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Abstract

We propose new dense descriptors for texture segmenta-
tion. Given a region of arbitrary shape in an image, these
descriptors are formed from shape-dependent scale spaces
of oriented gradients. These scale spaces are defined by
Poisson-like partial differential equations. A key property
of our new descriptors is that they do not aggregate image
data across the boundary of the region, in contrast to exist-
ing descriptors based on aggregation of oriented gradients.
As an example, we show how the descriptor can be incor-
porated in a Mumford-Shah energy for texture segmenta-
tion. We test our method on several challenging datasets for
texture segmentation and textured object tracking. Experi-
ments indicate that our descriptors lead to more accurate
segmentation than non-shape dependent descriptors and the
state-of-the-art in texture segmentation.

1. Introduction

Local invariant descriptors (e.g., [27, 26, 10, 39, 37])
are image statistics at each pixel that describe neighbor-
hoods in a way that is invariant to geometric and photomet-
ric nuisances. They are typically computed by aggregating
smoothed oriented gradients within a neighborhood of the
pixel. These descriptors play an important role in character-
izing local textural properties. This is because a texture con-
sists of small tokens, called textons [20], which may vary
by small geometric and photometric nuisances but are oth-
erwise stationary. Careful construction of these descriptors
is crucial since they play a key role in low-level segmenta-
tion, which in turn plays a role in higher level tasks such as
object detection and segmentation.

Existing local invariant descriptors aggregate oriented
gradients in predefined pixel neighborhoods that could con-
tain image data from different textured regions, especially
near the boundary of the texture. This leads to ambiguity
in grouping descriptors, especially for descriptors near the
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Figure 1. [Left]: Descriptors that aggregate local image data
across boundaries of textured regions lead to segmentation errors.
The problem is exacerbated as the texton size increases. [Right]:
Segmentation by Shape-Tailored Descriptors (our method).

boundary. This could lead to segmentation errors if descrip-
tors are grouped to form a segmentation. The problem is ex-
acerbated when the textons in the textures are large. In this
case, the neighborhood of the descriptor needs to be cho-
sen large to fully capture texton data. See Fig. 1. Ideally,
one would need to construct local descriptors that aggre-
gate oriented gradients only from within textured regions.
However, the segmentation is not known a-priori. Thus, it
is necessary to solve for the local descriptors and the region
of the segmentation in a joint problem.

In this paper, we address this joint problem. This is ac-
complished in two steps. First, we construct novel dense
local invariant descriptors, called Shape-Tailored Local De-
scriptors (STLD). These descriptors are formed from shape-
dependent scale spaces of oriented gradients. The shape-
dependent scale spaces are the solution of Poisson-like par-
tial differential equations (PDE). Of particular importance
is the fact that these scale-spaces are defined within a re-
gion of arbitrary shape and do not aggregate data outside the
region of interest. Second, we incorporate Shape-Tailored
Descriptors into the Mumford-Shah energy [29] as an exam-
ple energy based on these descriptors. Optimization jointly
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estimates Shape-Tailored Descriptors and their support re-
gion, which forms the segmentation.

Contributions: 1. Our main contribution is to define
new dense local descriptors by using shape-dependent scale
spaces of oriented gradients. 2. We show that our new
descriptors give more accurate segmentation than their
non shape-dependent counterparts for texture segmentation.
3. We apply our descriptors to disocclusion detection [43] in
object tracking improving state-of-the-art.

1.1. Related Work

Many approaches [45, 32, 22, 9, 28, 18, 33] to tex-
ture segmentation partition the image into regions that have
global intensity distributions that are maximally separated
by a distance on distributions. A drawback of global inten-
sity distributions is that spatial relations are lost. This is im-
portant in characterizing textures. Spatial correlations be-
tween neighboring pixels are considered in [3] by creating
a vector of the four neighboring pixel values for each pixel.
Grouping these vectors improves segmentation. A recent
approach [19] uses frequencies of neighboring pixel pairs
within the image to determine texture boundaries. In [38],
small neighborhoods are obtained from a super-pixelization
and used in segmentation. Super-pixels may cross texture
boundaries, aggregating data across boundaries.

Larger neighborhoods are considered in [30]. Gabor fil-
ters at various scales and orientations have been used widely
in texture analysis (e.g., [27]), and the response of these
filters (or others [35, 42]) have been used as a descriptor
in texture segmentation (e.g., [24, 36]), and as an edge-
detector [1]. These approaches depend on the size of the
neighborhood chosen. The optimal size is determined by
peaks in the entropy profile of intensity distributions of in-
creasingly sized neighborhoods in [17, 4, 16]. An aspect
that remains an issue in all these methods is that neighbor-
hoods may cross texture boundaries, which our method ad-
dresses. In [14], these boundary effects are mitigated by a
top-down correction step, however, the method only deals
with neighborhoods that are a few pixels in length.

We use variational methods to optimize the Mumford-
Shah energy incorporating our descriptors. Many active
contours [21] are driven to group pixel intensities based on
intensity statistics. For example, global intensity means in
the regions are used in [8, 44], and global histograms are
used in [22, 28]. Since images are not always described
by global intensity statistics, local intensity statistics have
been used to group pixels (e.g., [29, 23, 11, 6]). Since these
methods aim to group pixels, they do not capture texture in
many cases. These energies are optimized using gradient
descent, but more recently methods of convex relaxations
have improved results in many cases [7, 5, 34].

Our Shape-Tailored descriptors are the solutions of PDE
defined within regions. Thus, the energies we optimize in-

volve integrals over the regions of functions of PDE that
are dependent on the regions. While we use direct meth-
ods of calculus of variations to optimize these energies, one
can also use shape gradients [12] (see also, [2, 15]). Our
contribution lies in introducing new descriptors for texture
segmentation, and not in the method of optimization.

2. Shape-Tailored Descriptors Formulation
In this section, we define Shape-Tailored Descriptors.

We compute their gradient with respect to shape perturba-
tions, and then the gradient of a region-based functional in-
volving the descriptors. These results will be needed to op-
timize the energy for segmentation.

2.1. Defining Shape-Tailored Descriptors

Let Ω ⊂ R2 be the domain of an image I : Ω → Rk
(k ≥ 1). Let R ⊂ Ω be an arbitrarily shaped region with
non-zero area and smooth boundary ∂R. We compute local
descriptors for each x ∈ R. The descriptor describes I in
a neighborhood of x inside R. The descriptors at x ∈ R
will be aggregations of image data I and oriented gradients
within multiple neighborhoods of x in R. This can be ac-
complished conveniently using scale-spaces [25] defined by
PDE. This motivates the definition below.

Definition 1 (Shape-Tailored Local Descriptors). Let R ⊂
Ω be a bounded region with non-zero area and smooth
boundary ∂R. Let I : Ω → Rk. A Shape-Tailored De-
scriptor, u : R → RM (where M = n × m, n,m ≥
1) consists of components uij : R → R so that u =
(u11, . . . , u1m, . . . , un1, . . . , unm)T . The components are
defined as:{

uij(x)− αi∆uij(x) = Jj(x) x ∈ R
∇uij(x) ·N = 0 x ∈ ∂R

, (1)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, ∆ denotes the Laplacian,
∇ denotes the gradient, N is the unit outward normal to R,
αi > 0 are scales, and Jj : R→ R are point-wise functions
of the image I . In vector form, this is equivalent to{

u(x)−A∆u(x) = J(x) x ∈ R
Du(x)N = 0 x ∈ ∂R

, (2)

where A = diag(α111×m, . . . , αn11×m) (an M × M
diagonal matrix), 11×m is a 1 × m matrix of ones,
D denotes the spatial derivative operator, and J =
(J1, . . . , Jm, . . . , J1, . . . , Jm, . . .)

T .

Remark 1. Possible choices for J can include oriented
gradients of the gray-scale value of I , color channels of
I , and the grayscale image Ig . Note oriented gradients
of the grayscale image Ig , for an angles θi are defined as



Iθi(x) :=
∫ θi+∆θ

θi
|∇Ig(x) · eθ′ |dθ′ where eθ indicates a

unit direction vector in the direction of θ, | · | is absolute
value, and ∆θ > 0 is the angle bin size. Unless otherwise
specified, we choose Jj’s to be the color channels and ori-
ented gradients at angles θ = {0, π/8, 2π/8, . . . , 7π/8}.

Remark 2. The PDE (1), for each θ, form a scale space
with scale parameter αi. The PDE is the minimizer of

E(u) =

∫
R

(Jj(x)− u(x))2 dx+ αi

∫
R

|∇u(x)|2 dx.

Thus, uij is a smoothing of Jj and αi controls the amount
of smoothing. Using the Green’s function Kαi , to be in-
troduced in Section 2.2, uij(x) =

∫
R
Kαi

(x, y)Jj(y) dy,
where Kα(x, .) is a weight function. It has weight concen-
trated near x, and therefore defines an effective neighbor-
hood around x in which to aggregate data. An advantage
of solving the PDE (1) is that Kαi , i.e., the neighborhood,
does not need to be computed explicitly, and the PDE can
be solved in faster computational time than integrating the
kernel (Green’s function) directly.

Remark 3. The key property in defining Shape-Tailored Lo-
cal Descriptors is the scale space defined within a region of
arbitrary shape. Any other PDE besides the Poisson-like
PDE (1) could also be a valid choice.

Remark 4. The descriptor u is motivated by its covariance
/ robustness properties. Indeed, the descriptor is covariant
to planar rotations and translations. This follows from the
covariance of the Laplacian. Further, the descriptor is ro-
bust to small deformations of the set R. This can be seen
since locally any deformation is a translation, and the solu-
tion of the PDE can be approximated by taking local aver-
ages, which is robust to small translations. This robustness
is useful for textures since textons (especially in textures in
nature) within regions vary by small deformations.

2.2. Shape-Tailored Descriptor Gradient

We now compute the variation of the descriptor uR as
the boundary ∂R is perturbed. The gradient with respect to
the boundary can then be computed. Since the computations
(proofs of Lemmas and Propositions) are involved, they are
left to Supplementary Materials.

Since u has components uij , we compute the variation
of uij . For simplicity of notation, we suppress ij and write
u. We denote by h, a vector field defined on ∂R. This is a
perturbation of ∂R. Thus, h : S1 → R2 where S1 is the unit
interval. We denote by uh(x) := du(x) · h the variation of
u at x with respect to perturbation of the boundary by h.

We first show that uh satisfies a PDE that is the same as
the descriptor PDE (1) but with a different boundary condi-
tion and forcing term:

Lemma 1 (PDE for Descriptor Variation). Let u satisfy the
PDE (1), h be a perturbation of ∂R, and uh denote the
variation of u with respect to the perturbation h. Then{
uh(x)− αi∆uh(x) = 0 x ∈ R
∇uh(x) ·N = us(x)(hs ·N)−NTHu(x) · h x ∈ ∂R

(3)
where s is the arc-length parameter of ∂R, hs denotes the
derivative with respect to arc-length, and Hu(x) denotes
the Hessian matrix.

One can now use the previous result to compute the gra-
dient of u, ∇cu, with respect to c = ∂R. To do this, we ex-
press the solution of (3) using the Green’s function [13], i.e.,
the fundamental solution, defined on R. The Green’s func-
tion for (3) depends only on the structure of the PDE, i.e.,
left hand sides of (3), and not the particular forcing function
or the right hand side of the boundary condition. Hence the
Green’s function for (3) is the same as the Green’s function
for (1). The Green’s function is defined as follows:

Definition 2 (Green’s Function for (3)). The Green’s func-
tion, Kαi

: R × R → R, for the problem (3) (and (1))
satisfies{
Kαi

(x, y)− αi∆xKαi
(x, y) = δ(x− y) x, y ∈ R

∇xKαi
(x, y) ·N = 0 x ∈ ∂R, y ∈ R

(4)
where ∆x (∇x) is the Laplacian (gradient) with respect to
x, and δ is the Delta function.

The gradient ∇cu(x) can now be computed:

Proposition 1 (Descriptor Gradient). The gradient with re-
spect to c = ∂R of uij(x) (one component of u(x)), which
satisfies the PDE (1), is ∇cuij(x) =[
∇uij · ∇yKαi(x, ·) +

1

αi
Kαi

(x, ·)(uij − Jj)
]
N (5)

where N is the outward normal, ∇y denotes the gradient
wrt the second argument of Kαi

, and Du indicates the spa-
tial derivative of u. We define ∇cu(x) to be the 2 × M
matrix with columns as the components∇cuij(x).

Remark 5. Note that ∇cu(x) is defined at each point of
c for each x, and all the terms in expression (5) are eval-
uated at a point of the curve c(s), which is suppressed for
simplicity of notation.

The Green’s function is not expressible in analytic form
for arbitrary shapes R. We will see that we will need to
only compute region integrals of the gradient multiplied by
a function. This, fortunately, may be expressed as a solution
to a PDE, and thus does not require the Green’s function.
The integrals of descriptor gradients can be computed as:



Proposition 2 (Integrals of Descriptor Gradient). Let f ,g :
R→ RM and u be the Shape-Tailored Descriptor in R (as
in (2)). Define Id[R,u, f ,g] as the quantity

−
∫
∂R

∇cu(x)g(x) ds(x) +

∫
R

∇cu(x)f(x) dx.

where dx and ds are the area and arclength measure. Then

Id[R,u, f ,g]=
(
tr[(Du)TDû] + (u− J)TA−1û

)
N (6)

where N is the outward normal to the boundary of R, tr
denotes matrix trace, and{

û(x)−A∆û(x) = f(x) x ∈ R
Dû(x)N = g(x) x ∈ ∂R

. (7)

We now compute the gradient of a weighted area func-
tional involving Shape-Tailored Descriptors. This result
will be useful for computing gradients of energies designed
for segmentation in Section 3.

Proposition 3 (Weighted Area Gradient). Let F : RM →
R and u : R → RM be the Shape-Tailored Descrip-
tor on R. Define the weighted area functionals as AF =∫
R
F (u(x)) dx. Then

∇cAF = (F ◦ u)N + Id[R,u, (∇F ) ◦ u,0] (8)

where Id is defined as in Proposition 2.

The dependence of the descriptor on the region induces
the terms involving Id in the above gradient. Those terms
depend on û defined in (7), which is the solution to another
PDE defined on R. Thus, when performing a gradient de-
scent ofAF , u and û must be updated as the region evolves.

3. Segmentation of Shape-Tailored Descriptors
To illustrate the use of Shape-Tailored Descriptors

in segmentation, we incorporate the descriptors into the
Mumford-Shah energy [29], and then use the results of the
previous section to compute its gradient.

Let I : Ω → Rk be the image, and J : Ω → RM
be the vector of channels computed from I . We assume
that the region R that we wish to segment and the back-
ground Rc = Ω\R each consist of Shape-Tailored Descrip-
tors that are mostly constant within neighborhoods of R
and Rc following the Mumford-Shah model. We denote
by u : R→ RM (resp., v : Rc → RM ) the Shape-Tailored
Descriptor in region R (resp., Rc) computed from J. Note
that u and v are both computed from J at the same scales
αi. The piecewise smooth Mumford-Shah [29, 41, 40] ap-
plied to u and v is

E(ai,ao, R) =

∫
R

(|u(x)− ai(x)|2 + β|Dai(x)|2) dx

+

∫
Rc

(|v(x)− ao(x)|2 + β|Dao(x)|2) dx+ γL, (9)

non Shape-Tailored Descriptor Segmentation Evolution

Shape-Tailored Descriptor Segmentation Evolution (Minimization ofE)

iteration=0 iteration=100 iteration=150 converged

Figure 2. [Top]: non shape-tailored (traditional) local descriptors
segmented with Chan-Vese. [Bottom]: segmentation of Shape-
Tailored Descriptors with the piecewise constant model.

where ai : R → RM and ao : Rc → RM are functions
that vary smoothly within their respective regions. In other
words, they are roughly constant within local neighbor-
hoods of their respective regions. Note that D indicates the
Jacobian, and the two terms involving D enforce a smooth-
ness penalty on ai and ao. β > 0 controls the size of the
neighborhoods for which the descriptors are assumed con-
stant. β → ∞ implies the whole region is assumed to have
a constant descriptor (as in the simplified piecewise con-
stant Mumford-Shah or Chan-Vese model [8]). Smaller β
assumes that descriptors are constant within smaller neigh-
borhoods. The functions ai,ao are also solved as part of the
optimization problem. Regularity of the region boundary is
induced by the penalty on the length L of ∂R, where γ > 0.

We use alternating minimization in R and ai,ao. One
can optimize for ai and ao given u, v and R to find{

ai(x)− β∆ai(x) = u(x) x ∈ R
ao(x)− β∆ao(x) = v(x) x ∈ Rc

. (10)

Optimization in the region is performed using gradient de-
scent, and the gradient can be computed using results of the
previous section:

∇E = (|u−ai|2−|v−ao|2 +β|Dai|2−β|Dao|2)N+

2(Id[R,u,u− ai,0] + Id[Rc,v,v − ao,0]). (11)

Figure 2 shows the gradient descent of E to segment a
sample texture for the case that ai,ao are assumed con-
stant, i.e., the Chan-Vese model. To illustrate the motivation
for segmentation with Shape-Tailored Descriptors, we show
comparison to non-shape tailored descriptors (choosing the
full image domain Ω to compute descriptors by solving (1)
once on Ω, and using the standard Chan-Vese algorithm to
segment these descriptors).



4. Numerical Implementation
We use level set methods [31] to implement the gradient

descent of E. Discretization follows the standard schemes
of level sets. Let Ψ be the level set function, F be the nor-
mal component of the gradient of energy ∇E, ∆t > 0 be
the step size, and t the iteration number. Steps 2-5 below
are iterated until convergence of Ψ:

1. Initialize Ψ0, R0 = {Ψ0 < 0}, Rc0 = Ω\R0.

2. Solve for the Shape-Tailored Descriptors ut : Rt →
RM , vt : Rct → RM by solving (2) using an iterative
scheme initialized with the Shape-Tailored Descriptors
from the previous iteration (ut−1,vt−1) : Ω → R
(zero for t = 0).

3. Solve for ai,t : Rt → RM , ao,t : Rct → RM by solv-
ing (10) using an iterative scheme with initialization
ai,t−1,ao,t−1. For the piecewise constant model, ai,t
and ao,t are the averages of ut and vt, respectively.

4. Solve for the “hat” descriptors ût : Rt → RM , v̂t :
Rct → RM by solving (7) (with the corresponding
forcing and boundary functions determined by the ar-
guments of Id in (11)) using an iterative scheme with
initialization (ût−1, v̂t−1).

5. Solve for F using (11). Then Ψt = Ψt−1 −
∆tF |∇Ψt−1|, and Rt = {Ψt < 0}, Rct = Ω\Rt.

The multigrid algorithm is used to solve for ut, vt, ai,t,
ao,t, ût, and v̂t. After the first iteration, the update of these
descriptors is fast since the solution changes only slightly
between t− 1 and t. Details of the numerical scheme is left
to Supplementary Materials.

Updates for each of the components of ut,vt can be
done in parallel as the components are independent. Simi-
larly for ai,t,ao,t and ût, v̂t. Using an 12 core processor,
our implementation to minimize E on a 1024×1024 image
roughly takes 18 seconds for the piecewise constant model.
This is with a box tessellation initialization, and the number
of descriptor components is M = 55.

5. Experiments
The first set of experiments tests the ability of Shape-

Tailored Descriptors to discriminate a variety of real-world
textures. To this end, we compare Shape-Tailored Descrip-
tors to a variety of descriptors for segmenting textured im-
ages based on the piecewise constant model. We com-
pare on both a standard synthetic dataset and then on a
dataset of real world images. The second set of experiments
shows sample application of Shape-Tailored Descriptors to
the problem of disocclusions in object tracking where ob-
jects consist of multiple textured regions. We thus use the

piecewise smooth model. This shows that a state-of-the-art
method in object tracking can be improved using Shape-
Tailored Descriptors.

5.1. Robustness to Scale

Before we proceed to the main set of experiments, we
show that Shape-Tailored Descriptors (STLD) are more ro-
bust to choices of scales αi than the non shape-tailored de-
scriptor (non-STLD). The scales control the locality of im-
age data in the computation of u(x). Small αi aggregate
in small neighborhoods, and larger αi aggregates in larger
neighborhoods. Note that non-STLD is the solution of (2)
on the whole domain of the image R = Ω. non-STLD are
computed before segmentation, and never updated.

We experiment on the Brodatz texture dataset (see details
in the next sub-section). These images contain two textures.
We choose five scales α0 + (10, 20, 30, 40, 50) where α0 is
varied. The scales are based on a 256×256 image size, and
the αi’s are multiplied by a factor of (s/256)2 where s is the
size of the smallest dimension. Segmentation is performed
on both STLD and non-STLD using the piecewise constant
model. A typical result is shown in the left of Fig. 3. A
typical profile versus scale is shown on the right of Fig. 3.
non-STLD with small α0 gives the least accurate results.
As α0 increases, the results improve until the “right-scale”
is chosen, and then the results degrade. This behavior is
expected since large neighborhoods mix data from different
textured regions. STLD retains the highest accuracy over
many scales, and degrades slower with increasing scale.

The maximum scale should be chosen based on the size
of the texton. In our experiments in the next sub-sections,
we choose α0 from a training set by creating a profile simi-
lar to Fig. 3. From experiments, 5 scales is a good tradeoff
between accuracy and computational cost.

5.2. Performance of STLD in Segmentation

We test the performance of our new STLD by testing its
ability to discriminate textures on two datasets, and then
compare to other descriptors. Code and datasets will be
available 1.

Datasets: The first dataset is a synthetic data set. It con-
sists of images constructed from the textured images in the
Brodatz dataset. Each is composed of two different textures.
One texture is used as background and the other texture is
masked with a shape from the MPEG 7 shape dataset and
used as the foreground. The dataset consists of 50 images (5
different masks times 10 different foreground/background
pairs). The second dataset consists of images obtained from
Flickr that have two dominant textures. A variety of real
textures (man-made and natural) have been chosen with
common nuisances (e.g., small deformations of the domain,

1https://site.kaust.edu.sa/ac/frg/vision
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Figure 3. Robustness of Shape-Tailored Features to the Choice
of Scale. [Left]: a synthetic image is segmented using low, opti-
mum and large scales for non-STLD and STLD. [Right]: the ac-
curacy of segmentation as the scale of the descriptor is increased.
Larger F-measure indicates a more accurate segmentation.

some illumination variation). The size of the dataset is 256
images. We have hand segmented these images to facilitate
quantitative comparison.

Methods Compared: We compare STLD to various
other recent descriptors that are used for texture segmen-
tation. Descriptors include simple global means used in
Chan-Vese [8], global histograms (Global Hist [28]), lo-
cal means (LAC [23]), more advanced descriptors based
on local histograms in predefined neighborhood sizes (Hist
[30]), SIFT descriptors (SIFT), the entropy profile (Entropy
[17]), and non-STLD. For methods that can be formulated
with convex relaxations, we use the segmentation based on
global convex methods [5], which are more robust than gra-
dient descent. This does not include our method, which
uses gradient descent. We also compare to the hierarchi-
cal segmentation approach (gPb [1]). Note that gPb is not
a descriptor, but uses several descriptors (e.g., Gabor filter-
ing, and local histograms) to build a segmentation after edge
detection. It is also for more general image segmentation,
which is not the goal of our work, but we compare to it since
it uses several descriptors. We also compare to [19] (CB), a
recent texture segmentation method build on gPb, but using
different edge detection.

Parameters: For all the methods, the training images
were used to obtain the best regularity parameter γ, and that
same parameter was used for the rest of the images. For
STLD, the scales α = (5 + (10, 20, 30, 40, 50))× (s/256)2

where s is the size of the image, and θ = 0, π/8, . . . , 7π/8
are kept fixed on the whole datasets. All methods that re-
quire initialization are initialized with a box tessellation pat-
tern that is standard in these types of methods.

Discussion of Qualitative Results: Figure 4 shows sam-
ple visualizations of results on the Brodatz dataset. Figure 5

shows sample results on our Real Texture dataset. Results
are shown only for the top performing methods tested, and
ground truth is displayed. Refer to Supplementary Material
for more visualizations. STLD consistently performs well,
clearly performing better than or at least as good as other
methods. One can see that the boundaries are more accurate
for STLD than non-STLD, and in many cases, the smooth-
ing of data across textured regions also leads to more se-
vere errors beyond overshooting the boundaries. The other
region-based methods many times cannot capture the intrin-
sic texture differences on the datasets. The edge-based seg-
mentation approach of gPb and CB works well detecting
brightness edges, but in many cases does not detect texture
boundaries. This maybe because sometimes texture bound-
aries are faint edges, and many times gPb and CB detect
edges inside textons.

Discussion of Quantitative Results: Table 1 shows
quantitative evaluation. We evaluate the algorithms using
the evaluation protocol developed in [1]. The algorithms
are evaluated both in terms of boundary and region accu-
racy by comparing to ground truth. For all metrics (except
variation of information), a higher value indicates better fit
to ground truth. ODS and OIS are the best values of re-
sults of the algorithm tuned with respect to a threshold on
the entire dataset (ODS) and each image individually (OIS),
and the difference applies only to gPb and CB. Our method
out-performs all methods on all metrics.

5.3. Application of STLD to Disocclusions

We now show application of STLD to the problem of
disocclusion detection in object tracking. One can track
objects in a video by propagating an initial segmentation
across frames, but two difficulties are self-occlusions and
disocclusions of the object. Recently, [43] addressed the
problem of self-occlusions and removed them from the seg-
mentation propagation. This propagation and self-occlusion
removal step does not obtain the full object segmentation
since there may be parts of the object that become disoc-
cluded. [43] detects disocclusions by comparing pixel in-
tensities outside the propagated segmentation to local color
histograms of the propagated segmentation. Pixels that
match the local distributions are classified as disocclusion
and included as part of the object segmentation. Our de-
scriptors are more descriptive than local color histograms
and are thus able to deal with more challenging object ap-
pearances, especially textured objects. Thus, we now use
STLD to perform the disocclusion detection by segmen-
tation of STLD based on the piecewise smooth Mumford-
Shah. This is initialized with the propagation of the segmen-
tation from the previous frame based on [43]. This detects
as disocclusions those pixels that have similar STLDs lo-
cally to the segmentation propagation. Note that a piecewise
constant STLD model of two regions is not adequate since



image ground truth Chan-Vese [8] Hist [30] Entropy [17] gPb [1] non STLD STLD (ours)

Figure 4. Sample Results on the Synthetic (Brodatz) Texture Dataset.

image ground truth Hist [30] Entropy [17] CB [19] gPb [1] non STLD STLD (ours)

Figure 5. Sample Results on the Real Texture Dataset. Segmentation boundaries are displayed for various methods.



Brodatz Synthetic Dataset

Contour Region metrics
F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

STLD 0.30 0.30 0.81 0.81 0.81 0.81 0.88 0.88
non STLD 0.28 0.28 0.78 0.78 0.77 0.77 0.98 0.98
gPb [1] 0.20 0.20 0.56 0.56 0.57 0.57 1.17 1.17
SIFT 0.10 0.11 0.66 0.66 0.66 0.66 1.20 1.20
Entropy [17] 0.09 0.09 0.61 0.61 0.61 0.61 1.17 1.17
Hist-5 [30] 0.12 0.12 0.56 0.56 0.63 0.63 1.09 1.09
Hist-10 [30] 0.11 0.11 0.60 0.60 0.64 0.64 1.01 1.01
Chan-Vese [8] 0.09 0.09 0.61 0.61 0.61 0.61 1.17 1.17
LAC [23] 0.07 0.07 0.66 0.66 0.68 0.68 1.16 1.16
Global Hist [28] 0.10 0.10 0.38 0.38 0.52 0.52 2.41 2.41

Real Texture Dataset
Contour Region metrics
F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

STLD 0.58 0.58 0.87 0.87 0.87 0.87 0.59 0.59
non-STLD 0.17 0.17 0.81 0.81 0.82 0.82 0.77 0.77
gPb [1] 0.50 0.54 0.74 0.84 0.78 0.86 0.80 0.65
CB [19] 0.48 0.52 0.64 0.70 0.66 0.75 0.89 0.78
SIFT 0.10 0.10 0.55 0.55 0.59 0.59 1.44 1.44
Entropy [17] 0.08 0.08 0.74 0.74 0.75 0.75 0.95 0.95
Hist-5 [30] 0.14 0.14 0.66 0.66 0.70 0.70 1.18 1.18
Hist-10 [30] 0.13 0.13 0.66 0.66 0.70 0.70 1.19 1.19
Chan-Vese [8] 0.14 0.14 0.71 0.71 0.73 0.73 1.04 1.04
LAC [23] 0.09 0.09 0.55 0.55 0.58 0.58 1.41 1.41
Global Hist [28] 0.12 0.12 0.65 0.65 0.67 0.67 1.12 1.12

Table 1. Summary of Results on Texture Segmentation
Datasets. Algorithms are evaluated using contour and region met-
rics (see text for details). Higher F-measure for the contour metric,
ground truth covering (GT-cov), and rand index indicate better fit
to the ground truth, and lower variation of information (Var. Info)
indicates a better fit to ground truth. Bold red indicate best results
and bold black indicates second-best results.

Cheetah CowFish Turtle WG Fish
Occlusion Tracker [43] 0.222 0.658 0.493 0.705

STLD 0.937 0.929 0.958 0.909

Table 2. Quantitative Evaluation of Object Tracking Results.
Ground-Truth covering is used to evaluate results (higher means
better fit to ground truth).

the object and background consist of multiple textures.
Results on four challenging videos are shown in Figure 6

and compared against [43]. Table 2 gives quantitative anal-
ysis. The videos contain objects with multiple textures, and
the backgrounds also consist of multiple textures. In all se-
quences, β = 10, the scales αi are chosen the same as in the
previous section. Shape-Tailored Descriptors capture the
textured object of interest accurately. [43] fails to capture
disoccluded regions that are textured. These errors, slight
at first as only small parts are disoccluded between frames,
are then propagated forward and the method fails to seg-
ment the object accurately. Only 4 out of 50 frames are
shown; videos are in Supplementary Materials.

6. Conclusion
We have introduced Shape-Tailored Local Descriptors,

dense descriptors of oriented gradients that are tailored to
arbitrarily shaped regions by the use of shape-dependent

Figure 6. Results on Textured Object Tracking. [Top]: Results of
a state-of-the-art method [43] (red). The method fails early since
the disocclusion detection is based on local color histogram de-
scriptors, which fail to capture textures. [Bottom]: Results of [43]
by replacing local color histograms in disocclusion detection with
STLD based on piecewise smooth Mumford-Shah.

scale spaces. Existing local descriptors that are based on
oriented gradients aggregate data from neighborhoods that
could cross texture boundaries. We have shown that STLD
leads to more accurate segmentation of textures than non-
STLD and other common descriptors. We have shown
this through sample application of these descriptors in a
Mumford-Shah segmentation framework. We also showed
application of these descriptors in object tracking, specifi-
cally addressing the issues of disocclusions. This improves
a state-of-the-art object tracking technique. Although the
STLD proved useful, much work remains in the design of
descriptors for segmentation, in particular to address issues
of shading and shadows, and scale-invariance.
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[33] G. Peyré, J. Fadili, and J. Rabin. Wasserstein active contours.
In Image Processing (ICIP), 2012 19th IEEE International
Conference on, pages 2541–2544. IEEE, 2012. 2

[34] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An
algorithm for minimizing the mumford-shah functional. In
Computer Vision, 2009 IEEE 12th International Conference
on, pages 1133–1140. IEEE, 2009. 2

[35] M. Rousson, T. Brox, and R. Deriche. Active unsupervised
texture segmentation on a diffusion based feature space. In
Computer vision and pattern recognition, 2003. Proceed-
ings. 2003 IEEE computer society conference on, volume 2,
pages II–699. IEEE, 2003. 2

[36] C. Sagiv, N. A. Sochen, and Y. Y. Zeevi. Integrated active
contours for texture segmentation. Image Processing, IEEE
Transactions on, 15(6):1633–1646, 2006. 2

[37] L. Sifre and S. Mallat. Rotation, scaling and deformation
invariant scattering for texture discrimination. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Confer-
ence on, pages 1233–1240. IEEE, 2013. 1

[38] S. Todorovic and N. Ahuja. Texel-based texture segmen-
tation. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 841–848. IEEE, 2009. 2

[39] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense
descriptor applied to wide-baseline stereo. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 32(5):815–
830, 2010. 1

[40] A. Tsai, A. Yezzi Jr, and A. S. Willsky. Curve evolution
implementation of the mumford-shah functional for image
segmentation, denoising, interpolation, and magnification.
Image Processing, IEEE Transactions on, 10(8):1169–1186,
2001. 4

[41] L. A. Vese and T. F. Chan. A multiphase level set frame-
work for image segmentation using the mumford and shah
model. International journal of computer vision, 50(3):271–
293, 2002. 4

[42] A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry. Unsupervised
segmentation of natural images via lossy data compression.
Computer Vision and Image Understanding, 110(2):212–
225, 2008. 2

[43] Y. Yang and G. Sundaramoorthi. Modeling self-occlusions in
dynamic shape and appearance tracking. In Computer Vision
(ICCV), 2013 IEEE International Conference on, pages 201–
208. IEEE, 2013. 2, 6, 8

[44] A. Yezzi Jr, A. Tsai, and A. Willsky. A statistical approach
to snakes for bimodal and trimodal imagery. In Computer
Vision, 1999. The Proceedings of the Seventh IEEE Interna-
tional Conference on, volume 2, pages 898–903. IEEE, 1999.
2

[45] S. C. Zhu and A. Yuille. Region competition: Unifying
snakes, region growing, and bayes/mdl for multiband image
segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 18(9):884–900, 1996. 2


