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Abstract

Modern supervised learning algorithms can learn very
accurate and complex discriminating functions. But when
these classifiers fail, this complexity can also be a drawback
because there is no easy, intuitive way to diagnose why they
are failing and remedy the problem. This important ques-
tion has received little attention. To address this problem,
we propose a novel method to analyze and understand a
classifier’s errors. Our method centers around a measure
of how much influence a training example has on the clas-
sifier’s prediction for a test example. To understand why a
classifier is mispredicting the label of a given test example,
the user can find and review the most influential training
examples that caused this misprediction, allowing them to
focus their attention on relevant areas of the data space.
This will aid the user in determining if and how the train-
ing data is inconsistently labeled or lacking in diversity, or
if the feature representation is insufficient. As computing
the influence of each training example is computationally
impractical, we propose a novel distance metric to approx-
imate influence for boosting classifiers that is fast enough
to be used interactively. We also show several novel use
paradigms of our distance metric. Through experiments, we
show that it can be used to find incorrectly or inconsistently
labeled training examples, to find specific areas of the data
space that need more training data, and to gain insight into
which features are missing from the current representation.

1. Introduction
Classifiers produced by modern machine learning algo-

rithms such as boosting [14, 15] and support vector ma-
chines [6] are extremely complex, often with thousands
of variables. Developing systems that depend on these
opaque classifiers can be frustrating, because when a clas-
sifier makes mistakes, the engineer has little information as
to why the classifier made the mistakes and how to improve
its performance. Currently, the recourses available are to

increase the training data set size or to examine the errors
and guess what types of training data or features might be
missing. This problem is growing in importance as sys-
tems allowing lay-users to train their own classifiers are
emerging [27, 19, 20]. Even for machine learning experts, it
is nearly impossible to understand, navigate, and visualize
large, high-dimensional data sets [16, 23, 8, 10].

Our proposed method to gain an understanding of a clas-
sifier’s errors for a given data set hinges on the insight that
its prediction on an example is not equally influenced by
all examples in the training set. This is obvious for clas-
sifiers such as nearest neighbor, but is also true for more
complex classifiers like boosting. But unlike nearest neigh-
bor, which examples are the most influential for boosting
depends on the classification task. For example, the influ-
ence of a training example will not depend on features that
are not relevant in separating the two classes. We propose
that the influence of a training example x′ on a test example
x can be found by training two classifiers: one including
(x′,+1) and the other including (x′,−1). The training ex-
ample that most changes the prediction for the given test
example is the most influential (Figure 1(a)).

Thus, to understand why a particular test example is mis-
predicted, the few training examples that are most influen-
tial can be selected for analysis. By viewing these examples,
the engineer can focus on and visualize the small portions
of the data space relevant to that error. This will allow the
engineer to better understand the cause of the failure. For
example, it is difficult to deduce why an object recognition
system might label ceiling fans as chairs (Figure 1(b)). But,
if we knew that the most influential examples in the training
set are of the chairs shown, then it is easy to realize that the
classifier was confused by the fan-shaped base of the chair.

However, for the majority of classifier families, finding
which training examples are most influential is computa-
tionally impractical because it requires training a new clas-
sifier for each training example. To make computation of
influence fast enough to be used in interactive, real-time
systems, we propose a novel dissimilarity metric that ap-
proximates influence. We borrow the idea of version space,
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Figure 1. (a) Illustration of the influence of an example. Two classes of training data are indicated by + (red pluses) and ∆ (blue triangles).
If we add the example indicated by the black circle to the training data set with the plus and triangle labels, the predictions of the classifiers
learned using boosting (indicated by the color and intensity of the image) change in certain parts of the space. In particular, we see a
magenta column when we add the example as red plus, and a cyan row when we add the example as a blue triangle. The effect of changing
the example’s label is a function of both the learning algorithm (boosted decision stumps) and the distribution of the data. (b) Images of
a ceiling fan and chairs from the Caltech 101 data set [12] that look similar to an object detector. If an object detector predicted this fan
was a chair, without the context that some chairs have fan-shaped bases, it would be difficult to understand the cause of this error. (c)
Example of a labeling mistake in a data set used for training a “jump” behavior classifier for flies. (d) Example of inconsistently labeled
data in a training set used to train a “backup” behavior classifier for flies. The central frames are virtually identical, but were given opposite
labels by the user. The training label is indicated by the box color (red = positive, blue = negative), and surrounding frames show temporal
context. (c-d) were found automatically using our method to analyze the training data sets.

the set of classifiers that perform well on the current training
data set, from active learning [25]. We show both theoret-
ically and empirically that x′ has a large influence on x if
and only if most classifiers in the version space assign them
the same labels. In general, estimating the version space is
also prohibitively slow, but for the special case of boosting,
we propose two faster algorithms.

Our definition of influence enables us to propose several
new methods with which a user can diagnose the cause of
a given misprediction. The main use we propose is to find
and understand label noise in the training data set. Here,
the user can determine whether errors (Figure 1(c)) or in-
consistency (Figure 1(d)) in the training labels caused the
misprediction by looking at the labels of the most influen-
tial training examples. Incorrectly or inconsistently labeled
training data lead to significant prediction errors because
the learning algorithm will find an overly complex rule that
deviates from the true best classifier. Inconsistent labeling
is common for tasks in which the class definitions are vague
such as activity recognition (how far does a fly need to walk
backwards to be considered “backing up” (Figure 1(d))), at-
tribute learning (e.g. round vs. not round [11]), or labeling
scenes (e.g. beach vs. coast [31]). Labeling mismatches
are also found when labeling is done by different labelers,
for example in crowdsourcing [30]. In these cases, showing
similar previously labeled examples from the training set in

real-time as the user is labeling an instance would ensure
that labeling is consistent.

Second, the user can examine the magnitudes of the in-
fluence of all the training data on a mispredicted example.
When no training examples had large influence on a mispre-
dicted example, we observed that the training data lacked
examples similar to the mispredicted test example. In this
situation, the user can review the test example and add it
and other similar examples to enrich the training data set.
This will improve the training set’s variability, and ensure
all cases are adequately represented.

Third, focusing the engineer’s attention on just the rele-
vant training examples can give them insight into missing
features in the current representation. If we find that the
mispredicted test example is influenced by many examples
of both classes in the training set, and that these examples
are labeled correctly, then the current feature set may be in-
sufficient for discriminating the two classes in this part of
the data space. The engineer can examine these specific ex-
amples to devise useful features.

Our contributions are (1) proposing the use of influence
between pairs of examples to analyze and understand a
classifier’s errors, (2) a practical distance metric that ap-
proximates influence for boosting and can be computed
fast enough to be used interactively (Section 3), (3) several
novel paradigms for using this metric to diagnose the cause



of classification errors (Section 5), and (4) quantitative cri-
teria to compare different distance metrics in estimating the
influence (Section 5). In Section 5, we provide detailed val-
idation of our method on a real-world machine learning sys-
tem used by biologists. In Section 6, we validate our method
on the ImageNet [8] object recognition data set.

2. Related work
There have been few formal efforts aimed at understand-

ing a classifier’s errors. The work most similar to ours is the
idea of proximity proposed informally for random forests
by [2]. For random forests, the proximity between two ex-
amples is defined as the number of trees for which two ex-
amples fall in to the same leaf node. This proximity mea-
sure was then used to find gross patterns via clustering and
multi-dimensional scaling and to identify outliers in rela-
tively small training data sets. However, it was not shown
that close-by examples influence each other. In our work,
we show that the training examples that most influence an
example’s predictions are close according to our distance
metric.

[17] catalogued the failures of current object detection
methods. The goal of their study was to help computer
vision researchers understand the main limitations in ob-
ject detection. The failures were analyzed by categorizing
them, and studying which failure categories were dominant
for different tasks. Their study was tied tightly to object de-
tection methods and to the Pascal VOC dataset, while the
goal in our work is to present a general method that can be
applied by researchers to novel data sets and algorithms.

A few recent approaches [29, 32] have been developed
for visualizing feature representations. Our work is com-
plementary to these, as it is aimed at finding the training
examples most responsible for specific classifier errors. It
can be used to narrow down the set of examples to examine
using these feature visualization approaches.

Several approaches attempt to improve robustness to la-
bel noise by attempting to automatically identify and down
weight mislabeled examples, without any interaction with
the user. In [24], the training data set is cleaned by automat-
ically removing any training example with many examples
with the opposite label nearby. In [13], the learning algo-
rithm ignores examples that are difficult to predict. In [3],
examples that are predicted differently by different algo-
rithms are removed. All these methods require that the frac-
tion of examples incorrectly labeled is very small and that
there is sufficient training data to distinguish rare, highly in-
formative, correctly labeled examples from mistakes. For
example, training examples identified as mistakes by [3]
would be identified as important examples to label by ac-
tive learning approaches such as [26]. Our method can be
used in addition to these methods which learn an accurate
classifier to find, visualize and understand the context of,

and remove the source of errors.
As discussed in the next section, our distance metric is

heavily influenced by concepts developed for active learn-
ing. Central to our distance metric and active learning is
the small set of classifiers that perform well on the current
training data. For active learning, the example on which this
set of classifiers disagree the most is considered most infor-
mative [26, 5, 21, 7, 1, 25]. These methods estimate how
informative a single unlabeled example is based on its rela-
tionship to the current small set of relevant classifiers. We
use this concept of the current set of reasonable classifiers
to explore the relationship between pairs of examples.

3. Influence and classification-based dissimi-
larity

As discussed above, we define the influence of one ex-
ample x′ on another example x as the difference in predic-
tion on x for the two classifiers trained with x′ added with
labels 1 and 0 to the training set D. Formally, we define the
influence of x′ on x as:

J(x′ → x) , Eh[h(x)|D1]− Eh[h(x)|D0], (1)

where D1 = D ∪ {(x′, 1)} and D0 = D ∪ {(x′, 0)} are
the augmented training data sets, and the expected value is
taken over the set of reasonable classifiers h that are learn-
able from the hypothesis spaceH given the training sets.

Our proposed dissimilarity measure to estimate this in-
fluence is inspired by the notion of version space. Version
space is defined for perfectly separable data, and is the set
of all classifiers h ∈ H that correctly partition the training
data [5, 7]. More generally, we can instead consider the set
of all reasonable classifiers that can be learned from small
perturbations of the training data [1]. However, for this dis-
cussion we focus on the perfectly separable case.

We define the distance between two examples x and x′

as the fraction of version space for which the predictions on
x and x′ disagree:

D(x, x′) ,
1

|V|
∑
h∈V

I(h(x) 6= h(x′)), (2)

where V is the version space for training set D and I is the
indicator function (Figure 3(a-b)). Let us consider the sim-
plified case in which the distribution of classifiers h given a
training set, considered in Equation (1), is uniform among
all classifiers in the version space of that training set. Then
we can rewrite influence as

J(x′ → x) =
1

|V1|
∑
h∈V1

h(x)− 1

|V0|
∑
h∈V0

h(x), (3)

where V1 and V0 are the restricted version spaces for train-
ing data sets D1 and D0, respectively.
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∣∣,

Figure 2. FastBoot algorithm: A variation on the the boosting algorithm to learn a larger pool of weak rules.
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Figure 3. (a) Cartoon showing the intuition behind our version-
space based distance metric. Red pluses indicate one class of train-
ing example, blue squares the other. Classifiers within the version
space are shown by gray dashed lines. The black circle represents
an unlabeled example. If we change the label of the blue square
example indicated by the arrow to a red plus (b), the prediction
of all classifiers in the version space will change for the unlabeled
point. This is not the case for the red plus example indicated to be
far.

We can rewrite our distance measure in Equation 2 as

D(x, x′) =
1

|V|
∑
h∈V

(
(1− h(x))h(x′) + h(x)(1− h(x′))

)
=

1

|V|
∑
h∈V1

(1− h(x)) +
1

|V|
∑
h∈V0

h(x)

If we assume that both classes are approximately equally
likely for training example x′ within V: |V1| ≈ 1

2 |V|, then:

D(x, x′) ≈ 1

2
− 1

2

 1

|V1|
∑
h∈V1

h(x)− 1

|V0|
∑
h∈V0

h(x)


=

1

2
(1− J(x′ → x))

The assumption |V1| ≈ 1
2 |V| on x′ implies that the training

example x′ is likely to be near the decision boundary. These
are the examples in the training set that are most likely to
contain errors, and what our method is focused on.

For practical cases, in which the training data is rarely
separable and free of label noise, we approximate the ideal
of version space by the set of all classifiers that have nearly
the same accuracy as the current best classifier. We can
sample classifiers from this set by bootstrapping, in which

the training data is repeatedly subsampled in order to learn
a large set of classifiers [21].

Our estimate of the distance between pairs of examples
x and x′ is thus

D(x, x′) =
1

M

M∑
i=1

∣∣fi(x)− fi(x′)∣∣ (4)

where f1, f2, . . . , fM are the classifiers learned using boot-
strapping and fi(x) is the continuous prediction score for
example x. We refer to this as the Bootstrap distance. This
distance is general and is applicable to all classifiers. How-
ever, to estimate the distance using this is still slow because
to get reasonable estimates of distance we will have to learn
a large number of bootstrapped classifiers.

For boosting, the effective number of classifiers sampled
can be increased by leveraging the internal mechanism of
the classifier. The score given to an example is the weighted
sum of weak rule predictions. Consider two pairs of exam-
ples that receive the same score: for the first pair most of
the weak rules’ predictions disagree, while for the second
pair all weak rules agree. If we were to learn another clas-
sifier by subsampling the training data, it is more likely that
this classifier will produce similar scores in the latter case.
Using this intuition, we estimate the dissimilarity between
two examples x and x′ for boosting as:

D(x, x′) =
1

M

M∑
i=1

T∑
j=1

∣∣αijI(hij(x) 6= hij(x
′))
∣∣, (5)

where αij is the weight of the jth weak rule hij of the ith

boosting classifier. We refer to this dissimilarity measure as
BoostBoot dissimilarity.

For the case when decision stumps are used as weak rules
in boosting, we developed an even faster method of estimat-
ing the dissimilarity (Figure 2). If we examine the Boost-
Boot dissimilarity (Equation 5), we see that it is a weighted
sum over a large pool of weak rules. We modified the stan-
dard boosting algorithm to learn a larger pool of weak rules



that approximate the set of weak rules selected by bootstrap-
ping at each iteration. In each iteration of standard boost-
ing, a weight distribution over the examples is generated.
Then, the weak rule that has the least error over this weight
distribution is picked and given a weight proportional to its
accuracy. For our modified algorithm, we select the M best
weak rules at each iteration. Assume that at any iteration,
the distribution of example weights is similar across all the
subsamples. Then, there will be a large overlap between the
set of M best weak rules selected at iteration j using all the
training data and the M weak rules selected individually at
iteration j across the M bootstrap subsamples. We refer to
this as the FastBoot dissimilarity. Note that learning this
single classifier in which we select MT weak rules takes
the same amount of time as learning a single classifier with
standard boosting.

4. Implementation

The FastBoot dissimilarity is fast and practical to com-
pute. In our implementation, we modified the Logit-
Boost [15] algorithm to learn weak rules for the FastBoot
dissimilarity. In our MATLAB implementation, learning
takes 22 seconds for a training set with 11,407 examples
and 5439 features (dual quad-core machine with 24 GB of
RAM). Computing dissimilarity from a particular example
to 1,000 examples takes just 2 seconds, thus our dissimilar-
ity measure is fast enough for interactive use.

We have integrated FastBoot into an open-source, inter-
active machine learning system used by biologists to train
animal behavior classifiers, called JAABA [19]. Our dis-
similarity measure is particularly well-suited to JAABA be-
cause (1) JAABA is an interactive system in which users
iteratively label and retrain classifiers, thus information pro-
vided by our dissimilarity measure can easily be used, (2)
JAABA is used by biologists unfamiliar with machine learn-
ing who thus find it difficult to understand the cause of clas-
sifier failures, and (3) consistently labeling behavior is diffi-
cult because the boundaries of behavior categories are fuzzy
(Section 5).

5. Application to fly behavior classification

We applied our dissimilarity measure to a large, di-
verse fly-behavior data set consisting of>20,000 15-minute
videos of groups of 20 fruit flies [19]. It contains data from
>2,000 behaviorally diverse genetic lines of flies. We used
12 labeled data sets corresponding to 12 locomotion and so-
cial behaviors. For each behavior class, the training data
consisted of 1,300-26,000 labeled frames sampled from
several animals, videos, and genotypes. The feature rep-
resentations varied between 5,000 and 21,000-dimensional.
Note that JAABA allows the user to interactively add labels
and retrain the classifier, thus the data are not i.i.d. The

Behavior Bootstrap BoostBoot FastBoot Boosting L1 LDA
Att. Cop. 0.867 0.888 0.871 0.877 0.559 0.477
Backup 0.846 0.890 0.889 0.886 0.759 0.491
Chase 0.820 0.907 0.898 0.895 0.678 0.476
Crabwalk 0.877 0.920 0.921 0.913 0.686 0.500
Jump 0.804 0.853 0.851 0.847 0.807 0.493
Stop 0.773 0.845 0.841 0.843 0.622 0.480
Walk 0.748 0.926 0.944 0.947 0.815 0.498
Ctr.-pivot 0.937 0.945 0.947 0.950 0.896 0.446
Tail-pivot 0.876 0.898 0.893 0.893 0.762 0.495
Touch 0.847 0.886 0.885 0.875 0.612 0.509
Wing Ext. 0.912 0.949 0.948 0.940 0.769 0.507
Wing Flick 0.848 0.895 0.890 0.885 0.707 0.507
Average 0.846 0.900 0.898 0.896 0.723 0.490
Complexity 500 50 1 1 0 1

Table 1. Comparison of area under the ROC curves for different
methods for identifying influential training examples on 12 differ-
ent behavior classification tasks. Distance metrics proposed in this
work are shown in white columns, while existing distance metrics
are shown in gray. Complexity refers to the number of classifiers
that were trained to obtain each number. We highlight the best per-
forming algorithm and the best performing efficient algorithm in
bold.

data was most often labeled in contiguous intervals termed
bouts. As examples within a bout are similar, whenever we
split the training data into hold-out and training sets, we
split the data at the bout-level.

5.1. Finding influential examples

In this section, we compare how well different distance
metrics can find the training examples that have influence
on a given test example. For each sampled pair consisting
of one labeled training example and one unlabeled test ex-
ample, we estimated whether the training example has large
influence on the test example, in the sense of Eq. 1. We
then used this as the ground-truth to which a suite of dis-
tance metrics are compared.

To measure whether training examples had influence be-
yond noise on a test example in a computationally feasible
manner, we made a few modifications to the definition in
Eq. 1 (see Supplementary Materials). For each of 12 dif-
ferent animal behavior data sets, we sampled 760 training
examples and computed their influence on an unlabeled test
set of 1140 examples (thus, we consider 866,400 pairs).

Once we had created our ground-truth labels of influ-
ence for pairs of examples, we then determined how well
we can replicate this classification by thresholding various
distance metrics. We used the Receiver Operator Character-
istic (ROC) Curve to plot the performance of the different
distance metrics in predicting the influence of a training ex-
ample on a test example (Table 1). We compared the follow-
ing distances. Bootstrap (Equation (4)), BootBoost (Equa-
tion (5)) and FastBoot (Figure 2) are the distance metrics
we define in Section 3. We also compared to the Boosting
distance metric, in which the distance is computed similar
to the BootBoost/FastBoot distance metrics, but using just
a single classifier learned from all the training data. For



Behavior FastBoost L1 Random N. examples
Att. Copulation 0.33 0.26 0.14 700
Backup 0.58 0.51 0.14 460
Chase 0.23 0.17 0.06 477
Crabwalk 0.77 0.58 0.23 176
Jump 0.43 0.40 0.12 300
Stop 0.45 0.33 0.10 293
Walk 0.41 0.33 0.08 407
Center-pivot 0.71 0.56 0.19 174
Tail-pivot 0.30 0.27 0.08 671
Touch 0.62 0.55 0.17 137
Wing Extension 0.68 0.56 0.17 64
Wing Flick 0.67 0.52 0.22 180

Table 2. For each of 12 behavior data sets, we report the improve-
ment in classifier prediction score on mispredicted hold-out exam-
ples after flipping the label of the 25 closest training examples, as
determined by FastBoot, or, for comparison, L1-distance or ran-
domly. N. examples indicates the number of mispredicted test ex-
amples we analyzed.

comparison, we also computed the normalized L1 distance
(each feature was normalized by its standard deviation in
the training set). Finally, we compared to the distance in the
1-dimensional linear subspace defined by linear discrimi-
nant analysis (LDA).

LDA-based distance performed the worst in all cases.
We believe this is because distances in the 1-D projection
defined by LDA are akin to classification scores and thus
it selects examples with the most similar score. Normal-
ized L1 distance performed second worst in all cases, most
likely because it is affected by irrelevant features. Bootstrap
distance also performed relatively poorly, most likely be-
cause the number of classifiers trained using bootstrapping
(we sampled 500) was insufficient. FastBoot, BootBoost,
and (somewhat surprisingly) Boosting all performed well.
FastBoot is 50X faster than BootBoost, and has a slight per-
formance edge over Boosting. As FastBoot is the best ef-
ficient approximation of influence, in the next experiments,
we show that FastBoot can be helpful in understanding a
classifiers errors.

5.2. Effect of influential examples

In this experiment, we show that, not only can we find
influential examples, but changing the labels of the selected
training examples can improve the classifier’s performance.
For this experiment, for each of the 12 animal behavior data
sets, we split the training data into training (95%) and hold-
out (5%) sets and we found examples that were mispre-
dicted in the hold-out set. For each of these, we found the 25
closest training examples with opposite label using the Fast-
Boot distance metric. We then flipped the labels of these
training examples, retrained a new classifier and measured
the improvement in scores of the mispredicted example. We
normalized the improvement in scores by the 80th percentile
score on the training set, thus -1 and 1 correspond to high
confidence predictions. For comparison, we measured the
improvement using two baseline methods, one in which the

nearest training examples are chosen based on L1-distance
and the other in which they are chosen randomly. For all be-
haviors, the median improvement using our method is much
larger than with the baseline methods (Table 2).

5.3. Finding inconsistently labeled training data in
practice
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Figure 4. (a) Similar looking examples with opposite labels, plot-
ted as Figure 1(c-d). The center frame shows the two training ex-
amples with opposite labels that are closest according to the Fast-
Boot distance (two more are shown in Figure 1(c-d)). (b) Distribu-
tion of dissimilarity of predicted positives to the training data for
two behavior data sets. We show the distribution for an “unusual”
fly line for which the classifier performs poorly and a “normal” fly
line for which the classifier performs well.

In this section, we show that our FastBoot algorithm can
be combined with an interactive learning framework to al-
low a user to curate inconsistently labeled data.

As illustrated in Figure 1 as well as by the inter-annotator
disagreement rates reported in e.g. [4], the boundaries be-
tween behavior categories can be fuzzy. It is often difficult
for even a single annotator to consistently label behaviors.
We found that this was the case when categorizing the sub-
tly different ways walking flies can turn. As we labeled
“body-turns”, in which the fly pivots after stopping, we re-
alized that our definition of the behavior drifted over time,
and that we had labeled very similar bouts with opposite
labels.

We created a module for JAABA that allowed the user
to choose an unlabeled frame (e.g. one that was being mis-
predicted by the classifier) and query for the closest training
examples with both positive and negative labels. The user
could then use JAABA to correct any mislabeled training
examples. Alternatively, they could also query for clos-
est unlabeled examples, which they could then label and
add to the training set. We used this module and JAABA
to curate our initial “body-turn” training data set. In most
cases, we found a mislabeled training example within the
20 closest frames to the mispredicted test example. During
curation, 95 labeled examples were removed and 125 were



added from an initial training set containing 2854 examples.
To compare the accuracy of the curated and initial clas-

sifiers, we created a ground-truth data set by manually la-
beling 6,000 frames in novel test movies for which the two
classifiers disagreed (note that these frames are often the
difficult cases, thus accuracy rates here do not reflect the
global accuracy). For frames labeled (211 positive, 2109
negative frames), the error rate improved from 80% to 20%
after curation (false negative rate improved from 83% to
17%, false positive rate went from 47% to 53%).

We found that a similar type of curation may be helpful
for the other 12 behavior data sets. For each data set, we
found the pair of training examples with opposite labels that
had the smallest dissimilarity. These closest examples are
shown in Figure 4(a) and are visually very similar.

5.4. Detecting feature set limitations

Among all the fly behavior data sets, the “righting de-
tector” was the most complex, consisting of over 26,000
training examples of dimensionality 21,000. For this data
set, the training error was non-zero (171 training examples
labeled as negative were classified as positive). We used our
dissimilarity measure to determine that, in this case, our fea-
ture representation was lacking. We clustered the false pos-
itive training examples using our dissimilarity measure and
average-linkage agglomerative clustering. We then found
the 10 true positive training examples nearest to the largest
cluster, which contained 27 examples. We found that there
was not a single feature of the set of 21,000 for which a
single threshold could correctly separate these data (at least
8 mistakes were made by each weak learner). Thus, using
our dissimilarity measure, we were able to find, visualize,
and understand a particularly difficult part of the large data
space, finding concrete examples for which the current rep-
resentation is feature-limited.

5.5. Searching for unusual test data

The assumption in most machine learning algorithms is
that the training and test data come from the same distribu-
tion. This is often not the case when a classifier is used in
practice [28, 22]. For example, the fly behavior data set con-
sists of 2,200 behaviorally diverse genotypes, and it would
be prohibitive to train on all of them. In the biology appli-
cation of comparing the behavior of different genotypes, it
is important that the accuracy of the classifier be similar on
all genotypes. We show that our dissimilarity measure can
be used to find “unusual” unlabeled data subsets for which
the classifier performs poorly. Data from these sets can then
be added to the training data set to improve the classifier.

For each of two behavior classifiers (“attempted copula-
tion” and “backup”), we examined all fly lines for which
the classifier predicted an extremely high number of pos-
itives. We manually selected two lines from this set, one
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Figure 5. Percent of leaf beetle/dragonfly images that are truly la-
dybugs/damselflies, when sorted by 1) median dissimilarity to the
ladybug/damselfly data set (sliding window of size 61), 2) cross-
validation scores, 3) median L1 distance to the ladybug/damselfly
data set and 4) median LDA distance to ladybug/damselfly data
set.

which truly performed the behavior more (“normal”) and
the other that appeared to have a high number of mispre-
dictions due to that line’s “unusual” behavior (e.g. flies that
jumped a lot). We examined the distribution of the dissim-
ilarity from all positive predictions to the closest positive
training example. As shown in Figure 4(b), a larger frac-
tion of examples in the “unusual” line were far from all the
training data. Thus, unusual data sets for which a classi-
fier’s generalization performance is poor can be found by
examining those that have a higher proportion of examples
far from the training set.

6. Application to the ImageNet data set

6.1. Removing label noise in crowdsourced annota-
tions

The large ImageNet data set, consisting of 500-1,000 im-
ages for each of >20,000 object categories, was annotated
using crowdsourcing [8]. While these manual annotations
are accurate at higher levels in the category hierarchy, la-
bel errors are more pronounced for expert-level tasks, such
as distinguishing families or species of insects. In this sec-
tion, we show how our dissimilarity measure can be used to
find mislabeled training data collected using crowdsourcing
techniques, for example for correction by an expert annota-
tor.

We restricted our analysis to the 28 categories below
the “insect” category in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2010 data set. This is
because, to find truly mislabeled examples, we required a
human with expert knowledge to manually relabel the Im-
ageNet data. We used the DeCAF deep network trained on
the 1000-category ILSVRC 2012 data set [9] to compute a
4096-dimensional representation of each image. We used
the same GentleBoost algorithm, as above, to learn 28 one-
versus-all classifiers.

By looking at mispredicted examples in the validation
data set and their nearest neighbors (according to our dis-
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Figure 6. Mispredicted validation images (black boxes) in context of their 4 nearest neighbors, according to our dissimilarity measure.
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Figure 7. (a) Leaf beetle training images sorted by their dissimilarity to the ladybug data set. Top row shows the 5 closest examples,
bottom row the 5 farthest examples. (b) Dragonfly training images sorted by their dissimilarity to the damselfly data set.

similarity measure) in the training set (Figure 6), we iden-
tified two types of common, systematic errors: ladybugs
were often labeled as leaf beetles, and damselflies were of-
ten labeled as dragonflies. We used our FastBoot algorithm
to compute the median dissimilarity from each leaf beetle
training image to all ladybug training images, and, similar-
ily, the median dissimilarity from each dragonfly training
image to all damselfly training images. We then sorted the
leaf beetle/dragonfly training data sets according to this me-
dian dissimilarity, and a volunteer with entomology exper-
tise went through these training images in this order, and
labeled true ladybugs/damselflies. For comparison, we also
sorted the dataset according to median normalized L1 dis-
tance, median LDA distance. Finally, we also used cross-
validation scores for sorting. Our dissimilarity indeed puts
true ladybugs/damselflies at the beginning of the list (Fig-
ure 7) and performs much better than the L1 and LDA
distance metrics (Figure 5). Sorting by cross-validation
performs only slightly worse on this particular task. As
described in the next section, the main advantage of our
method over cross-validation is that it can provide context
to a given error. That is, when we ask a user to review an
example, we can also show them the closest examples.

6.2. Gaining insight into complex classifiers

Examining mispredicted examples in our validation set
in the context of their nearest neighbors can give us insight
into what properties of the data the classifier has learned.
Figure 6 shows selected mispredicted examples and their
nearest neighbors within the 28-category training data set.
In all of these cases, the commonality between the mis-

predicted example and its neighbors is the image back-
ground. Anecdotally, this suggests that the classifier is mak-
ing strong use of the image background, which captures in-
formation about what type of environment the insect was
found in. In many cases, this is a sensible feature to use, as
many insects are found only in specific habitats. An inter-
esting question for further research is whether it is helpful to
improve invariance to the image background, e.g. with the
use of saliency maps [18]. Combining this technique for
selecting important images with the approach of [32] for vi-
sualizing convolutional network feature representations of a
given example may also be fruitful.

7. Discussion
Increases in both data-set size and complexity of clas-

sifier space searched have made it difficult for engineers
to look at and understand both the data and the resulting
classifiers. In this work, we show that our influence-based
distance metric can be used in multiple ways to analyze, un-
derstand, and improve the current configuration of classifier
family, features and training data (note that our definition of
influence is a function of this joint configuration, and does
not necessarily apply to any single component alone).

With this method, engineers have access to the intu-
itive methods for understanding nearest-neighbor classifiers
without sacrificing the advantages in complexity and gener-
alization of modern classifiers. This method will be of use
to machine learning experts, engineers, and data scientists
developing computer vision and machine learning systems
for real-world applications.
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