVMs are evaluated only on a finite set
of training windows, there exist an infinite set of equivalent
thresholds leading to the same loss. For this reason, (2) is
in practice a discrete optimization problem.

Fig. 3 shows an example. Since each constraint in (2)
evaluates one positive windows, an E-SVM needs at most
P + 1 thresholds to satisfy each of them (fig. 2), where
P = |P|. Furthermore, considering a threshold between
two positive samples is not necessary, because the loss only
changes when new negative samples are scored positively.
The only thresholds worth considering are those between
the score of a negative sample and a positive (not the re-
verse, fig. 3). We denote the set of candidate thresholds for
an E-SVM ej as [θ1j , θ

2
j , . . . θ

Mj

j], where 1 ≤ Mj ≤ P + 1

and θaj < θbj , for ∀a, b : 1 ≤ a < b ≤Mj . By construction,

the lowest threshold θMj

j satisfy all the constraints in (2).
To conclude, the number of candidate thresholds for an

individual E-SVM is relatively small (at most P + 1), but
the joint space of E-SVMs thresholds is nonetheless huge.
In the worse case scenario (all E-SVMs have P candidate
thresholds), there are PE threshold configurations, many of

Figure 3: Candidate thresholds, given the scores on positive (+)
and negative (-) windows. The only thresholds worth considering
according to (2) are the ones between a negative and positive win-
dow. Of all equivalent thresholds between two window scores, we
consider only the mean of the two scores.

which are not a feasible solution to (2). In the next section
we present a data structure to enumerate all these configu-
rations and highlight the feasible solutions.

4.2. Exhaustive search tree
We represent the space of all possible solutions as a

search tree (fig. 2).
Definition 1. (Search Tree) Our search tree T is a per-
fect k-ary tree: a rooted tree where every internal node has
exactly k children and all leaves are at the same depth h.
Each node η contains a configuration Θ = [θ1, θ2, . . . θE]
of thresholds.

A configuration Θ at node η is used to compute the loss
L(Θ) by counting how many negative windows are scored
positively according to (2). The root node has the configu-
ration Θ = [θ11, θ

1
2, . . . θ

1
E] of all tightest threshold for each

E-SVM. We denote the set of false positives at a node η as
ξη and L(Θη) = |ξη|. Note how the root has ξ = ∅.

In our representation we have h = P and k = E. Each
level l of the tree corresponds to a positive window pl, and
each edge corresponds to an E-SVM ej . An edge ej in-
dicates that ej is responsible for pl and it should score it
positively, hence satisfying one constraint of (2). Given an
E-SVM ej and its current threshold θj , the edge lowers the
threshold so thatwj ·xl−θj > 0 (if this condition is already
satisfied then the threshold does not change). Lowering the
threshold might increase the loss, but not necessarily. Low-
ering the threshold will make E-SVM ej score positively
some negative windows, but these affect the loss only if they
were not already scored positively by another E-SVM.

The deeper the level, the more constraints of (2) are sat-
isfied. By construction, the configuration of thresholds at a
leaf satisfy all constraints, and the set of all leaves represent
the set of all feasible solutions. Also note that the number of
false positives always increases (or remains the same) along
a path from the root to a leaf: given a node η and any child
η′, we have that L(Θη) ≤ L(Θη′).

4.3. Efficient search
In this section we find the global optimal solution to (2)

by searching the tree. Exhaustive search is computationally
prohibitive even for small problems with few E-SVMs and
positive windows, as the total number of nodes in our tree is
(EP+1 − 1)/(E − 1) (with E the number of E-SVMs and
P the number of positive windows).

The key to our efficient algorithm is to prune the tree
by iteratively removing subtrees which cannot contain the
global optimal solution. In the following paragraphs we
present several observations that enable to drastically re-
duce the space of solutions to consider. The last paragraph
presents the actual search algorithm.

Observation 1. (Pruning by bound). If η is a leaf and η′

is a node not on the path from the root to η, and L(Θη) ≤
L(Θη′), then the subtree rooted at η′ cannot contain a bet-
ter solution than η and can be discarded.

The key intuition is that the loss can only increase
with depth. The observation leads to two cases. First, if
L(Θη) < L(Θη′), then η′ cannot lead to an optimal solu-
tion since its loss is already higher than an already found
feasible solution. Second, if L(Θη) = L(Θη′), η′ could
lead to an optimal solution, but it would be equivalent to the
one in η. In both cases we can discard the subtree rooted at
η′, as we are interested in finding only one optimal solution.

Consider the example in fig. 4. Since L(Θη3) = 5 <
L(Θη2) = 6, the subtree rooted at η2 cannot contain an
optimal solution: any solution in it has a loss ≥ 6, which is
higher than the feasible solution in η3.

Observation 2. (Pruning by equivalence). If two nodes
η and η′ have the same parent and ξη = ξη′ , then they are
equivalent and only one subtree needs be searched.

The key intuition is that the loss in (2) only increases
when new negative windows are scored positively. Con-
sider the example in fig. 5, where ξη1 = ξη2 and η1 and η2
have the same parent (i.e., they satisfy the same constraints
of (2)). η1 has Θ = [θ21, θ

1
2] because the edge from η0 to

η1 adjusted the threshold of e1. Note, however, that this
configuration can be changed into [θ21, θ

2
2] without increas-

ing the loss, as they are equivalent solutions. Because of
this equivalence, both subtrees lead to equivalent feasible
solutions and only one of them needs be searched.

Observation 3. (Reducing tree depth). Given the root
configuration Θ = [θ11, θ

1
2, . . . θ

1
E], there might exist some

x ∈ P : maxj(wj · x− θ1j) > 0. Since Θ already satisfies
the constraint for these positives at zero cost, these can be
eliminated right away, reducing the depth of the tree.

Consider the example in fig. 2. Initially, Θ = [θ11, θ
1
2].

This configuration already scores p1 positively. Whatever
optimal solution Θ the tree retrieves, p1 will always be

Figure 4: Example of pruning by bound. Since L(Θη3) = 5 <
L(Θη2) = 6, the subtree rooted at η2 cannot contain an optimal
solution.

Figure 5: Example of pruning by equivalence. Since the two
nodes η1 and η2 have the same parent and ξη1 = ξη2 , they are
equivalent and only one subtree needs be searched.

Figure 6: Efficient pruning by bound can be achieved by sorting
the positive windows by decreasing difficulty.

scored positively by at least E-SVM e1. Hence, we can
eliminate it from the tree to reduce its depth.

Observation 4. (Order of positive windows). By sorting
the positive windows by decreasing difficulty, pruning by
bound can discard larger subtrees. The difficulty of a posi-
tive window x is measured as minj δ(ej , x).

where δ(ej , x) counts how many false positives ej pro-
duces by scoring the positive sample x ∈ P positively.

The key intuition is that it is better to prune subtrees
rooted at the higher levels of the tree, as they contain more
nodes. This can be achieved by placing difficult positive
windows up in the higher levels. Some positive windows
lead to constraints intrinsically more difficult to satisfy than
others, as any E-SVM asked to satisfy it would score posi-
tively many negatives as well, and hence incur a large loss.
By sorting the tree levels according to the difficulty of pos-
itive windows, it is likely that the loss of many high-level
configurations is higher than a previously found feasible so-
lution, and therefore can be pruned (observation 1).

Consider the example in fig. 6. Tree (a) evaluates first p1

and then p2, while (b) does the opposite. Tree (a) cannot be
pruned by observation 1, but tree (b) can.

In sec. 5.5 we evaluate experimentally how effective the
above pruning techniques are on various real EE-SVM cal-
ibration problems.

Search algorithm. We present here a depth-first search
algorithm to efficiently find the global optimal solution,
based on the above observations (Algo. 1).

The algorithm works as follows. The initial configura-
tion of thresholds Θ is the one from the root node (line 1).
As preprocessing, the algorithm starts by reducing the tree
depth using observation 3 (line 2) and re-ordering the posi-
tive windows using observation 4 (line 3). In the first step, it
does a depth-first search until it reaches a leaf η and finds a
first feasible solution Θ (line 4). During this traversal, when
going down a level, the algorithm always chooses the edge
leading to the smallest loss. Next, the algorithm continues
by going up (line 6) and down (line 10) the tree. When vis-
iting a node, the algorithm tries to prune as many children
subtrees as it can using observation 1 (line 8) and observa-
tion 2 (line 9). When the algorithm reaches a leaf then this
must contain a better solution than the current one Θ (in
term of the loss (2)). Hence, it updates Θ (line 13). The algo-
rithm continues until all nodes have been visited or pruned.
The final Θ is the global optimum of (2).

4.4. Approximate search
Above we presented an efficient algorithm that guaran-

tees global optimality. If we relax the global optimality
requirement, we can improve efficiency even further. Our
method follows a depth-first search and as soon as it reaches
a leaf, then it finds a feasible solution. This happens peri-
odically during the execution of the algorithm, as better and
better leaves are found while the tree is searched. This be-
haviour makes our method an any-time algorithm [25, 26].
After a short period required to reach the first leaf, we can
terminate it at any time and it will return the best feasible
solution it has found so far (although not necessarily the
globally optimal one). This simple observation enables to
employ our method, essentially unchanged, to find approx-
imate solutions as well.

5. Experiments
5.1. Datasets

We present experiments on ILSVRC2014 [13]
(sec. 5.3, 5.4) and PASCAL VOC 2007 [14] (sec. 5.4).
ILSVRC2014 [13] contains 200 classes annotated by
bounding-boxes. In our experiments we randomly sampled
10 classes: airplane, bagel, baseball, bear, butterfly, koala,
ladle, printer, sheep and violin. Following [23] we consider
three disjoint subsets of the data: train, val1 and val2.
Since annotations for the test set are not released, we

Algorithm 1 Our Efficient Search Algorithm

Input: search tree T
Output: global optimal Θ

1: Θ← [θ11, θ
1
2, . . . θ

1
E]

2: T ← REDUCE TREE DEPTH(T , Θ)
3: T ← REORDER POSITIVE WINDOWS(T , Θ)
4: η, Θ, L ← DEPTH FIRST SEARCH(T , Θ)
5: while T not fully searched do
6: η ← GO UP ONE LEVEL (T, η)
7: while ¬ ISLEAF(η) ∧ ¬ HASCHILD(η) do
8: T ← PRUNE BY BOUND (T, η,L)
9: T ← PRUNE BY EQUIVALENCE (T, η,Θ)

10: η ← GO DOWN ONE LEVEL (T, η)
11: end while
12: if ISLEAF(η) then
13: Θ, L ← GET SOLUTION(η)
14: end if
15: end while

16: return Θ

measure performance on val2. We use val1 and train
for training. In total, these sets contain >80k images.

PASCAL VOC 2007 [14] contains 20 classes annotated
by bounding-boxes. In our experiments we evaluate on all
20 classes. We use the subset trainval for training and
we measure performance on test. In total, these sets con-
tain about 10k images.

5.2. Settings
Object proposals and features. We generate class-
independent object proposals using [27]. Given an im-
age, this produces a small set of a few thousand windows
likely to cover all objects. We then extract state-of-the-art
CNN descriptors of 4096 dimensions for these proposals, as
in [23]. These descriptors are the output of a convolutional
neural network (CNN) initially trained for image classifica-
tion [28, 29] and then fine-tuned for object detection [23]
(on val1 of ILSVRC2014, or on trainval of PASCAL
VOC 2007).

EE-SVM. We learn a separate window classifier e for
each instance of an object in the training set. We set
C = 10−4 and we mine hard negatives from 2000 random
training images. In our experiments we observed that min-
ing more images did not bring a significant improvement.

Calibration data. For each class we define P as the set
of all positive training windows. A window is considered
positive if it has intersection-over-union (IoU) [14] ≥ 0.5
with a ground-truth bounding-box of that class. Moreover,
N contains negative windows that overlap ≤ 0.2. All cali-
bration methods below are trained from this data.

ILSVRC 2014 - trained on Val1 Airplane Bagel Baseball Bear Butterfly Koala Ladle Printer Sheep Violin mean
Recall 94.1 90.1 97.9 93.1 97.5 96.6 79.5 88.5 98.9 85.3 92.2
EE-SVM no calibration 180124 171966 499056 33664 163727 80145 250602 221117 308458 37519 195k
EE-SVM indep. sigmoid calibration [1] 119552 42165 234734 77099 53986 13017 56616 88390 86507 33266 80k
EE-SVM joint calibration 65182 28460 180658 22694 53927 10746 87513 36573 55923 32570 57k
EE-SVM joint calibration w/ sigmoid 64996 28140 168129 22876 53867 10722 87329 35803 50064 33899 55k
EE-SVM indep. isotonic regression [19] 54173 23625 268302 16424 43580 13507 60285 55129 76997 13814 63k
EE-SVM indep. affine calibration [12] 51905 24507 224003 18978 37483 9947 67288 86757 110909 18218 65k
Single Linear-SVM (R-CNN) [23] 102676 335122 711185 109480 63849 305931 322332 469777 979131 121050 341k

Table 1: Window classification - False positives at test recall. Results on a subset of ILSVRC 2014 Val2 (all positive windows and
one million randomly sampled negative ones). We use the optimal thresholds found by our algorithm (sec. 4) to compute recall on Val2.
This is the percentage of positive windows scored positively by our jointly calibrated EE-SVM. The table entries show the number of false
positives produced in order to reach that recall level. Each row corresponds to a different method (ours are marked ‘joint calibration’).

ILSVRC 2014 - trained on Val1 Airplane Bagel Baseball Bear Butterfly Koala Ladle Printer Sheep Violin mAP
EE-SVM indep. sigmoid calibration [1] 42.8 39.7 63.3 58.7 60.8 58.2 4.5 29.0 49.5 20.3 42.7
EE-SVM joint calibration w/ sigmoid 43.3 40.1 66.5 60.6 63.9 61.1 5.0 31.6 55.1 22.9 45.0
EE-SVM indep. isotonic regression [19] 44.6 42.4 61.4 59.3 63.8 63.2 5.7 22.5 50.9 23.2 43.7
EE-SVM Indep. affine calibration [12] 45.6 42.0 64.1 59.2 62.6 62.2 6.3 22.9 50.4 25.9 44.1
Single Linear-SVM (R-CNN) [23] 47.9 36.9 65.0 60.9 66.7 63.4 5.4 24.4 50.6 19.1 44.0

Table 2: Window classification - Average precision. Results on a subset of ILSVRC 2014 Val2 (same data as table 1).

Independent sigmoid calibration. As a baseline we
compare against the standard technique of Malisiewicz et
al. [1]. It operates in two steps. In step (1) it runs each
E-SVM detector separately on a validation set, applies non-
maximum suppression, and then eliminates all detections
scoring below the −1 margin. All remaining detections are
considered positives if they belong to P , or negatives if they
belong to N . Note how this arbitrarily defines which posi-
tive training samples to associate with a certain E-SVM. In
step (2), it then fits a logistic sigmoid to these data samples.

Our joint calibration. Our joint calibration also operates
in two steps. In step (1), instead of arbitrarily defining the
positive training samples, our technique use the thresholds
found by our algorithm (sec. 4) to associate positive samples
to E-SVMs, which is the core underlying problem at the
heart of such calibration. More specifically, for an E-SVM
ej , we consider as positives all windows x ∈ P : wj ·
x > θj , and as negatives all windows in N . Step (2) of
our procedure is then the same as in [1], but thanks to these
optimal assignments, we fit better sigmoids.

We experimentally evaluate performance after each step.
We refer to the output of step (1) as joint calibration, and
to the output of step (2) as joint calibration with sigmoid.
As step (1) fits thresholds, it results in binary classification
of test windows, while step (2) produces a continuous score
which can be used for later processing stages (e.g. non-
maximum suppression for object detection).

Other independent calibration techniques. For com-
pleteness, we also compare against two independent cali-
bration techniques not commonly used for EE-SVM: iso-
tonic regression [19] and the recent affine calibration [12].
Isotonic regression fits a piecewise-constant non-decreasing
function to the output of each E-SVM. We used the code of

[30] to train the function parameters on P and N . Affine
calibration fits an affine transformation to the output of each
E-SVM. As in [12], we train the affine parameters on 200k
randomly sampled negative windows from N .

Single Linear-SVM (R-CNN). Finally, we provide re-
sults for the state-of-the-art R-CNN object detection
model [23]. The sole purpose is to compare performance
to EE-SVM on CNN features, as previous EE-SVM works
typically use weaker HOG features [1–7, 9, 11]. However,
as it consists of a single linear SVM per class, R-CNN can-
not associate training exemples to objects detected in test
images. Hence, it is not suitable for annotation transfer. We
trained the model using the code and parameters of [23].
Note how this uses the same object proposals and features
as our EE-SVM models.

5.3. Globally optimal joint calibration
We evaluate here our globally optimal joint calibration

technique on ILSVRC2014 [13]. We train E-SVMs on
val1 for the 10 classes listed in sec. 5.1. Each class has
between 30 and 140 E-SVMs and between 500 and 3600
positive windows P . We evaluate two tasks: window clas-
sification and object detection.

Window classification
For this experiment, we use all positive windows (IoU ≥
0.5) in the test set val2 and 1 million randomly sampled
negative ones (IoU < 0.5). We evaluate window classifica-
tion in terms of two measures: false positives at test recall,
and average precision.
False positives at test recall. This measure counts how
many false positives are produced on the test set, at the re-
call point produced by the ensemble of E-SVMs calibrated
by our method. Note this is exactly what our calibration
procedure optimizes for. Given the thresholds Θ output by

Figure 7: Association between detected objects and training exemplars. Our globally optimal joint calibration is good at transfer-
ring annotations from exemplars onto test windows. In these figure we show detections (green) and their associated training exemplar
superimposed on them (yellow).

ILSVRC 2014 - trained on Val1 Airplane Bagel Baseball Bear Butterfly Koala Ladle Printer Sheep Violin mAP
EE-SVM indep. sigmoid calibration [1] 43.3 11.9 27.2 45.2 51.1 46.3 0.6 8.4 31.4 7.4 27.3
EE-SVM joint calibration w/ sigmoid 46.2 10.1 41.3 44.7 66.8 41.4 1.0 10.8 34.3 9.5 30.6
EE-SVM indep. isotonic regression [19] 34.9 13.0 31.4 36.1 59.2 48.6 0.6 13.0 31.0 3.8 27.2
EE-SVM indep. affine calibration [12] 45.8 10.3 41.0 44.1 66.1 39.5 0.8 11.4 35.9 9.6 30.5
Single Linear-SVM (R-CNN) [23] 49.0 17.4 45.4 53.3 69.6 61.4 2.8 18.9 41.5 11.0 37.0

Table 3: Object detection - Average precision. Results on ILSVRC 2014 Val2.

our algorithm (sec. 4), we compute recall as the percentage
of positive windows scored positively by the ensemble on
the test set (top row of table 1). Interestingly, the thresholds
generalize well to test data and lead to high recall on almost
all classes.

We compare several methods at this recall point. The
main four are EE-SVM with no calibration, EE-SVM with
independent sigmoid calibration [1], our joint calibration
fitting thresholds and our joint calibration with sigmoid (ta-
ble 1, rows 2-5). As expected, EE-SVM with no calibra-
tion performs very poorly and some form of calibration is
necessary. Our joint calibration method considerably out-
performs independent calibration, and the version with sig-
moid brings another small boost in performance. These re-
sults demonstrate the benefit of our joint calibration, that
takes into account the max operation of the EE-SVM. Given
these results, we omit EE-SVM with no calibration from
further analysis. Table 1 also presents results for isotonic
regression, affine calibration and R-CNN. On average, our
joint calibration outperforms all these methods, albeit by a
smaller margin.

Average precision. In table 2 we compare techniques in
terms of average precision. As this measure requires a con-
tinuous score of test windows, we only consider our joint
calibration with sigmoid. Joint calibration outperforms in-
dependent sigmoid calibration on all classes, and improves
mAP by 2.3%. This further highlights the benefits of joint
calibration, in a scenario that is not exactly what it was op-
timized for. Table 2 also presents results for isotonic re-
gression, affine calibration and R-CNN. On average, joint
calibration performs better than all these methods, abeit by
a modest margin (about +1% mAP).

Object detection
We evaluate our joint calibration method against indepen-
dent sigmoid calibration on the task of object detection.
Note how this task adds a layer of non-maximum sup-
pression (NMS) to the pipeline. As our calibration pro-
cedure does not take into account NMS, it is not obvious
that the benefit seen so far on window classification will
carry over to object detection. As table 3 shows, joint
calibration outperforms independent sigmoid calibration on
this task as well (+3.3% mAP). Joint calibration performs
equally or better on all classes but koala. For some classes
the improvement is substantial: +14% AP on baseball and
+14.7% AP on butterfly.

Furthermore, table 3 also presents results for isotonic re-
gression, affine calibration and R-CNN. Isotonic regression
performs comparably to independent sigmoid calibration,
whereas affine calibration delivers about the same mAP as
our joint calibration. Interestingly, R-CNN does consider-
ably better than all other methods, including our EE-SVM
with joint calibration. This is somewhat surprising, as EE-
SVM was shown much better than a single linear SVM
on HOG features [1]. We attribute this phenomenon to
the CNN features, which are more easily linearly separa-
ble [23, 31–33]. Besides, note that despite the high per-
formance, R-CNN lacks the crucial ability of EE-SVM to
associate training exemplars to objects detected in test im-
ages, and it is therefore not suitable for annotation transfer.

5.4. Approximate joint calibration
In this section we evaluate our approximate joint calibra-

tion technique (sec. 4.4). By relaxing global optimality, we
can find a feasible solution even for large problems.

ILSVRC 2014 - trained on Val1+train mean
Recall 85.2
EE-SVM no calibration 137k
EE-SVM indep. sigmoid calibration [1] 107k
EE-SVM joint calibration 82k
EE-SVM joint calibration w/ sigmoid 54k

Table 4: Window classification - False positives at test recall.
Results on a subset of ILSVRC 2014 Val2 (mean over 10 classes).
We used all positive windows and 2 million randomly sampled neg-
ative ones.

ILSVRC 2014 - trained on Val1+train mAP
EE-SVM indep. sigmoid calibration [1] 39.7
EE-SVM joint calibration w/ sigmoid 42.9

Table 5: Window classification - Average precision. Results on
a subset of ILSVRC 2014 Val2 (mean over 10 classes, same data
as table 4).

ILSVRC2014. We experiment here by training and cali-
brating EE-SVM on the union of val1 and train. This
results in a large number of E-SVMs. Each class has be-
tween 640 and 2000 E-SVMs, and between 3000 and 13000
positive windows P . We report results on the task of win-
dow classification averaged over the 10 classes. Note that
these results cannot be compared to the ones in tables 1 and
2 because here we have larger training and test sets.
False positives at test recall. As table 4 shows, our approx-
imate joint calibration procedure still achieves high recall
while returning much fewer false positives than no calibra-
tion and independent sigmoid calibration. When adding a
sigmoid our calibration improves even further by a good
margin. This shows that our method provides an excellent
association between positive windows and E-SVMs.
Average precision. Results are presented in table 5. Joint
calibration improves over independent sigmoid calibration
by +3.2% mAP.

PASCAL VOC 2007. In order to compare against the
original EE-SVM of [1], we experiment here on the PAS-
CAL VOC 2007 dataset. We train and calibrate EE-SVM on
the trainval subset and evaluate them on test. We re-
port results on object detection in terms of mAP over the 20
classes (table 6). We compare traditional EE-SVM on HOG
features (19.8 mAP, as reported by [1]), independently cali-
brated EE-SVM on CNNs (40.8 mAP), and our joint cal-
ibration on the same features (42.7 mAP). These results
highlight two points: (1) joint calibration improves over
independent calibration by +2% mAP, confirming what ob-
served on ILSVRC2014; (2) CNN features bring a huge im-
provement over HOG to EE-SVM models (doubling mAP
in this case). This confirms recent findings [23] about the
benefits of CNN features for object detection.

PASCAL VOC
Feature Calibration mAP2007 test

EE-SVM
HOG independent 19.8
CNN independent 40.8
CNN joint 42.7

Table 6: Object detection - Average precision. Results on PAS-
CAL VOC 2007 test (mean over 20 classes). EE-SVM HOG
results are from [1].

5.5. Pruning statistics and runtimes
Pruning statistics. Here we experimentally evaluate how
effective our pruning techniques of sec. 4.3 are. Obser-
vation 3 (line 2, Algo. 1) reduces the depth of the tree by
20%, on average. Observation 4 (line 3) improves pruning
by bound immensely. In a small problem with 100 E-SVMs
we tried ordering the positive windows P randomly. The
algorithm took two hours to find the global solution. On the
other hand, when sorting P according to observation 4, the
algorithm found the same solution in about 2 minutes. Ob-
servations 1 and 2 also bring a substantial speed-up. After
finding a first feasible solution (line 1), the algorithm (lines
8,9) prunes 40% of the nodes it visits on problems with 100
E-SVMs, and 70% on problems with 1000 E-SVMs.
Runtime. We measure runtimes on a 4-cores Intel Core
i5 2.0GHz. Exhaustive search is extremely inefficient and
takes 15h to find the globally optimal solution for a tiny
problem with 15 E-SVMs and 50 positive windows. Our
efficient and exact algorithm (sec. 4.3) finds the same so-
lution in just a few seconds. This algorithm scales up to
problems with about 200 E-SVMs and 4k positive windows
in reasonable time (a few hours). For larger problems we
rely on our approximate search algorithm (sec. 4.4). While
we let it run for several hours, in most cases the loss stops
decreasing significantly already after a few minutes.

6. Conclusion
We presented a method for calibrating the Ensemble of

Exemplar SVMs model. While the standard approach cali-
brates each SVM independently, our method optimizes their
joint performance as an ensemble. We formulated joint cal-
ibration as a constrained optimization problem and devised
an efficient optimization algorithm to find its global opti-
mum. In order to make the optimization computationally
feasible, the algorithm dynamically discards parts of the so-
lution space that cannot contain the optimum, by exploiting
four observations about the structure of the problem.

We presented experiments on 10 classes from the
ILSVRC 2014 dataset and 20 from PASCAL VOC 2007.
Our joint calibration procedure outperforms the classic in-
dependent sigmoid calibration by a considerable margin on
the task of classifying windows as belonging to an object
class or not. On object detection, this better window classi-
fier leads to an improvement of about 3% mAP.

Acknowledgement. We gratefully acknowledges support
by SNSF fellowship PBEZP-2142889 and ERC Starting
Grant VisCul.

References
[1] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble

of exemplar-svms for object detection and beyond,” in
ICCV, 2011.

[2] A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A.
Efros, “Data-driven visual similarity for cross-domain
image matching,” in SIGGRAPH Asia Conference,
2011.

[3] S. Singh, A. Gupta, and A. A. Efros, “Unsuper-
vised discovery of mid-level discriminative patches,”
in ECCV, 2012.

[4] Y. Aytar and A. Zisserman, “Enhancing exemplar
svms using part level transfer regularization,” in
BMVC, 2012.

[5] I. Endres, K. J. Shih, J. Jiaa, and D. Hoiem, “Learning
collections of part models for object recognition,” in
CVPR, 2013.

[6] J. Dong, W. Xia, Q. Chen, J. Feng, Z. Huang, and
S. Yan, “Subcategory-aware object classification,” in
CVPR, 2013.

[7] J. Tighe and S. Lazebnik, “Finding things: Image
parsing with regions and per-exemplar detectors,” in
CVPR, 2013.

[8] S. Song and J. Xiao, “Sliding shapes for 3d object de-
tection in depth images,” in ECCV, 2014.

[9] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman,
“Blocks that shout: Distinctive parts for scene classi-
fication,” in CVPR, 2013.

[10] P. Gronat, G. Obozinski, J. Sivic, and T. Pajdla,
“Learning and calibrating per-location classifiers for
visual place recognition,” in CVPR, 2013.

[11] A. Vezhnevets and V. Ferrari, “Associative embed-
dings for large-scale knowledge transfer with self-
assessment,” in CVPR, 2014.

[12] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell,
and J. Sivic, “Seeing 3d chairs: exemplar part-based
2d-3d alignment using a large dataset of cad models,”
in CVPR, 2014.

[13] “Imagenet large scale visual recognition chal-
lenge (ILSVRC).” http://www.image-net.org/

challenges/LSVRC/2014/index, 2014.
[14] M. Everingham, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman, “The pascal visual object
classes (voc) challenge,” IJCV, 2010.

[15] J. Platt, “Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods,” Advances in large margin classifiers, 1999.

[16] B. Zadrozny and C. Elkan, “Learning and making
decisions when costs and probabilities are both un-

known,” in ACM SIGKDD, 2001.
[17] B. Zadrozny and C. Elkan, “Obtaining calibrated

probability estimates from decision trees and naive
bayesian classifiers,” in ICML, 2001.

[18] A. Niculescu-Mizil and R. Caruana, “Predicting good
probabilities with supervised learning,” in ICML,
2005.

[19] B. Zadrozny and C. Elkan, “Transforming classifier
scores into accurate multiclass probability estimates,”
in ACM SIGKDD, 2002.

[20] M. Aubry, B. C. Russell, and J. Sivic, “Painting-to-3d
model alignment via discriminative visual elements,”
ACM TOG, vol. 33, no. 2, p. 14, 2014.

[21] D. Hoiem, A. A. Efros, and M. Hebert, “Putting ob-
jects in perspective,” IJCV, vol. 80, no. 1, pp. 3–15,
2008.

[22] N. Dalal and B. Triggs, “Histogram of Oriented Gra-
dients for human detection,” in CVPR, 2005.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
“Rich feature hierarchies for accurate object detection
and semantic segmentation,” in CVPR, 2014.

[24] R. Cinbis, J. Verbeek, and C. Schmid, “Segmentation
driven object detection with fisher vectors,” in ICCV,
2013.

[25] S. Zilberstein, “Using anytime algorithms in intelli-
gent systems,” AI magazine, vol. 17, no. 3, p. 73, 1996.

[26] V. Gogate and R. Dechter, “A complete anytime algo-
rithm for treewidth,” in AUAI, 2004.

[27] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers,
and A. W. M. Smeulders, “Selective search for ob-
ject recognition,” IJCV, vol. 104, no. 2, pp. 154–171,
2013.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” in NIPS, 2012.

[29] Y. Jia, “Caffe: An open source convolutional archi-
tecture for fast feature embedding.” http://caffe.
berkeleyvision.org/, 2013.

[30] L. Duembge, “Isotonic and concave regression.”
http://www.imsv.unibe.ch/content/staff/

personalhomepages/duembgen/software/

isotonicregression/index_eng.html, 2000.
[31] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell, “Decaf: A deep convolu-
tional activation feature for generic visual recogni-
tion,” arXiv preprint arXiv:1310.1531, 2013.

[32] A. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son, “CNN features off-the-shelf: An astounding
baseline for recognition,” in DeepVision workshop at
CVPR, 2014.

[33] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisser-
man, “Return of the devil in the details: Delving deep
into convolutional networks,” in BMVC, 2014.

http://www.image-net.org/challenges/LSVRC/2014/index
http://www.image-net.org/challenges/LSVRC/2014/index
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/software/isotonicregression/index_eng.html
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/software/isotonicregression/index_eng.html
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/software/isotonicregression/index_eng.html

