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Abstract

While sparse coding on non-flat Riemannian manifolds
has recently become increasingly popular, existing solu-
tions either are dedicated to specific manifolds, or rely on
optimization problems that are difficult to solve, especially
when it comes to dictionary learning. In this paper, we pro-
pose to make use of kernels to perform coding and dictio-
nary learning on Riemannian manifolds. To this end, we
introduce a general Riemannian coding framework with its
kernel-based counterpart. This lets us (i) generalize be-
yond the special case of sparse coding; (ii) introduce ef-
ficient solutions to two coding schemes; (iii) learn the ker-
nel parameters; (iv) perform unsupervised and supervised
dictionary learning in a much simpler manner than previ-
ous Riemannian coding methods. We demonstrate the effec-
tiveness of our approach on three different types of non-flat
manifolds, and illustrate its generality by applying it to Eu-
clidean spaces, which also are Riemannian manifolds.

1. Introduction
Over the years, coding -in its broadest definition- has

proven a crucial step in visual recognition systems [4, 9, 26,
44]. Many techniques have been investigated, such as bag
of words [32, 15, 34, 1, 51, 38], sparse coding [43, 55], col-
laborative coding [58] and locality-based coding [56, 52].
All these techniques follow a similar flow: Given a dictio-
nary of codewords, a query is associated to one or multiple
dictionary elements with different weights. These weights,
or codes, act as the new representation for the query and
serve as input to a classifier.

This paper addresses the problem of coding and dictio-
nary learning on Riemannian manifolds. Many powerful
image and video descriptors, such as covariance descrip-
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tors [50, 21, 36, 7], normalized histograms [48], linear sub-
spaces [53, 20, 39] and 2D shape outlines [29, 49, 18, 25],
are known to lie on Riemannian manifolds. While it may
therefore seem natural to extend coding techniques to such
manifold-valued data, the nonlinear structure of Rieman-
nian manifolds makes this task significantly more compli-
cated than in Euclidean space.

Recently, a few approaches have been proposed to tackle
the special case of sparse coding on Riemannian mani-
folds [57, 16, 47, 21, 23, 36, 20, 7, 6]. However, these tech-
niques either are designed for specific manifolds [47, 21, 20,
7] and thus do not generalize well, or rely on the computa-
tion of the logarithm map [57, 16, 23, 36, 6], which makes
coding and dictionary learning complicated, if tractable at
all, for arbitrary Riemannian manifolds.

In this paper, we propose to formulate Riemannian cod-
ing and dictionary learning in Reproducing Kernel Hilbert
Space (RKHS). With the rapidly growing number of known
positive definite kernels on Riemannian manifolds [17, 24,
36, 25, 22], our approach generalizes to many manifolds,
such as the manifold of Symmetric Positive Definite (SPD)
matrices, the Grassmann manifold, the unit hypersphere and
the shape manifold. Furthermore, since an RKHS is a linear
space, this lets us derive simple, yet effective solutions for
both coding and dictionary learning on Riemannian man-
ifolds. Last but not least, as usual with kernel-based al-
gorithms, the high dimensionality of the RKHS typically
yields a more discriminative representation than the origi-
nal data space, which translates into codes and dictionaries
potentially better suited for visual recognition.

In contrast with existing nonlinear methods that tackle
the special case of sparse coding in Euclidean space [12,
35, 42, 30], here we derive a general coding formulation,
together with its kernel-based counterpart, for Riemannian
manifolds, which Euclidean spaces are specific instances
of. Our general formulation lets us study different coding
strategies, such as sparse coding and locality-constrained
coding. In this context, we introduce an approach to learn-
ing the kernel parameters, thus avoiding the need to tune
them manually. Finally, we show how the dictionary can



be learned in both an unsupervised and a supervised man-
ner. In the latter case, we introduce an algorithm to jointly
learn a classifier and the dictionary, thus effectively tuning
the dictionary to the recognition problem at hand. Impor-
tantly, both the dictionary and the classifier updates can be
achieved in closed-form.

We demonstrate the benefits of our method over existing
Riemannian coding schemes on several manifold-valued
datasets, including SPD matrices, linear subspaces and 2D
shapes. Our experiments reveal that our general approach
outperforms existing methods even when dedicated to the
specific manifold of interest. We also illustrate the general-
ity of our approach by evaluating it in Euclidean space.

2. Coding on Riemannian Manifolds
In this section, we derive a general formulation of Rie-

mannian coding that encompasses many different coding
schemes, and present an intrinsic version of this general
formulation. To this end, we start by studying the case of
Euclidean space.

In Euclidean space, let D = {di}Ni=1, di ∈ Rn, be a
given dictionary of N atoms, and x ∈ Rn a query point.
The problem of coding the query point can be expressed in
a general manner as

min
α

∥∥∥x−∑N

j=1
αjdj

∥∥∥2
2

+ λγ(α;x,D) (1)

s.t. α ∈ C,
whereα = [α1, α2, · · · , αN ]T ∈ RN is the vector of codes,
γ is a prior on the codesα and C is a set of constraints onα.
Note that this formulation allows the prior to be dependent
on both the query x and the dictionary D. Although not ex-
plicitly written, this is also true for C. In short, (1) tries to
best approximate the query as a linear combination of dic-
tionary elements while taking into account prior knowledge
and constraints on the codes.

Typical special cases of this general formulation include
the following examples:

Example 1. The popular Bag of Words (BoW) model can
be derived from (1) by defining γ(α;x, D) = 0 and C =
{α | αj ∈ {0, 1},αT1N = 1}.

Example 2. Sparse coding (via a Lasso formulation) can
be obtained from (1) by defining γ(α;x,D) = ‖α‖1 and
C = ∅.

Example 3. Collaborative coding [58] is a special case
of (1) where γ(α;x, D) = ‖α‖22 and C = ∅.

Example 4. Locality-Constrained Linear Coding [52]
can be derived from (1) by defining γ(α;x, D) =∑
j (exp (σ‖x− dj‖2)αj)

2 and C = {α |
∑
j αj = 1}.

Inspired by the Euclidean formulation (1), we can now
derive a general formulation for coding on Riemannian

manifolds. In this case, D = {di}Ni=1, di ∈M, becomes a
dictionary on a Riemannian manifoldM, and similarly the
point x ∈ M is on the manifold. Riemannian coding can
then be defined as

min
α

δ2
(
x,
⊎N

j=1
αjdj

)
+ λγ(α;x,D) (2)

s.t. α ∈ C,
where α ∈ RN is the vector of Riemannian codes, and
δ : M ×M → R+ is a metric on M. Moreover,

⊎
:

M × · · · × M × R × R · · · × R → M is an operator
that combines multiple dictionary atoms {dj ∈ M} with
weights {αj} and generates a point x̂ onM.

An interesting special case of (2) is its corresponding in-
trinsic formulation, obtained by defining δ as the geodesic
distance1 δg on the manifold. In this scenario, coding can
be achieved by solving

min
α

∥∥∑
j
αj logx(dj)

∥∥2
x

+ λγ(α;x,D) (3)

s.t. α ∈ C,
where logx(d) : M → TxM is the logarithm map opera-
tor that maps a point d ∈ M to the tangent space ofM at
another point x ∈M, and ‖ · ‖x is the norm induced by the
Riemannian metric at TxM. To understand how the recon-
struction term in (3) was derived, we note that logx(x) = 0
and δ2g(x,dj) = ‖ logx(dj)‖2x. Moreover, since the tangent
space at x is a vector space, one can simply choose vector
space operators (i.e., addition and scalar product) to com-
pute the

⊎
operation. Therefore (3) is an instance of (2).

To the best of our knowledge, the reconstruction term
employed in (3) was first introduced in [14] for the pur-
pose of clustering on Riemannian manifolds. Subsequently,
this reconstruction term was exploited independently in [23]
and [6] to perform sparse coding on Riemannian manifolds.
It is important to note, however, that (3) suffers from the
trivial solution α = 0 if no constraint is imposed on the
codes. As a consequence, the Riemannian sparse coding
formulations of [23] and [6] both enforced the additional
constraint C = {α |

∑
j αj = 1}, thus making them di-

verge from their original Euclidean counterpart.

2.1. Intrinsic Locality Constrained Coding

While [23, 6] have studied an intrinsic formulation of
sparse coding, our formulation in (3) allows us to consider
other coding schemes. In particular, here, we focus on the
case of Locality-Constrained Linear Coding (LLC) [52].

As mentioned in Example 4, LLC can be obtained by
defining γ(α;x,D) =

∑N
j=1 (exp (σ‖x− dj‖2)αj)

2, and
C = {α |

∑
j αj = 1}. In [52], however, it was shown that

this formulation could be well approximated by replacing
the dictionaryD with a local dictionary B formed by theNB
nearest dictionary elements to the query. Here, we make use

1The length of the shortest curve between two points on the manifold.



of this approximate formulation2.
More specifically, let M be a Riemannian manifold.

Given a dictionary D = {di}Ni=1, di ∈ M, we define in-
trinsic Locality Constrained Coding (int-LCC) as the solu-
tion of

min
α

∥∥∑NB

j
αj logx(bj)

∥∥2
x

(4)

s.t. αT1 = 1 ,

where {bj}NB
j=1 denotes the set of NB atoms of D closest to

the query x, which can be identified using the geodesic dis-
tance onM. In contrast to intrinsic sparse coding, int-LCC
has a closed-form solution, which is unique as long as NB
is less than (or equal to) the dimensionality of M. More
specifically, let B be the matrix obtained by stacking the
logx(bj) vectors, and G be the Riemannian metric tensor.
The codes can then be obtained by solving the linear sys-
tem BTGBα̂ = 1 and normalizing the result to have unit
`1 norm, i.e., α = α̂/

∑NB
j=1 |α̂j | (see the supplementary

material for details).
Importantly, dictionary learning in either the intrinsic

sparse coding formulation of [23, 6], or our int-LCC formu-
lation above is complicated by the fact that the dictionary
elements appear inside the logarithm map, which may be
highly nonlinear, or not even have an analytic solution. In
the following section, we introduce our kernel-based Rie-
mannian coding formulation, whose sparse coding version
does not require additional constraints, and, as discussed in
Section 4, allows us to derive an efficient solution to dictio-
nary learning.

3. Kernel-Based Riemannian Coding
To obtain a general formulation of Riemannian coding,

but overcome the weaknesses of the intrinsic solution dis-
cussed in the previous section, we propose to perform cod-
ing in RKHS. This has the twofold advantage of yielding
simple solutions to several popular coding techniques and of
resulting in a potentially better representation than standard
coding techniques due to the nonlinearity of the approach.

Let φ : M→ H be a mapping to an RKHS induced by
the kernel k(x,y) = φ(x)Tφ(y). Coding inH can then be
formulated as

min
α

∥∥∥φ(x)−
∑N

j=1
αjφ

(
dj)
∥∥∥2
2

+ λγ(α;φ
(
x), φ

(
D))

s.t. α ∈ C. (5)
Expanding the reconstruction term in (5) yields∥∥∥φ(x)−

∑N

j=1
αjφ(dj)

∥∥∥2
2

= φ(x)Tφ(x)

− 2
∑N

j=1
αjφ(dj)

Tφ(x) +
∑N

i,j=1
αiαjφ(di)

Tφ(dj)

= k(x,x)− 2αTk(x,D) +αTK(D,D)α, (6)

2We could also derive the exact version of LLC on the manifold by
replacing the `2 norm in the exponential with δg . However, as in Euclidean
space, the approximate formulation can be solved more efficiently.

where k(x,D) ∈ RN is the kernel vector evaluated be-
tween x and the dictionary atoms, and K(D,D) ∈ RN×N
is the kernel matrix evaluated between the dictionary atoms.

This shows that the reconstruction term in (5), common
to most coding techniques, can be kernelized. More impor-
tantly, after kernelization, this term remains quadratic, con-
vex and similar to its counterpart in Euclidean space. Next,
we discuss the special cases of two popular coding tech-
niques (i.e., sparse coding and locality-constrained coding)
and derive efficient solutions to their kernel extensions3.

3.1. Kernel Sparse Coding (kSC)

As mentioned in Example 2, sparse coding can be ob-
tained from our general formulation by not using any con-
straints and employing the prior γ(α) = ‖α‖1. Since this
prior only depends on α, the only step required to kernelize
sparse coding is given in Eq. 6. Note that this also applies
to any structured or group sparsity prior.

To derive an efficient solution to kernel sparse coding,
we introduce the following theorem.

Theorem 3.1. Consider the least-squares problem in an
RKHSH

min
α

∥∥∥φ(x)−
∑N

j=1
αjφ(dj)

∥∥∥2
2
⇔

min
α

αTK(D,D)α− 2αTk(x,D) + f(x) , (7)

where f(x) is a constant function (i.e., independent of α).
Let UΣUT be the SVD of the symmetric positive definite
matrixK(D,D). Then (7) is equivalent to the least-squares
problem in RN

min
α

∥∥x̃− D̃α∥∥2
2
, (8)

with D̃ = Σ1/2UT and x̃ = Σ−1/2UTk(x,D).

Proof. In supplementary material.

This theorem lets us write kernel sparse coding as

min
α

∥∥x̃− D̃α∥∥2
2

+ λ‖α‖1 , (9)

which is a standard linear sparse coding problem. As a con-
sequence, any efficient sparse solver such as SLEP [37] or
SPAMS [40] can be employed to solve kernel sparse coding.

3.2. Kernel Locality-Constrained Coding (kLCC)

Following the intrinsic formulation introduced in Sec-
tion 2.1, we make use of the local dictionary approximation
of LLC, but this time in Hilbert space.

In Hilbert space, a local dictionary B can be obtained
by performing kernel nearest neighbor between the original

3From the examples in the previous section, it can easily be verified
that other techniques, such as Bag of Words and collaborative coding, can
also be kernelized in a similar manner.



dictionary elements and the query. This lets us write LLC
in Hilbert space as

min
α
‖φ(x)− φ(B)α‖22 (10)

s.t. αT1 = 1,

which has a form similar to (5) with no prior. This can then
be directly kernelized by making use of Eq. 6.

The solution to kernel LCC can still be obtained in
closed-form by solving the linear system

(
K(B,B)−(1T⊗

k(x,B))
)
α = 1 and normalizing this solution by its `1

norm to satisfy the constraint (see the supplementary mate-
rial for details).

Note that while we considered the approximate version
of LLC, the exact one can also be kernelized. To this end,
we observe that

exp
(
σ ‖φ(x)− φ(dj)‖2

)
= exp

(
σ
√
k(x,x)− 2k(x,dj) + k(dj ,dj)

)
. (11)

Thus, γ(α;x,D) =
∑
j (exp (σ‖φ(x)− φ(dj)‖2)αj)

2

can be expressed solely in terms of kernel values, and so
does the exact version of LLC. In practice, however, we fa-
vor the approximate version, which we refer to as kLCC,
due to the simplicity of its solution.

3.3. Existence of Riemannian Kernels

While the kernel-based Riemannian coding formulation
described above is indeed general, it is only useful if valid
positive definite (p.d.) kernels can be defined on the mani-
fold of interest. In this section, we discuss the existence of
such Riemannian kernels.

Lemma 1. Positive definite kernels exist on any Rieman-
nian manifold.

Proof. This lemma can be proved using the Nash-Kuiper
embedding theorem [3], which states that every smooth m-
dimensional manifold admits an isometric embedding into
Rn with n ≥ m + 1. Let us denote such an embedding by
f :M→ Rn. If a kernel k : Rn × Rn → R, is p.d. in Rn,
then k(f(·), f(·)) : M×M → R is a p.d. kernel on the
manifold.

Remark 1. While the previous lemma ensures the existence
of p.d. kernels on any Riemannian manifold, the form of the
embedding is unknown in general. This makes the design of
valid p.d. kernels on Riemannian manifolds an interesting
and important problem.

Alternatively, to design p.d. Riemannian kernels, one
could try to exploit the tangent bundle of a Riemannian
manifold. For example, for p ∈M, the function

k(x,y) = e−σ‖ logp(x)−logp(y)‖
2
p (12)

is p.d. This is due to the fact that the tangent space at p is a
vector space and hence the Gaussian kernel on it is p.d.

Remark 2. While kernels obtained in this manner might
prove effective in specific scenarios, we do not advocate
their use in general. The first reason is that they depend
on the logarithm map, which may be difficult to compute for
some manifolds. The second reason can be understood by
the following example.

Example 5. Let us consider S2, i.e., the unit sphere, which
is a Riemannian manifold with positive curvature. For the
sake of argument, let p be the north pole, and x and y
be two mirrored points very close to the south pole. Af-
ter mapping to the tangent space TpM, the distance be-
tween logp(x) and logp(y) will be very large, and thus the
Gaussian kernel of Eq. 12 will be small. In other words, ac-
cording to the kernel in Eq. 12, x and y are very dissimilar,
which contradicts the fact that they are very close on S2.

Remark 3. According to Toponogov’s theorem [3], for
manifolds with negative curvature (e.g., SPD manifolds),
the distance on tangent spaces is bounded above locally by
the geodesic distance. Therefore, the kernel in Eq. 12 will
behave much better than in the previous example. We con-
jecture that this is the reason why the kernels introduced
in [36] perform well in practice.

Importantly, the number of known p.d. kernels on the
manifolds that are most common in computer vision has
recently been growing. Many kernels that do not rely
on the logarithm map are now available for SPD mani-
folds [24, 36], Grassmann manifolds [17, 22] and the shape
manifold [25]. The existence of such kernels therefore
makes our approach practical in many scenarios.

3.4. Learning Gaussian Kernels

Many of the above-mentioned Riemannian kernels
have the form of a Gaussian kernel4, i.e., k(x,y) =
exp

(
−σδ2(x,y)

)
, where δ is some chosen metric. As

such, they depend on a parameter σ, whose value will influ-
ence the quality of the codes. In this section, we therefore
introduce an approach to learning this parameter σ from
training data.

To this end, let us assume that we are given a set of
M training samples X = {xi}Mi=1. Following our general
formulation, σ can be learned by solving the optimization
problem

min
σ,{αi}

1

M

∑M

i=1
Lφ(σ,αi,xi,D)

s.t. αi ∈ C, ∀i ∈ [1,M ], (13)

where αi is the vector of sparse codes for the ith training
sample xi, and Lφ(·) is the kernelized objective function
defined in (5).

4Gaussian kernels are probably the most popular choice in learning
methods due to their universality (i.e., their induced space is rich and can
approximate any target function arbitrarily close).



Note that (13) is not jointly convex in σ and {αi}Mi=1.
Therefore, we follow the standard alternating minimization
strategy that consists of iteratively fixing one variable (i.e.,
either σ, or the αis) and solving for the other. With a fixed
σ, the solution for each αi can be obtained as the solution
of the chosen coding scheme.

Unfortunately, with a Gaussian kernel, (13) is ill-posed
in terms of σ. More specifically, σ = 0 is a minimum
of (13). This is due to the fact that, if σ → 0, all sam-
ples in the induced Hilbert space H collapse to one point,
i.e., ‖φ(x)− φ(y)‖2 = k(x,x)− 2k(x,y) + k(y,y) = 0.
To avoid this trivial solution, we propose to search for a
σ that not only minimizes the kernel coding cost, but also
maximizes a measure of discrepancy between the dictionary
atoms inH. In other words, we search for a Hilbert spaceH
that simultaneously yields a diverse dictionary and a good
representation of the data. To this end, we define the dis-
crepancy between the dictionary atoms inH as

Jφ(D, σ) =
1

N2

∑N

(r,s)=1
‖φ(dr)− φ(ds)‖22 (14)

=
1

N2

∑N

(r,s)=1
(k(dr,dr)− 2k(dr,ds) + k(ds,ds)) .

Given {αi}, this lets us obtain σ by solving the optimization
problem

min
σ

1
M

∑M
i=1 Lφ(σ,αi,xi,D)

Jφ(D, σ)
(15)

s.t. αi ∈ C, ∀i ∈ [1,M ] .

Since the objective function of (15) is not convex in σ, we
utilize a gradient-based trust-region method to obtain a lo-
cal minimum of this problem. The gradients of Lφ and
Jφ (as required by the trust-region method) are related to
∂k(x,y)/∂σ = −δ2(x,y)k(x,y). Note that, for kSC and
kLCC, the prior γ(·) does not depend on the kernel and can
thus be omitted when updating σ. This is also the case of
the constraint set C.

4. Riemannian Dictionary Learning
In this section, we discuss how a dictionary can be

learned in our Riemannian coding framework. In particu-
lar, given a set of M training samples X = {xi}Mi=1, we
investigate dictionary learning in the unsupervised and su-
pervised scenarios.

4.1. Unsupervised Dictionary Learning

In many cases, it is beneficial not only to compute the
codes for a given dictionary, but also to optimize the dictio-
nary to best suit the problem at hand. Here, we show how
this can be done in our general formulation. Given train-
ing samples, we follow an alternating optimization strategy
to update the codes and the dictionary. Since obtaining the
codes with a given dictionary was discussed in the previous
section, here we focus on the dictionary update.

With fixed codes for the training data (and a fixed ker-

nel parameter), learning the dictionary can be expressed as
solving the optimization problem

min
D

1

M

∑M

i=1
Lφ(D;αi,xi) (16)

s.t. αi ∈ C, ∀i ∈ [1,M ].

Here, we make use of the Representer theorem [45] which
enables us to express the dictionary as a linear combination
of the training samples in RKHS. That is

φ(dj) =
∑M

i=1
vi,jφ(xi), (17)

where {vi,j} is the set of weights, now corresponding to
our new unknowns. By stacking these weights for the M
samples and the N dictionary elements in a matrix V M×N ,
we have

φ(D) = φ(X )V . (18)

For kSC and kLCC, the only term that depends on the
dictionary is the reconstruction error (i.e., the first term
in the objective of (5)). Given the matrix of sparse codes
AN×M = [α1|α2| · · · |αM ], this term can be expressed as

R(V ) =
∥∥φ(X )− φ(X )V A

∥∥2
F

(19)

= Tr
(
φ(X )(IM − V A)(IM − V A)Tφ(X )T

)
= Tr

(
K(X ,X )(IM − V A−ATV T + V AATV T )

)
.

The new dictionary, fully defined by V , can then be ob-
tained by zeroing out the gradient of R(V ) w.r.t. V . This
yields

∇R(V ) = 0⇔ V = (AAT )−1A = A† . (20)
In the case of kLCC, we update the full dictionary at once.
To this end, for each training sample i, we simply set to 0
the codes corresponding to the elements that do not belong
to the local dictionary Bi specific to the ith sample.

4.2. Supervised Dictionary Learning

In the context of recognition, where labeled data is avail-
able, one would typically like to learn a dictionary that not
only yields accurate reconstruction of the training samples,
but also generates discriminative codes. To this end, a few
methods have proposed to jointly learn a classifier with the
codes and the dictionary for the special case of linear sparse
coding [41, 28]. Here, we show how supervised data can
be efficiently taken into account in our general Riemannian
kernel coding framework.

To this end, given data belonging to S different classes,
let li be the S-dimensional binary vector encoding the label
of training sample xi, i.e., the jth element of li is set to
1 if sample i belongs to class j and 0 otherwise. We then
make use of a linear classifier acting on the codes, whose
prediction can thus be written as l̂ = Wα, where W is
the decision hyperplane5. By employing the square loss,

5Note that in practice, we truly use l̂ = Wα + b, but, with a slight
abuse of notation, the bias b can be included inW by adding one column



learning in Hilbert space can then be written as

min
W ,D,{αi}

1

M

∑M

i=1
Lφ(D,αi;xi)

+
η

M

∑M

i=1
‖li −Wαi‖22 + ρ‖W ‖2F , (21)

s.t. αi ∈ C, ∀i ∈ [1,M ],

where we utilize a simple regularizer on the parametersW .
Following an alternating minimization approach, the

classifier parametersW can be obtained by solving the lin-
ear system

W =

(∑M

i=1
liα

T
i

)(
η

M

∑M

i=1
αiα

T
i + ρIN

)−1
(22)

arising from zeroing out the gradient of the second and
third terms in the objective function. Being unaffected by
the discriminative term, the dictionary remains encoded by
V = A† (see Eq. 20). Computing the codes, however, must
be modified by taking the discriminative term into account.
Due to the least-squares form of this term, this can effec-
tively be achieved by replacing the reconstruction term of
Eq. 6 with

αTi Rαi − 2αTi q + f̃(xi, li) , (23)
where f̃ is a function independent of the codes, and

R = V TK(X ,X )V + ηW TW ,

q = V Tk(xi,X ) + ηW T li . (24)
Due to the very similar form of this term compared to the
reconstruction term, it can easily be verified that the solu-
tions kSC and kLCC can still be obtained efficiently in the
same manner as in Sections 3.1 and 3.2. The pseudocode of
our algorithm is given in supplementary material.

5. Related Work

In light of our method, we now discuss related cod-
ing techniques, both Riemannian and nonlinear ones. Note
that these methods have only considered the special case of
sparse coding, which, as will be shown in our experiments,
is typically outperformed by locality-constrained coding.

In the context of Riemannian coding, several methods
have been designed for specific manifolds. In this scenario,
one possible approach consists of embedding the Rieman-
nian manifold into a vector space using a manifold-specific
transformation, followed by coding and dictionary learning
in the resulting vector space [47, 20]. In [7], another strat-
egy that exploits the specific form of the geodesic distance
on the SPD manifold was introduced to perform sparse cod-
ing. While effective in their context, the manifold-specific
methods are typically difficult to generalize to arbitrary
manifolds.

Nevertheless, some methods that apply to general Rie-
mannian manifolds have also been proposed. A simple, yet

toW and concatenating a value 1 to α.

natural idea to address this general scenario is to flatten the
Riemannian manifold via a fixed tangent space at a cho-
sen point p on the manifold, called the center of projection.
This can be achieved via the logarithm map logp(·). This
idea was exploited in [57] and [16] (although only demon-
strated on SPD manifolds) for the special case of sparse
coding, which can then be expressed as

min
α

∥∥∥logp(x)−
N∑
j=1

αj logp(dj)
∥∥∥2
p

+ λ‖α‖1. (25)

Following the terminology of [2], we will refer to this ap-
proach as log-Euclidean coding and will use it as a baseline
in our experiments.

This log-Euclidean coding approach suffers from the fact
that, since it uses a single tangent space, only the distances
to the center of projection are equal to the true geodesic
distances, as illustrated by our unit sphere example in Sec-
tion 3.3. The intrinsic sparse coding formulation introduced
in [23] and [6], and discussed in its more general form
in Section 2, alleviates this issue by considering the tan-
gent space at the query x. However, dictionary learning,
achieved in [23] by gradient descent along the geodesics,
may become excessively complicated for some manifolds.
Indeed, following an alternating minimization approach, the
update of dj at iteration t has the form

d
(t+1)
j = exp

d
(t)
j

(−η∆) , (26)

where η is the step size and the tangent vector ∆ : R →
TdjM is computed as the gradient of the objective func-
tion6. Since the objective function consists of the recon-
struction error in (3), it depends on the logarithm map,
which is highly nonlinear, or does not even have an ana-
lytic expression (e.g., for Grassmann manifolds). As a con-
sequence, and as acknowledged in [23], dictionary learning
is far from obvious in the general case and must rely on
numerical gradient approximations.

Although specifically designed for SPD manifolds and
for the special case of sparse coding, the methods of [21]
and [36] are probably the closest to our work, in the sense
that they also exploit kernels: the Stein kernel [46] in [21],
which is specific for SPD matrices, and more general log-
Euclidean kernels in [36], whose weaknesses for general
manifolds were discussed in Section 3.3. In contrast to our
approach, however, both methods make use of a gradient
descent strategy to learn the dictionary, which may yield
dictionary elements outside the SPD manifold. This is cir-
cumvented by a further projection to the manifold, which
(i) does not guarantee convergence of the algorithms; and
(ii) is non-trivial to generalize to arbitrary manifolds.

Aside from Riemannian sparse coding methods, our

6On an abstract Riemannian manifold M, the gradient of a smooth
real function f at a point x ∈M, denoted by gradf(x), is the element of
Tx(M) satisfying 〈gradf(x), ζ〉x = Dfx[ζ] for all ζ ∈ Tx(M), where
Dfx[ζ] denotes the directional derivative of f at x in the direction of ζ.



work is of course also related to the nonlinear sparse coding
and dictionary learning techniques introduced for Euclidean
space. For instance, the notion of kernel sparse coding was
studied for object and face recognition in [12] and [35], and
more recently for general purpose in [30]. Dictionary learn-
ing in RKHS was also recently tackled in [42]. Here, we go
beyond these works by considering the more general sce-
nario of Riemannian manifolds, which Euclidean spaces are
instances of, as well as a more general coding formulation.
Furthermore, we also derive efficient algorithms for coding
and supervised dictionary learning, as well as an approach
to learn the kernel parameters.

6. Experiments
We demonstrate the effectiveness of our kernel-based

techniques on four different types of Riemannian manifolds
(including Kendall’s shape manifold in supplementary ma-
terial). We refer to the different algorithms evaluated in our
experiments as:
logEuc-SC: log-Euclidean sparse coding as described in (25)
and employed in [57, 16].
logEuc-LCC: log-Euclidean locality-constrained coding.
Mapping to a single tangent space followed by approximate
LLC [52].
int-SC: intrinsic sparse coding [23, 6].
int-LCC: our intrinsic extension of LLC to Riemannian
manifolds (Section 2.1).
kSC: our kernel sparse coding with unsupervised dictionary
learning (Sections 3.1 and 4.1).
kLCC: our kernel locality-constrained coding with unsuper-
vised dictionary learning (Sections 3.2 and 4.1).
kSSC: our kernel supervised sparse coding (Sections 3.1
and 4.2).
kSLCC: our kernel supervised locality-constrained coding
(Sections 3.2 and 4.2).

For all the unsupervised methods, we trained a separate
ridge regression classifier on the codes (with the same form
used in our supervised algorithm in Section 4.2) to perform
classification. For the supervised ones, we simply used the
learned classifier to obtain our results.

For the kernel-based methods, all the experiments were
performed using manifold-specific Gaussian-like kernels.
To obtain an initial dictionary, we used kmeans in a fixed
tangent space of the manifold followed by a projection us-
ing the exponential map. The bandwidth of the Gaussian
kernel was then learned from training data with this initial
dictionary by using the algorithm described in Section 3.4.
To this end, we used a gradient-based trust-region method
provided by the fmincon matlab function.

For the intrinsic methods, since the manifolds studied in
this work do not necessarily result in an analytic form of

the gradient required in Eq. 26, we used a modified version
of intrinsic kmeans to learn the dictionary. More specifi-
cally, starting from the initial dictionary described above,
we iteratively computed the intrinsic codes and performed
a weighted Karcher mean atom by atom to update the dictio-
nary. The weights of the weighted Karcher mean were cho-
sen as the absolute value of the intrinsic codes. In practice,
we observed that this procedure yields a better dictionary
than the one obtained with a simple intrinsic kmeans. On
a related note, the geodesic distance was used to determine
the local dictionary atoms for int-LCC.

In practice, we found that the accuracy of all the methods
saturates to a maximum value as the number of dictionary
atoms increases (see the curves provided in supplementary
material). Therefore, in our experiments, we set this number
to a large enough value (the same for all the algorithms)
so that all the methods have reached saturation, and thus
perform at, or close to, their best.

6.1. The SPD Manifold

We evaluated our different techniques on two challeng-
ing classification datasets where the images are represented
with region covariance descriptors (RCovDs) [50], which
lie on SPD manifolds. In our experiments, we used the
Stein kernel of [46]. In addition to the baselines mentioned
above, we compare our methods against the state-of-the-art
infinite-dimensional RCovDs of [19], denoted by SH-SVM,
and Discriminative Covariance Learning (CDL) [53].

Virus Classification:
As a first experiment, we used the virus dataset of [33]
which contains 15 different virus classes. We used the 10
splits provided with the dataset in a leave-one-out manner,
i.e., 10 experiments with 9 splits for training and 1 split as
query. Following [19], Gabor filters were used to build the
RCovDs.

The results of the different methods are reported in the
middle column of Table 1. Note that the log-Euclidean so-
lutions achieve the lowest accuracies among all the studied
coding schemes, which is not surprising given the distortion
induced by flattening the manifold at a single tangent space.
Intrinsic coding approaches yield higher accuracies, with
our int-LCC algorithm outperforming the int-SC of [6, 23].
This accuracy is further increased by all of our kernel meth-
ods, with the maximum accuracy of 82.0% obtained by our
kSLCC algorithm, which, to the best of our knowledge, rep-
resents the state-of-the-art for this dataset.

Material Categorization:
We then performed material recognition using the KTH-
TIPS2b dataset [5] which contains 4752 samples of 11
materials captured under different illuminations, poses and
scales. We utilized the setup and features of [19] where each
sample was encoded with a 23× 23 RCovD.



Method Virus KTH-TIPS2-b
CDL [53] 69.5%± 3.1 76.3%± 5.1

SH-SVM [19] 81.2%± 2.9 80.1%± 4.6
logEuc-SC 68.3%± 3.9 67.8%± 2.7

logEuc-LCC 72.3%± 3.5 75.9%± 3.1
int-SC 73.3%± 3.6 78.7%± 4.0

int-LCC 74.0%± 3.2 80.5%± 4.9
kSC 78.5%± 2.7 78.8%± 4.8

kLCC 79.4%± 2.9 79.8%± 4.6
kSSC 81.7%± 2.8 79.9%± 4.6

kSLCC 82.0%± 2.8 81.2%± 5.2

Table 1: Coding on SPD manifolds.

Method Hand Gesture Mice Behavior
GDA [17] 82.4% 81.7%± 2.0
SSSC [39] 83.1% N/A
logEuc-SC 62.8% 66.9%± 3.1

logEuc-LCC 64.9% 63.1%± 3.0
int-SC 71.5% 66.0%± 2.2

int-LCC 81.9% 86.5%± 1.6
kSC 86.1% 88.5%± 1.1

kLCC 85.4% 89.8%± 1.0
kSSC 89.7% 90.5%± 0.6

kSLCC 90.7% 90.8%± 0.6

Table 2: Coding on Grassmannians.

Method YALE-B C101
SRC [54] 80.5% 70.7%

LC-KSVD [28] 95.0% 73.6%
kSC 96.9% 75.1%

kLCC 97.2% 75.4%
kSSC 98.2% 75.7%

kSLCC 98.4% 76.2%

Table 3: Coding in Euclidean space.

The last column of Table 1 provides the recognition ac-
curacies averaged over the four splits of this dataset. As
before, the log-Euclidean approaches yield the lowest accu-
racies among all the studied coding schemes. Here, how-
ever, the intrinsic coding methods perform roughly on par
with their unsupervised kernel counterparts. The highest ac-
curacy is still achieved by our supervised kSLCC method.

In [8], a different test protocol was used on KTH-TIPS2-
b. Following this protocol, kSSC and kSLCC achieved
71.2% and 71.7% accuracy, respectively. Note that, while
not state-of-the-art, this outperforms the accuracy of the
deep convolutional network DeCAF [10], which was re-
ported as 70.7% in [8], despite the fact that we rely on much
simpler features.

6.2. The Grassmann Manifold

We then performed experiments on the Grassmannian,
which is the manifold of linear subspaces. Here, we used
the RBF projection kernel of [22]. In addition to our cod-
ing baselines, we compare our results with the state-of-the-
art Semi-Supervised Spectral Clustering (SSSC) [39] and
Grassmannian Discriminant Analysis (GDA) [17].

Hand Gesture Recognition:
On the Grassmannian, we first used the Cambridge hand-
gesture dataset [31], which consists of 900 image sequences
of 9 gesture classes. We employed the descriptors (lin-
ear subspaces based on HoG features) and the test protocol
of [39], where the first 80 sequences of each class are used
as test data, with the remaining 20 as training data.

The recognition accuracies are shown in the middle col-
umn of Table 2. Note that our int-LCC method performs
significantly better than int-SC. Note also that our kernel
coding schemes outperform the state-of-the-art methods.
The maximum accuracy of 90.7% is achieved by kSLCC,
which is more than 7% better than the state-of-the-art SSSC.

Mouse Behavior Analysis:
We performed classification on the Grassmannian using the
mice behavior dataset [27], which contains 2000 videos de-
picting 8 behaviors of mice with different coating colors,
sizes and genders. In each video, we performed background
subtraction to extract the region containing the mouse in
each frame. These regions were then resized to 48 × 48,

and the video represented with an order 6 subspace. We
randomly chose 25 videos from each behavior for training
and used the remaining videos for testing.

The recognition accuracies averaged over 10 random
partitions are shown in the right column of Table 2. These
results confirm the trends of the previous experiments, with
kernel coding solutions outperforming the other methods.

6.3. The Euclidean Space
Finally, as a proof of concept, we evaluated our kernel

coding schemes in Euclidean space, which is a flat Rieman-
nian manifold. As baselines, we employed SRC [54] and
the state-of-the-art LC-KSVD [28], which is a supervised
extension of sparse coding and dictionary learning. Note
that, in Euclidean space, log-Euclidean coding and intrinsic
coding just boil down to standard linear coding techniques,
and are thus superseded by the baselines. For the compar-
ison to be fair, we used the data and partitions provided by
the authors of [28] for the extended YALE-B dataset [13]
and Caltech101 [11]. For the experiment on YALE-B, fol-
lowing [28], we learned a dictionary of size 570 for each
algorithm. For the experiment on Caltech101, 30 images
per category were used for training.

Table 3 summarizes the results of these two experiment.
Note that both kSC and kLLC, which are unsupervised, out-
perform the state-of-the-art LC-KSVD method. With super-
vision, our formulation boosts the performance even further
with maximum accuracies achieved by kSLCC.

7. Conclusions and Future Work
In this paper, we have introduced a general framework

for coding on Riemannian manifolds. In particular, we have
shown how the use of kernels could make Riemannian cod-
ing and dictionary learning easier than intrinsic formula-
tions. Our experiments on several manifolds have demon-
strated the benefits of our kernel formulation over existing
Riemannian coding strategies, as well as over other classifi-
cation algorithms for Riemannian manifolds. In particular,
our supervised kernel locality-constrained coding scheme
performed consistently well in all our experiments. In the
future, we intend to exploit the notion of multiple kernel
learning in our framework, thus allowing us to combine
multiple RKHSs to obtain a richer space for coding.
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