
Scalable Object Detection by Filter Compression with Regularized Sparse

Coding

Ting-Hsuan Chao, Yen-Liang Lin, Yin-Hsi Kuo, and Winston H. Hsu

National Taiwan University, Taipei, Taiwan

Abstract

For practical applications, an object detection system re-

quires huge number of classes to meet real world needs.

Many successful object detection systems use part-based

model which trains several filters (classifiers) for each class

to perform multiclass object detection. However, these

methods have linear computational complexity in regard to

the number of classes and may lead to huge computing time.

To solve the problem, some works learn a codebook for the

filters and conduct operations only on the codebook to make

computational complexity sublinear in regard to the num-

ber of classes. But the past studies missed to consider filter

characteristics, e.g., filters are weights trained by Support

Vector Machine, and rather they applied method such as

sparse coding for visual signals’ optimization. This mis-

use results in huge accuracy loss when a large speedup is

required. To remedy this shortcoming, we have developed

a new method called Regularized Sparse Coding which is

designed to reconstruct filter functionality. That is, it re-

constructs the ability of filter to produce accurate score for

classification. Our method can reconstruct filters by min-

imizing score map error, while sparse coding reconstructs

filters by minimizing appearance error. This different opti-

mization strategy makes our method be able to have small

accuracy loss when a large speedup is achieved. On the

ILSVRC 2013 dataset, which has 200 classes, this work rep-

resents a 16 times speedup using only 1.25% memory on

single CPU with 0.04 mAP drop when compared with the

original Deformable Part Model. Moreover, parallel com-

puting on GPUs is also applicable for our work to achieve

more speedup.

1. Introduction

In object detection, many works based on part-based

model such as the Deformable Part Model (DPM) [8] have

achieved high accuracy in recent years. However, long de-

tection time has raised concerns on whether it is suitable

for real applications. Most of the computing time of these

methods comes from convolution operations between filters

and images. Moreover, to overcome the deformation nature

of objects, an object class often comprises 20 or even 100

more filters and such a huge number of filters will unaccept-

ably prolong detection time. In general, object detection

can be divided into two stages. The first stage collects ob-

ject proposals, while the second stage uses a bank of filters

to decide the class of each proposal. Trying to scale down

the number of convolution operations, an efficient method

has been proposed [18], which tries to reconstruct all filters

with a fixed size codebook. Therefore, convolution opera-

tions are only conducted between the codebook and input

image to make computational complexity not linear in re-

gard to the number of classes. It proves that sparse coding

can be a good method for efficient object detection.

We question that if sparse coding is still suitable for scal-

able object detection when the number of classes grows in

the ILSVRC 2013 detection task. When a large speedup is

required, it has to scale down size of codebook and use the

codebook to reconstruct huge number of filters. However,

sparse coding cannot fully reconstruct all filters with the

small codebook and results in accuracy loss. It means that

we need a method to reconstruct filters with limit budget

(i.e., small memory consumption, small model and small

computation) and achieve larger speedup. In object detec-

tion, filters are used to convolve with images to get score

maps (Figure 2) and then leverage these score maps to

produce reliable detection results which consist of several

bounding box-label pairs. But as we know, sparse coding

is inspired by the function of the human vision system and

frequently used to reconstruct visual signals. Using sparse

coding to reconstruct filters appearance will be the reason

why accuracy drops with limit budget as confirmed by our

experiments in Section 4.

To tackle the problem, we proposed Regularized Sparse

Coding which is optimized for filter functionality1. The in-

tuition is that we should reconstruct filter functionality di-

rectly rather than reconstruct filter appearance and ask it

to perform like the original filter. In other words, under-

standing functionality of filter and codebook will be the

1In this work we call the ability of filter to produce accurate score map

in object detection as filter functionality.

Figure 1. System architecture. In the offline stage, a bank of filters (classifiers) are collected from part-based models and used to learn a

codebook. By conducting convolution operations with training set images, Regularized Sparse Coding transforms filters and the codebook

into performance augmented space, where filter can match codewords which have similar responses, i.e., classification results. In perfor-

mance augmented space, meaning of reconstruction is the same as minimizing score map error and we can learn performance augmented

sparse activation which is optimized to reconstruct filter functionality and improve detection performance. In the online stage, convolution

operations are only conducted between codebook and input image to produce the intermediate matrix. With the intermediate matrix and

the performance augmented sparse activation, we can efficiently calculate score maps and produce the final result without conducting all

convolution operations between input image and filters to get the score maps.

key to reconstruct filters with less budget and achieve a

larger speedup. Our method first introduces regularization

process. As shown in Figure 1, it transforms filters and

codebook into performance augmented space by conducting

convolution operations with regularization features. In the

performance augmented space, a transformed filter is a set

of classification results of the regularization features. Their

positions in performance augmented space clearly represent

their functionality, that is, the ability to produce score for

classification. In other words, these regularization features

regularize filters and codebook to show their functionality.

The physical meaning of performance augmented space en-

forces filters to reconstruct functionality in it and improve

detection accuracy. With this different optimization strat-

egy, our method can fully reconstruct filter functionality and

achieve a large speedup with negligible accuracy loss. To il-

lustrate the effect of Regularized Sparse Coding, we show

some score maps produced by Regularized Sparse Coding

(details can be seen in Section 3.2) and sparse coding [18]

in Figure 2. To prove our work’s scalability regarding the

number of classes and to ensure that we have the same or

even better performance on a larger dataset with negligible

mAP loss, we conduct experiments on the ILSVRC 2013

dataset which is thought to be the largest object detection

dataset in recent years. In summary the main contributions

of this work are:

• We propose Regularized Sparse Coding to reconstruct

filter functionality which sparse coding cannot recon-

struct successfully.

• We conduct experiments on several large datasets with

up to 200 classes to prove scalability of our method.

• We achieve 16 times speedup using only 1.25% mem-

ory with less than 0.04 mAP drop compared to the

original Deformable Part Model.

2. Related Work

In general, object detection can be reduced to proposal

extraction and object classification. So, the computational

complexity of object detection could be O(LC), where L is

the number of proposals and C is the number of classes.

These two stages and the impacts on scalability are dis-

cussed separately in this section.

2.1. Proposal Extraction

The computational complexity of object detection is lin-

ear in regard to the number of proposals. However, in the

(a) (b)

(c) (d)

Figure 2. Comparison between Regularized Sparse Coding and

sparse coding. A foot filter from person model is used to illus-

trate difference between the two methods. (a) Input image. (b)

Score map produced by the original filter. (c) Score map produced

by Regularized Sparse Coding. (d) Score map produced by sparse

coding. Apparently, Regularized Sparse Coding can reconstruct

filter functionality better, that is, it produces score map which is

able to provide more accurate detection result than sparse coding.

It shows that our method successfully makes reconstruction per-

form better on filters.

traditional method, proposals are extracted by sliding win-

dows approach and the huge number of proposals results

in very long computing time. From the famous cascade

method [23], many works have focused on reducing the

number of object proposals by utilizing weak classifiers. In

[6, 13] the authors use the part hierarchies and spatial in-

formation to implement cascade object detection to reduce

computation. Some works have discovered that most of the

object classes have clear boundary and possess common at-

tributes of objects. Using this information, they developed

fast algorithms to extract class-generic object proposals and

eliminate background proposals. Methods such as exploit-

ing segmentation [21, 20], interest points [22] and salience

information [1, 15] efficiently produce a small number of

object proposals with high recall rate, losing only negligible

accuracy. Our method works on the other stage, object clas-

sification, and has complementary advantages2 with these

methods to reduce computation even further for object de-

tection.

2.2. Object Classification

With the exception of few object detection frameworks

[2, 12], each object proposal represents a candidate bound-

2In [3], complementary advantages are shown helpful with acceptable

accuracy loss.

ing box for all classes, which means that each proposal

should pass through all classifiers to determine its class.

Several methods provide efficient ways to avoid this heavy

computing process which has linear computational com-

plexity in regard to the number of classes. [3] introduced

a hash based method. They try to transform convolution

operations into queries in several hash tables and reach al-

most class-independent computational complexity. How-

ever, memory usage is still linear in terms of the number

of filters, which is a weak point in developing a scalable

object detection system. [19] jointly trains object models

by finding common features that can be shared across the

classes. But this method needs to train all the classes again

when a new class joins. Other methods such as [14, 18, 17]

state that learning a sharable codebook for filters can be a

solution to reduce computation without building hash ta-

bles and consuming lots of memory resources. However,

these methods are still unable to solve the problem when

the number of classes grows. Our method tries to fix this

problem by introducing regularization process into sparse

coding and reduces computational complexity from linear

to sublinear in regard to the number of classes. In addition,

our method can complement other methods which focus on

reducing computation in the proposal extraction stage and

parallel computation on GPUs to achieve more speedup.

3. Technical Details

In this section we describe a framework based on the De-

formable Part Model (DPM) which uses Histogram of Ori-

ented Gradients (HOG) as a feature type. Some other fea-

ture types will be able to adapt the framework as well be-

cause the optimization subject of our method is the weight

trained by SVM. We use part filters in DPM as basic el-

ements (in the following simply called filters). Since the

number of root filters in DPM is only about 4% the number

of part filters, the root filters will not be considered as target

of reducing computation in order to simplify problems.

3.1. Sparse Coding

In order to decrease the number of involved filters when

convolution operations take part in object detection, we

can represent each filter as a linear combination of code-

words of a predefined codebook. [18] has shown that learn-

ing based codebook construction methods perform better

than matrix factorization methods, such as Singular Value

Decomposition (SVD) method, for the filters. Here we

quickly go through the process. First, we have filters X =
{X1, ..., XN} which are collected from a set of part-based

models trained on a chosen dataset. Next, we use these fil-

ters to learn a codebook D = {D1, ..., DK}. Codewords

of the codebook D can be thought as a set of basic ele-

ments consisting of edges and shapes. Redundant informa-

tion of filters can be eliminated, reserving only informative

elements to reconstruct filters. The optimization method of

sparse coding can be formulated as follows.

min
αij ,Dj

N
∑

i=1

∥

∥

∥Xi −
∑K

j=1 αijDj

∥

∥

∥

2

2

subject to ‖αi‖0 ≤ ǫ, ∀i = 1, ..., N

‖Dj‖2 = 1, ∀j = 1, ...,K

(1)

By leveraging the Orthogonal Matching Pursuit algo-

rithm (OMP) [11], we can efficiently compute an approx-

imate solution to avoid this NP-hard optimization prob-

lem. We also test a variety of sparse coding methods (e.g.,

[10, 4]) which do not have a notable difference from the

OMP method. The original convolution process in object

detection can be transformed into the following form:

Xi ≈
K
∑

j=1

αijDj = αiD (2)

Ψ ∗X1

...

...

Ψ ∗XN

≈

α1

...

...

αN

Ψ ∗D1

...

Ψ ∗DK

= AM (3)

In Equation 3 we denote the feature pyramid of an image

as Ψ, ∗ the convolution operation, αi the ith filter’s sparse

activation, Di the codeword of the learned codebook and Xi

the filter. We can get the brief representation AM as the last

term in Equation 3. A is a matrix of sparse activation and

M is a matrix of intermediate representation. We illustrate

these representation in Figure 1. Here we use DPM as our

experiment target. In DPM scores of a single proposal can

be calculated as

score(φ) = scoreroot(φ) +

P
∑

i=1

scorepart(φ+ δi) + cost(δ)

= scoreroot(φ) +
P
∑

i=1

K
∑

j=1

αij(Ψ ∗Dj) + cost(δ).

(4)

In Equation 4, φ is the placement in a feature pyramid and

δ represents displacements of the parts. Notice that we can

calculate the matrix of intermediate representation M in-

stead of calculating the score of each class separately for

multiclass object detection. In other words, we can amor-

tize the computation cost of the intermediate matrix. The

original DPM requires Nd operations to compute N filters

where d corresponds to the dimension of the filters, while

our method requires only Kd + N ‖α‖0. We can yield

speedup

speedup =
Nd

Kd+N ‖α‖0
(5)

In Equation 5, N and d are fixed for a given dataset such

that we should reduce K and ‖α‖0 to yield more speedup.

3.2. Regularized Sparse Coding

The previous section has shown the capability of sparse

coding, but here we provide some observations to help re-

vise sparse coding into our method, which is called Regu-

larized Sparse Coding.

First, filters in object detection system are the weights

trained by SVM and we have known that image and SVM

weight are very different in statistical characteristics. The

sparse coding method simply takes filters as images, learns

a codebook and use codewords of the codebook to recon-

struct filters by minimizing L2 distance between original

and reconstructed filters; that is, it minimizes difference

of filter appearance. However, we should directly recon-

struct filter functionality instead of filter appearance. An-

other problem is that due to the difficulty of some object

classes in the given dataset and limitations of the learning

algorithm, some of the classes with low mAP consist of very

noisy filters and these noisy filters become a main source of

error in reconstruction. To illustrate the idea more clearly,

we describe how sparse coding and our method perform on

a d-dimension filter: Sparse coding reconstructs each di-

mension equally, minimizing L2 distance between the orig-

inal and the reconstructed filter. Our method reconstructs

different dimensions with different weights and the weights

are learned by introducing regularization features to best re-

construct filter functionality (Equation 7). That is, we use

limit budget (codewords of a codebook) to reconstruct part

of filter which is important for filter functionality rather than

reconstruct filter appearance. Therefore, our method can

find that noisy part of filter has no specific functionality and

reconstruct informative part with higher weight.

Here we propose to solve this problem by introduc-

ing regularization features from the training set of a given

dataset to regularize the whole process. It makes function-

ality receive higher weights than appearance in reconstruc-

tion. In detail, we can divide our method into two stages,

in the first stage we train a general codebook for filters col-

lected from part-based models. In the second stage we use

regularization features to transform filters and the codebook

into performance augmented space. Then we reconstruct

the transformed filters with the transformed codebook in

performance augmented space as shown in Figure 1. As

mention before, the physical meaning of performance aug-

mented space will enforce filters to reconstruct functionality

in it. The whole process of Regularized Sparse Coding can

be formulated as an optimization problem:

D = min
D∈C

N
∑

i=1

min
αi

(
1

2

∥

∥

∥Xi −
∑K

j=1 αijDj

∥

∥

∥

2

2
+ λ1 ‖αi‖0)

(6)

min
αi

(
1

2

∥

∥

∥Freg · (Xi −
∑K

j=1 αijDj)
∥

∥

∥

2

2
+ λ2 ‖αi‖0)

∀i = 1, ..., N

(7)

Equation 6 suggests that the codebook is trained in the orig-

inal sparse coding way. Based on our experiments, there

exist little difference of performance by using the different

optimization algorithms to learn a codebook such as [10],

[4] and [11]. Equation 7 describes how we involve regu-

larization features in filter reconstruction and generate per-

formance augmented sparse activations. Freg is a matrix

of regularization features which is the key to our method.

To construct this matrix, we collected lots of images from

the training set of the dataset to avoid unfair situation be-

tween other methods and our method. Next, we extract fea-

ture pyramids from the collected images and randomly pick

some feature patches which have the same size of filters.

Finally, we use the feature patches as the rows of Freg and

use this matrix to regularize sparse coding. Multiply Freg

into clause of Equation 7, ‖·‖
2
2 term in Equation 7 becomes

Freg ·Xi − Freg · (
K
∑

j=1

αijDj) = Scorei − Scorei
′. (8)

We can consider it as norm2 distance between the origi-

nal and the reconstructed score, that is, the classification er-

ror between two filters. As we proposed earlier, we should

reconstruct filter functionality, i.e., the ability of filter to

produce accurate score map in object detection, instead of

filter appearance. In this work, we use the algorithm pro-

vided by [9] to optimize Equations 6 and 7.

4. Experiment Results

4.1. Datasets and Implementation

Pascal Visual Object Classes Challenge 2012

(VOC2012) [5]. This famous object detection benchmark

consists of 20 classes. We use this dataset to show our

work’s capability in reducing computing time. Training

set and validation set are used to train models while the

test set is used to evaluate performance. Notice that this

dataset only has a relative small number of classes but the

experiment result proves that we can perform well on it.

ImageNet Large Scale Visual Recognition Challenge

2013 (ILSVRC2013) [16]. To show scalability of our

work we choose ILSVRC2013 as our evaluation dataset.

ILSVRC2013 is the largest object detection dataset in re-

cent years, containing 200 classes. Due to the ILSVRC2014

competition, the test set evaluation server was shut down

temporarily. Instead, we use the training set to train models

and the validation set to evaluate performance.

Deformable Part Model release 5 (DPM) [8] [7]. In

this work, we use DPM as our detection model and the de-

fault configuration as in [8]. In this configuration, each ob-

ject model consists of 3 components and each component

consist of 8 parts. Hence a N object classes dataset indi-

cates that we have 24N filters. Although we can use root

filters to learn another codebook and speedup whole object

detection process, we do not consider it in our work to keep

simplicity.

4.2. Performance Analysis

In Equations 6 and 7, there are three parameters, K, λ1

and λ2, to be tuned. However, there are so many com-

binations of these three parameters that it would cost too

much time to try all of them to retrieve performances such

as mAP. Therefore, we use a faster way to test how a pa-

rameter set performs in few seconds. As we have proposed

in Section 3.2, filter functionality should be reconstructed

first rather than filter appearance. In the same way as we do

in Regularized Sparse Coding, we collect some validation

features from the training set. Notice that these validation

features are different from regularization features to prevent

overfitting. Comparing convolution responses between the

original and the reconstructed filter, we can average the dif-

ferences of the convolution responses from several valida-

tion features to view as reconstruction error. Here we call it

score error and it can be formulated as

δscore =
1

|Fval| ·N

|Fval|
∑

m=1

N
∑

i=1

(F
(m)
val ·Xi−F

(m)
val ·

K
∑

j=1

αijDj).

(9)

Using this method as a performance estimator, we only

choose few representative parameter sets to go through the

standard object detection evaluation process and then pro-

duce the final results. Practically, we choose parameter sets

with lowest score error for each fixed K (i.e., codebook

size).

In the beginning, we examine how the size of regular-

ization features influences Regularized Sparse Coding. In

Figure 3, as expected, the more regularization features in-

volved in Regularized Sparse Coding, the lower δscore we

can get. In addition, the marginal utility of regularization

features diminishes at about 1000 samples. So we only use

1000 regularization features in future experiments.

Starting with the experiment on the popular VOC2012

object detection dataset, we compare our method with the

sparse coding method [18] in Figure 4. Although it is a

relatively small dataset, we can still get a 6 times speedup

with merely 0.08 mAP drop while sparse coding has 0.15

mAP drop. We achieve this speedup using a CPU-only im-

plementation and we can easily achieve a larger speedup by

utilizing parallel computing. This experiment shows that

our method can solve the mAP drop problem which hap-

pens when sparse coding shrinks the codebook size to gain

Figure 3. Effect of the number of regularization features used in

Regularized Sparse Coding3. As the solid line illustrates, the score

error drops with more features involved. The dotted line is the

original sparse coding method. Although sparse coding also has

low score error, small difference of score error between the two

method will result in a huge performance difference (mAP) in later

experiments.

Figure 4. Comparison of sparse coding and Regularized Sparse

Coding on VOC2012. The two lines illustrate that Regularized

Sparse Coding outperforms sparse coding when a higher speedup

is required. Although VOC2012 has only 20 object classes,

our work can still achieve a 6 times speedup with merely 0.08

mAP loss while sparse coding has 0.15 mAP loss with the same

speedup. Shaded area shows memory usage of our method and

only 50% to 12.5% memory is needed compared to the original

Deformable Part Model (diamond symbol).

a speedup. We utilize regularization process to avoid such a

situation, reconstructing part of the filter which is important

for its functionality with higher weights.

3Regularization features are also used in training stage of part-based

model and involving this kind of feature in our method would not make an

unfair situation.

Figure 5. Effect of the filter size on speedup. This experiment

shows that how our method performs in object detection systems

with different filter size. Results show that our method can per-

form better, i.e., get higher accuracy in a fixed speedup require-

ment, in object detection system with larger filter size. For real

world applications, object detection system will have extremely

huge number of filters and our method can perform better, while

other method may fail in it.

4.3. Scalability

In the scalability experiment we use ILSVRC2013 as

our dataset. To understand how our method performs

with different filter size, we create several subsets of

the ILSVRC2013 dataset for evaluation. ILSVRC4800,

ILSVRC3600, ILSVRC2400 and ILSVRC1200 are the

new subsets of ILSVRC2013 and each contains 4800, 3600,

2400 and 1200 filters respectively, i.e., 200, 150, 100 and

50 classes. In order to compare these 4 datasets, we only

evaluate the performance of their common classes, which

actually are filters of ILSVRC1200. Performance is shown

in Figure 5. This experiment shows that our method can

perform better on object detection system with more filters.

Explanation is that more filters in an object detection system

means there are more redundant information among them.

Our method works well on recognizing redundant informa-

tion through regularization process and therefore performs

better with larger filter size.

To compare sparse coding with our method, we conduct

experiments on ILSVRC2013 to see if our method can per-

form well on a large dataset. In Figure 6, the result shows

that we can get a huge speedup with only negligible mAP

loss. In the ILSVRC2013 dataset, we only have limit budget

(codewords) to reconstruct huge number of filters. How-

ever, we get different results when the two optimization

methods try to use a very small number of codewords of

the codebook to reach a large speedup. Sparse coding tries

to reconstruct filter appearance by looking through code-

words to pick best fit one. Such method cannot succeed in

this strict situation, while Regularized Sparse Coding can

Figure 6. Comparison of sparse coding and Regularized Sparse

Coding on ILSVRC2013. When a small speedup is required, size

of codebook is large enough for sparse coding and Regularized

Sparse Coding to reconstruct all the filters. We can observe that

two methods have no difference when a small speedup is required,

i.e., 1 to 10 times speedup. When a large speedup is required,

Regularized Sparse Coding gradually outperforms Sparse Coding

as we expected. For example, Regularized Sparse Coding can get

a 16 times speedup with merely 0.04 mAP drop (Some detection

results are shown in Figure 7) while sparse coding has 0.10 mAP

drop. Shaded area shows memory usage of our method and only

10% to 1.25% memory is needed compared to the original De-

formable Part Model (diamond symbol).

easily reconstruct filter functionality by carefully choosing

codewords which help most. Results are shown in Figure 6.

5. Conclusion

In this work we proposed a method called Regularized

Sparse Coding to speedup large scale object detection. Our

method learns a codebook for the filters from part-based

models and conduct operations only on the codebook to re-

duce computation. The original sparse coding method has

accuracy loss problem when the number of classes grows

larger, especially when a large speedup is required. Our

work first introduces regularization process, which trans-

forms filters and codebook into performance augmented

space. Reconstruction in performance augmented space

can minimize score map error of filters and achieve large

speedup with negligible accuracy loss. To evaluate our

method, we conduct experiments and compare our method

with the sparse coding method [18]. On VOC2012 we prove

that our method can perform better than sparse coding espe-

cially when a large speedup is required. On ILSVRC2013

our method reaches a 16 times speedup using only 1.25%

memory with only 0.04 mAP loss compared to the original

Deformable Part Model and outperforms the sparse coding

method as well. To evaluate the effect of the number of fil-

ters on the speedup, we conduct experiments with different

filter size and prove that deploying our method on larger

filter size can have better accuracy-speedup trade off. Our

method can also complement other methods which focus on

reducing computation in the proposal extraction stage and

parallel computation on GPUs to achieve more speedup. In

future, we plan to apply our method on other applications,

such as classification and segmentation, to provide speedup

without accuracy loss and huge memory usage.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. What is an object?

In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 73–80. IEEE, 2010.

[2] Q. Chen, Z. Song, R. Feris, A. Datta, L. Cao, Z. Huang, and

S. Yan. Efficient maximum appearance search for large-scale

object detection. In Computer Vision and Pattern Recogni-

tion (CVPR), 2013 IEEE Conference on, pages 3190–3197.

IEEE, 2013.

[3] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijaya-

narasimhan, and J. Yagnik. Fast, accurate detection of

100,000 object classes on a single machine. In Computer

Vision and Pattern Recognition (CVPR), 2013 IEEE Confer-

ence on, pages 1814–1821. IEEE, 2013.

[4] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al. Least

angle regression. The Annals of statistics, 32(2):407–499,

2004.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[6] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cas-

cade object detection with deformable part models. In Com-

puter vision and pattern recognition (CVPR), 2010 IEEE

conference on, pages 2241–2248. IEEE, 2010.

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(9):1627–1645, 2010.

[8] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester.

Discriminatively trained deformable part models, release 5.

http://people.cs.uchicago.edu/ rbg/latent-release5/.

[9] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary

learning for sparse coding. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages 689–

696. ACM, 2009.

[10] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning

for matrix factorization and sparse coding. The Journal of

Machine Learning Research, 11:19–60, 2010.

[11] S. G. Mallat and Z. Zhang. Matching pursuits with time-

frequency dictionaries. Signal Processing, IEEE Transac-

tions on, 41(12):3397–3415, 1993.

[12] K. Murphy, A. Torralba, D. Eaton, and W. Freeman. Object

detection and localization using local and global features. In

Toward Category-Level Object Recognition, pages 382–400.

Springer, 2006.

[13] M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine

approach for fast deformable object detection. In Computer

Successful Examples Failure Examples

A
cc

o
rd

io
n

B
u
tt

er
fl

y
P

er
so

n
B

ic
y
cl

e
T

V
 o

r
m

o
n
it

o
r

Figure 7. Detection results of our method which achieves 16 times speedup on the ILSVRC 2013 dataset. Each row shows detection results

of accordion, butterfly, person, unicycle and TV or monitor from top to bottom and the rightmost column shows some failure examples.

Failure examples show that many object classes share very similar parts and this situation mislead classifier to make false detection.

However, this problem has not been solved by the Deformable Part Model and part of effort from our method cannot appear in mAP. Our

method may be able to get better performance when applying other framework which carefully deals with this problem.

Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-

ence on, pages 1353–1360. IEEE, 2011.

[14] H. Pirsiavash and D. Ramanan. Steerable part models. In

Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 3226–3233. IEEE, 2012.

[15] E. Rahtu, J. Kannala, M. Salo, and J. Heikkilä. Segmenting

salient objects from images and videos. In Computer Vision–

ECCV 2010, pages 366–379. Springer, 2010.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge, 2014.

[17] H. O. Song, T. Darrell, and R. B. Girshick. Discriminatively

activated sparselets. In Proceedings of the 30th International

Conference on Machine Learning (ICML-13), pages 196–

204, 2013.

[18] H. O. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz,

C. Geyer, P. Felzenszwalb, and T. Darrell. Sparselet models

for efficient multiclass object detection. In Computer Vision–

ECCV 2012, pages 802–815. Springer, 2012.

[19] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing fea-

tures: efficient boosting procedures for multiclass object de-

tection. In Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Proceedings of the 2004 IEEE Computer Soci-

ety Conference on, volume 2, pages II–762. IEEE, 2004.

[20] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. Interna-

tional journal of computer vision, 104(2):154–171, 2013.

[21] K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W.

Smeulders. Segmentation as selective search for object

recognition. In Computer Vision (ICCV), 2011 IEEE Inter-

national Conference on, pages 1879–1886. IEEE, 2011.

[22] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-

tiple kernels for object detection. In Computer Vision, 2009

IEEE 12th International Conference on, pages 606–613.

IEEE, 2009.

[23] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In Computer Vision and Pattern

Recognition, 2001. CVPR 2001. Proceedings of the 2001

IEEE Computer Society Conference on, volume 1, pages I–

511. IEEE, 2001.

