
Beyond the shortest path : Unsupervised Domain Adaptation by Sampling
Subspaces along the Spline Flow

Rui Caseiro, João F. Henriques, Pedro Martins, and Jorge Batista

Institute of Systems and Robotics - University of Coimbra, Portugal
{ruicaseiro, henriques, pedromartins, batista}@isr.uc.pt

Abstract

Recently, a particular paradigm [18] in the domain
adaptation field has received considerable attention by in-
troducing novel and important insights to the problem. In
this case, the source and target domains are represented
in the form of subspaces, which are treated as points on
the Grassmann manifold. The geodesic curve between them
is sampled to obtain intermediate points. Then a classifier
is learnt using the projections of the data onto these sub-
spaces. Despite its relevance and popularity, this paradigm
[18] contains some limitations. Firstly, in real-world ap-
plications, that simple curve (i.e. shortest path) does not
provide the necessary flexibility to model the domain shift
between the training and testing data sets. Secondly, by us-
ing the geodesic curve, we are restricted to only one source
domain, which does not allow to take fully advantage of the
multiple datasets that are available nowadays. It is then,
natural to ask whether this popular concept could be ex-
tended to deal with more complex curves and to integrate
multi-sources domains. This is a hard problem consider-
ing the Riemannian structure of the space, but we propose
a mathematically well-founded idea that enables us to solve
it. We exploit the geometric insight of rolling maps [30] to
compute a spline curve on the Grassmann manifold. The
benefits of the proposed idea are demonstrated through sev-
eral empirical studies on standard datasets. This novel
concept allows to explicitly integrate multi-source domains
while the previous one [18] uses the mean of all sources.
This enables to model better the domain shift and take fully
advantage of the training datasets.

1. Introduction

In the past few years there has been a growing interest
on the study and development of techniques, (e.g. domain
adaptation, transfer learning [19, 34]) that enable the adap-

tation of classifiers to handle mismatches between the un-
derlying distribution of the training and testing data (also
known as source and target domains respectively).

Applications in computer vision often involve the study
of real world problems where this scenario arises naturally
(e.g. object/face/location recognition [3, 4, 26, 17, 13],
object detection [25, 27], image segmentation [5, 6], dis-
criminative face alignment [32]). The training and testing
data can be acquired using sensors with different charac-
teristics (e.g. image resolution or quality), under diverse
lighting conditions (e.g. indoor controlled illumination vs
outdoor environments) or from different camera viewpoints
(e.g. same object in different poses).

For example, recently several important applications us-
ing domain adaptation were presented: Hoffman et al.
[27] proposed a novel framework for large scale detection
through adaptation (LSDA). They created a fast and effec-
tive large scale detection network by combining adaptation
techniques with deep convolutional models. Fernando et
al. [13] showed that using domain adaptation techniques
is possible to deal with the image variability induced by
large time lags. They presented a framework to automat-
ically associate ancient pictures to modern ones, e.g. lo-
cation recognition and interactive location retrieval. Ho et
al. [26] demonstrated that using domain adaptation tech-
niques is feasible to recognize faces in scenarios where im-
ages corresponding to the source and the target domain are
acquired under varying degree of factors such as illumina-
tion, expression, blur and alignment. Finally, Gopalan et al.
[17] presented a top-down approach through adaptation for
estimating geographic location from images. They obtain
competitive results for this challenging task compared with
some landarmark papers in the field, e.g. [23].
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riques), SFRH/BPD/90200/2012 (Pedro Martins).
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In this work, we explore the limitations of a popular and
important paradigm in the field of domain adaptation [18,
19] and we propose some ideas to improve and extend it.

1.1. Related Work

Over the years, a vast number of paradigms for domain
adaptation (with different variants) have been presented
[36, 34, 18, 31, 16, 15, 28, 33, 12, 1, 14, 19]). Since a full-
fledged description of all paradigms is beyond the scope
of this paper, for the sake of brevity we will only outline
some of the key ideas necessary to introduce the paradigm
in study (please refer to [19] for a excellent survey).

Gopalan et al. [18, 19] proposed a novel concept for
domain adaptation that has received noteworthy attention
(SGF - Subspaces by Sampling Geodesic Flow). Drawing
inspiration from incremental learning, instead of assuming
information on the transformation or features across do-
mains, it is considered that intermediate representations of
data between the source and target domains provide a rele-
vant description of the underlying domain shift. The global
nature of these domains is represented in the form of gen-
erative subspaces, which are treated as points on the Grass-
mann manifold [40]. The geodesic curve between them is
sampled to obtain intermediate points. Then a discrimina-
tive classifier is learnt using the projections of labeled data
onto these subspaces. They deal with multiple sources by
computing the mean on the Grassmann manifold (the mean
is used as the source domain).

Gong et al. [16, 15] proposed the Geodesic Flow Kernel
(GFK). The GFK models the domain shift by integrating
along the geodesic an infinite number of intermediate sub-
spaces. An infinite-dimensional feature vector is formed by
projecting raw features into these subspaces. Inner products
between these vectors give rise to a kernel function that can
be computed over the original feature space in closed-form.
To address the multiple source problem they proposed a
metric called rank of domain that is used to choose one of
them based on how suitable it is to domain adaptation.

Despite their relevance, SGF [18, 19] and GFK [16, 15]
frameworks contain some limitations. Firstly, it is assumed
that the best path to connect the source and target domains is
the geodesic curve (shortest path). However, in real-world
applications, this simple curve does not provide the neces-
sary flexibility to model the domain shift between the train-
ing and testing datasets. Secondly, by using the geodesic
curve, we are restricted to only one source domain, which
does not allow us to fully take advantage of the multiple
training data sets that are available nowadays in the commu-
nity. Particularly in cases where the datasets contain several
and different sources of variation, the subspace given by the
mean point could not be the best option to represent the real
characteristics of all the source domains. In fact in more
challenge cases the path followed by the simple geodesic

generate subspaces that do not allow us to take fully advan-
tage of the training datasets.

One question arises: why does most research in this field
focus on the geodesic curve?

We strongly believe that it is due the underlying Rieman-
nian structure [37] of the Grassman manifold [11, 40, 7]. In
general, the geodesic on a Riemannian manifold is a well
defined and parameterized concept, while the definition of
other more complex curves (e.g. splines) is a hard prob-
lem that has been in continuous study in the mathematics
community. It is then natural to ask whether the popular
SGF [18, 19] could be extended to deal with more complex
curves and to integrate multi-sources.

1.2. Contributions

We propose a mathematically well-founded idea that al-
lows to define a curve between more than two domains (see
Fig. 7). As argued by Gopalan et al. [18, 19]: humans
adapt (better) between extreme domains if they gradually
walk through the path between the domains (e.g. [10]).
Grounding in the same biological principle, we extend the
SGF [18, 19] using smooth polynomial functions described
by splines on the Grassmann manifold (SSF - Subspaces by
Sampling Spline Flow).

We exploit the geometric insight of rolling maps [30, 37]
to compute a spline curve on the Grassmann manifold. An
association of unwrapping methods via local diffeomor-
phisms, and rolling motions (the manifold is rolled, without
slipping or twisting, as a rigid body) enables us to map the
data from the manifold to its affine tangent space at a point,
compute the curve on the latter and then the final curve on
the manifold is obtained by wrapping back while unrolling.
The problem in the tangent space is solved using the De
Casteljau’s algorithm [35], which is a geometric method to
construct smooth splines curves.

We remark that our goal is to improve/extend the SGF
[18, 19] concept, so we used a sampling strategy along the
spline to obtain intermediate subspaces. We believe that our
idea could be propagated to other works, i.e. GFK [16, 15]
(integrate all the points along the spline curve). However, to
the best of our knowledge this is not possible in the moment
and requires further research in differential geometry.

As we said before there exist a vast number of different
paradigms and variants for domain adaptation. For exam-
ple, using other paradigms several different variants have
been proposed to deal with multi-sources (e.g. [28]). In
order to mantain some focus in our work and for the sake
of brevity the proof of concept is done evaluating directly
against the SGF [18, 19], i.e. we do not compare with
other multi-source techniques . We believe that is reason-
able given the popularity of the SGF in the community.



Figure 1. This image illustrates the SSF (Sampling Spline Flow)
versus the SGF (Sampling Geodesic Flow) [18, 19]. The SGF
deals with multiple sources by computing the respective mean and
then a geodesic curve is defined between the mean-source and the
target domain. The SSF uses smooth polynomial functions de-
scribed by splines on the manifold to interpolate between all the
sources and the target domain. The spline can be computed as an
approximation (the curve passes close to the intermediate points)
or exact spline [35]. The goal is to compute a curve able to extract
more meaningful information from the sources.

2. Problem Description

In this section we outline the procedure to perform
recognition under domain shift presented in [18, 19]. We
adapted the formulation to include multi-sources.

We assume m source domains (i = 0, ..,m− 1) and one
target domain (i = m). We denote the source data (labeled)
as Xi = {xij}Ni

j=1 ∈ <D (i = 0, ..,m− 1).
Let yij ∈ {1, 2, 3, ...C} be the label of xij (C classes).

The data from the target (unlabeled) is denoted as Xi =
{xij}Ni

j=1 ∈ <D (i = m), corresponding to the same C
classes. TheD×d subspaces Si are obtained using principal
component analysis on Xi (i = 0, ..,m), (d < D) [18, 19].

The d-dimensional subspaces in <D will be treated as
points in the Grassmann manifold Gd,D.

The intermediate subspaces are obtained by sampling
along the curve on the manifold, i.e. the geodesic curve
as in SGF [18, 19] or a spline curve SSF (our work).

Let S′ refer to a collection ofm′ subspaces including the
m sources, the target and the intermediate subspaces. Let
x′ij represent the dm′ × 1 vector formed by concatenating
the projection of xij onto all subspaces in S′ [18, 19].

A discriminative classifier is trained using as input
D(X ′, Y ′), where X ′ is the dm′ × N labeled data matrix
(from sources) and Y ′ is the respective N × 1 label’s vec-
tor. The number of columns (N ) of the matrix X ′ depend
on the number of sources used to train the classifier, i.e. the
curve and the respective set of subspaces S′ are obtained
using all the m source domains, but we can use as input to
the classifier only the data from some source domains.

The procedure to build the classifier is the same that was
used in SGF (please refer to [18, 19] for more technical de-
tails).

3. Rolling Maps on Riemannian Manifolds
The mathematical description of rolling motions of

smooth manifolds has attracted some attention since the un-
derstanding on how to perform such virtual motions allows
to estimate interpolating curves, solve optimal control and
other complex problems on manifolds [30, 37, 38, 8]. Un-
like other techniques for solving interpolation problems on
manifolds, the association of rolling motions with unwrap-
ping and wrapping technics, results in curves defined in ex-
plicit form.

Invoking the Whitney’s theorem [21]: for a proper
choice of n ≥ k, a k-dimensional Riemannian manifold
can be isometrically embedded into some Euclidean space
<n. Assuming the embedding space, rolling motions can
be defined as rigid motions subject to specific constraints
i.e. holonomic (rolling conditions) and nonholonomic (no-
slip , no-twist conditions) [30, 37, 8].

Let M and M̄ be two oriented connected Riemannian
manifolds with equal dimension both embedded in the same
Euclidean space <n and let M̄ be the stationary manifold.
The rolling motion describes howM rolls over M̄ without
slip and twist [30, 37, 8].

The action of the special Euclidean group SEn = SOnn
<n on <n is used to describe the rigid motion [30, 8].
The semi-direct product of the special orthogonal group
(SOn, (·)) by the additive group (<n, (+)) is represented
by the symbol n.

It is considered that SOn ◦ P ⊂ M, for any P ∈ M,
i.e. SOn acts transitively onM. Let R ∈ SOn be a rotation
and s ∈ <n be a translation. Elements h ∈ SEn are usually
defined by pairs h = (R, s).

The action of SEn on <n is represented as [30, 8] :

SEn×<n → <n, (h,P) 7→ h◦P = R◦P+s. (1)

Henceforth, the tangent space at P ∈ M is denoted by
TPM and (TPM)⊥ represents the normal space (with re-
spect to the Euclidean metric) [30, 8]. A rolling motion is
characterized by a rolling map, which is a curve in SEn that
fulfills some requirements.

In this paper we consider the special case when M̄ is the
affine tangent space V ∼= TP0M (at the point P0 ∈ M).
The k-dimensional V is also a subspace embedded in <n

[30, 8].
A rolling map, describing howM rolls upon M̄, without

slip or twist, along a smooth rolling curve α : [0, T ]→M,
is a smooth map (formal definition as given by Sharpe [37])

h : [0, T ]→ SEn = SOnn<n t 7→ h(t) = (R(t), s(t)),
(2)



Figure 2. The manifoldM rolls upon M̄ = V ∼= TP0M along a rolling geodesic curve α : [0, T ]→M. The case of the 2-dimensional
sphere provides a nice physical intuition of the problem. When the sphere rolls over V it is forced to remain tangent to it by the holonomic
constraints. The absence of sliding and spinning is the result of the nonholonomic conditions. β(t) : [0, T ]→ V corresponds to the spline
curve resulting of the De Casteljau’s algorithm [35] on the tangent space (Euclidean space). γ(t) : [0, T ] →M corresponds to the spline
curve on the manifold (obtained by wrapping back while unrolling the curve β(t)) [38, 8]. This image was adapted from the original
presented in [38, 8].

satisfying the holonomic (rolling) and nonholonomic con-
straints (no-slip and no-twist).

The curve αdev : [0, T ] → M̄ given by αdev(t) = h(t) ◦
α(t) is called the development curve of α(t) on M̄ (please
refer to [30, 8] for more details).

4. Compute Spline Curves on a Riemannian
Manifold

Let S0, ...,Sm ∈ M, be a set of (m + 1) domains
where Sm represents the target domain and the others
are the source domains. Recall that in the domain adap-
tation problem the domains are treated as points on the
Grassmann manifold. The idea is to define a spline curve
γ(t) : [0, T ]→M using those (m+ 1) points.

Let T be a positive real number and 0 = t0 < t1 <
... < tm = T a partition of the time interval [0, T ]. The
source domains S0, ...,Sm−1 ∈ M must be ordered such
that γ(ti) = Pi for the times ti, where 0 = t0 < t1 <
... < tm−1 with γ(t0 = 0) = P0, i.e. P0, ...,Pm−1 ∈ M
are the ordered source domains. The target domain Sm is
represented as γ(tm = T ) = Pm = Sm.

The problem is solved using an algorithm based on un-
wrapping methods via, local diffeomorphisms, and rolling
motions (the manifold is rolled, without slipping or twist-
ing, as a rigid body) [30, 8]. This combined technique
projects the data fromM onto V ∼= TP0

M (the goal is to
project onto an Euclidean space) while mitigates the distor-
tions normally associated with the simple projections done
by using local diffeomorphisms only [30, 8].

In order to compute the curve we need to identify
the affine tangent space V with TP0

M [30, 8]), then we
define an orthonormal coordinate system for the tangent

space and is computed a minimal (vectorial) representation
q0, ...,qm ∈ <w of Q0, ...,Qm [30, 8]). Since the TP0

G is
an Euclidean space and is the space of symmetric matrices,
there are only w = D(D + 1)/2 independent coefficients.
An orthonormal coordinate system for TP0

G is defined us-
ing this minimal representation [30, 8].

The vectorial representation q0, ...,qm ∈ <w is used to
compute the spline curve on the tangent space (Euclidean
space) β(t) : [0, T ]→ V using the De Casteljau’s algorithm
(please refer to [35] for the implementation details) which
is a geometric method to construct smooth splines curves.
The spline can be computed as an approximation (the curve
passes close to the intermediate points) or exact spline.
Then the final curve on the manifold (γ(t) : [0, T ] → M)
is obtained by wrapping back while unrolling [30, 8].

Rolling/Unwrapping algorithm (refer to [30, 8]) :

1. Compute a curve α : [0, T ]→M joining P0 (t = 0) to Pm

(t = T ) [30, 8].

2. RollM over V along the curve α(t), using the rolling map
h(t). This generates a smooth curve αdev : [0, T ]→ V join-
ing the points Q0 = P0 and Qm = h(t) ◦Pm [30, 8].

3. Use a local diffeomorphism φ : M ⊃ Ω → V , with
P0 ∈ Ω [29], between M and the affine tangent space V ,
satisfying φ(P0) = P0, Dφ(P0) = Id, and project the
data P1, ...,Pm−1 to V while rolling along α. This com-
bined technique of rolling and unwrapping projects the data
P1, ...,Pm−1 onto V to produce Q1, ...,Qm−1, given by
[30, 8]

Qi = φ((h(ti)◦Pi)−αdev(ti)+P0)+αdev(ti)−P0. (3)



4. Identify the affine tangent space V with TP0M, define an or-
thonormal coordinate system for the tangent space and com-
pute a minimal (vectorial) representation q0, ...,qm ∈ <w

of Q0, ...,Qm [30, 8].

5. Compute the spline curve β(t) : [0, T ] → V using the data
q0, ...,qm and the De Casteljau’s algorithm [35].

6. Wrap the curve β(t) : [0, T ] → V back onto the manifold
using the formula :

γ(t) := h(t)−1(φ−1(β(t)−αdev(t)+P0)+αdev(t)−P0).
(4)

5. Rolling Maps for Grassmann Manifolds
In this section we present the rolling maps for the Grass-

mann [30, 8]. We focus on the kinematic equations for
rolling the Grassmann on the affine tangent space at a point.

These equations were derived using the general defini-
tion of rolling and the respective holonomic and nonholo-
nomic constraints. Remarkably, they are particularly simple
since Hupper et al. [30, 8] managed to adapt the rolling in
order to preserve the matrix struture of the Grassmann.

The Grassmann manifold of all d-dimensional subspaces
of <D is denoted as Gd,D (simplified notation = G). In gen-
eral this manifold is represent using a D × d matrix, how-
ever in order to define the Rolling maps for the Grassmann,
Hupper et al. [30], used a special representation for this par-
ticular manifold.

The Grassmann manifold is defined as a particular sub-
set of the symmetric matrices SymD, i.e. a d-dimensional
subspace in <D is uniquely associated with an (D×D) or-
thogonal projection matrix H = HT of rank d [30, 8, 24],

Gd,D := {H ∈ SymD | H2 = H, rank(H) = d}. (5)

Note : in Section 6 we will explain more details about
this operator [24].

The space of SymD, equipped with the metric induced
by the Frobenius norm (Euclidean metric for matrices) is
used to embed Gd,D and the affine tangent space at a point.

The rolling motion is described by the action of the group
G = SOD n SymD on S ∈ SymD by the rule [30, 8]

G× SymD → SymD, ((Θ, X),S) 7→ ΘSΘT +X,
(6)

where Θ ∈ SOD and X ∈ SymD.
Given Θ(t) ∈ SOD satisfying Θ(0) = I (identity ma-

trix) and α(0) = P0, a smooth curve α : [0, T ] in G is de-
fined as [30, 8]

t→ α(t) = Θ(t)P0ΘT (t). (7)

In this moment the objective is to determine conditions
on the mapping [30, 8]

h : [0, T ]→ SOD n SymD, t→ h(t) = (ΘT (t), X(t)),
(8)

so that it is a rolling map of G over the affine tangent space
at P0 ∈ G, along the curve α(t), and development curve
αdev(t) = h(t) ◦ α(t) is given by [30, 8]

αdev(t) = ΘT (t)α(t)Θ(t) +X(t) = P0 +X(t). (9)

Note that ΘSΘT ∈ G for any S ∈ G.
Assuming the base point P0 equal to

P0 =

[
Id 0
0 0

]
, (10)

, the kinematic equations are as follows (where Θ(0) =
I, X(0) = 0) [30, 8]

Ẋ(t) =

[
0 Ψ(t)

ΨT (t) 0

]
, Θ̇(t) = Θ(t)

[
0 −Ψ(t)

ΨT (t) 0

]
.

(11)
A control function can be defined using the (matrix)

function Ψ: < → <d×(D−d). The rolling curve can be cho-
sen using Ψ. Assuming Ψ(t) = Ψ constant the kinematic
equations can be computed explicitly as [30, 8]

Θ(t) = exp

(
t

[
0 −Ψ

ΨT 0

])
, X(t) = t

[
0 Ψ

ΨT 0

]
,

(12)
and, in this situation, the rolling α and the development αdev
curves are geodesics in G and in the affine tangent space,
respectively [30, 8].

The exponential of matrices with a special block struc-
ture as in eq. (12) can be computed explicitly [30, 8]. Us-
ing this fact, Θ can be given by (where B is represented by
a series expansion) [30, 8]

Θ(t) =

[
(Ik −BBT )1/2 −B

BT (In−k −BTB)1/2,

]
, (13)

with B := Ψ
sin(ΨT Ψ)1/2

(ΨT Ψ)1/2
.

Given the initial α(0) = P0 and final α(T ) = Pm

points of the geodesic curve defined by α(T ) = Pm =
Θ(T )P0ΘT (T ) we need to calculte the matrix Ψ [30, 8].

This is not a simple problem, since generally the matri-
ces P0 and Pm are not invertible [30, 8]. However, Sri-
vastava et al. [39] proposed an elegant solution to this task
(refer to [39] for more details).

All the mathematics involving rolling can be easily re-
calculated if the base point is not the particular point P0

used above [30]. Indeed, since any other point P ∈ G
is related to the point P0 by P = QP0Q

T , for some
Q ∈ SOD, it also happens that if (X(t),Θ(t)) is the so-
lution of the kinematic equations (above) for the base point
P0, then (QX(t)QT , QΘ(t)QT ) is the solution of the kine-
matic equations for rolling the Grassmann manifold when
the base point is P = QP0Q

T [30].



6. Projection Operator and its Inverse
As we have said before, in general the Grassmann man-

ifold Gd,D is represented using a D × d matrix, which cor-
responds to the subspaces computed using PCA. However
in order to simplify the Rolling maps for the Grassmann,
Hupper et al. [30] used a different representation.

The Grassmann manifold is defined as a particular subset
of the symmetric matrices SymD, i.e. a point in Gd,D is
uniquely associated with an (D×D) orthogonal projection
matrix H = HT of rank d (idempotent symmetric matrices
with rank d) {H ∈ Symn | H2 = H, rank(H) = d}
[30, 24]. This projection embedding has been previously
applied in other applications, such as meanshift [9], sparse
coding [22] or subspace tracking [39].

Two questions arise : how to define this projection oper-
ator and how to map back to Gd,D.

After the sampling along the spline curve on the mani-
fold we need to map back the points from the space {H ∈
Symn | H2 = H, rank(H) = d} to Gd,D in order to ap-
ply the subspaces to the data. To this end it is necessary
to define the respective function as a diffeomorphism i.e. a
one-to-one, continuous, differentiable mapping with a con-
tinuous, differentiable inverse

Following the Helmke’s book [24] : if Hd(D) denotes
the set of all Hermitian projection operators H of <D with
rank d ([24] p. 9)

H = HT , H2 = H, rank(H) = d (14)

then, by the spectral theorem, every H ∈ Hd(D) is of the
form H = X · XT for a real D × d-matrix X satisfying
XTX = Id.

The map f : Hd(D) → G(d,D) ([24] p. 9) is a bijec-
tion. Let Λ = diag(λ1, ..., λD) with λ1 ≥ λ2 ≥ ... ≥ λD
be a real diagonal matrix and let ([24] p. 44)

M(Λ) = {Θ′ΛΘ ∈ <D×D|ΘΘ′ = ID}, (15)

denote the set of all real symmetric matrices H = Θ′ΛΘ
orthogonally equivalent to Λ. Thus M(Λ) is the set of all
symmetric matrices with eigenvalues λ1, ..., λD. For

Λ =

[
Id 0
0 0

]
, (16)

M(Λ) coincides with the set of all rank d symmetric pro-
jection operators H of <D ([24] p. 63).

Following the Lemma 2.5 in ([24] p. 63), with this condi-
tion the isospectral manifold M(Λ) is diffeomorphic to the
Grassmann Gd,D. To any orthogonal D×D matrix ([24] p.
63)

Θ =

[
Θ1

Θ2

]
Θ1 ∈ <d×D Θ2 ∈ <(D−d)×D (17)

we associate the d dimensional vector-space VΘ1 ⊂ <D,
which is generated by the d orthogonal row vectors of Θ1.

This defines a map ([24] p. 63)

f : M(Λ) → G(d,D) Θ′ΛΘ 7→ VΘ1

(18)
f is a bijection and a diffeomorphism ([24] p. 63). In fact,
asM(Λ) is the set of rank d symmetric projection operators,
f(H) ∈ Gd,D is the image of H ∈M(Λ) ([24] p. 64).

Let X ∈ <D×d be such that the columns of X gen-
erate a d-dimensional linear subspace V ⊂ <D. Then
H = X(X ′X)−1X ′ is the Hermitian projection operator
([24] p. 64).

7. Experimental Results
The proposed method (SSF) was evaluated for unsu-

pervised domain adaptation in the context of visual object
recognition [18, 19, 16, 36].

We compare our approach with the SGF [18] in which
the intermediate subspaces are sampled from a geodesic
curve and the multi-source domain problem is solved us-
ing the mean of all source domains. In order to mantain
some focus in our work and for the sake of brevity the
proof of concept is done evaluating directly against the SGF,
i.e. we do not compare with other multi-source techniques.
The main goal is to demonstrate that by considering more
complex curves and with the integration of multi-source do-
mains we obtain a paradigm more flexible that provides bet-
ter results. This comparison, serve principally as a proof of
concept, which we hope reasonable given the novelty of the
technique.

We divided the experiments in two modes:
Mode 1: SSF - the spline is defined using all sources / the
classifier is trained using the data of all sources ; SGF - the
source used to define the geodesic is the mean of all sources
/ the classifier is trained using the data of all sources.
Mode 2: SSF - the spline is defined using all sources /
the classifier is trained using only the data available in the
Source 1 ; SGF - the source used to define the geodesic is
the Source 1 / the classifier is trained using only the data
available in the Source 1.

Across all the experiments we used 10-15 intermediate
points (in each experiment was used a equal number of in-
termediate points for SGF and SSF cases).

We used in our tests on the task of visual object recogni-
tion the dataset of [36] that has 31 different object categories
collected under three domain settings (4652 images in to-
tal): Amazon (images downloaded from online merchants),
DSLR (high-resolution images by a digitalSLR camera),
and Webcam (low-resolution images by a web camera).
The Amazon dataset contains images acquired in highly-
controlled conditions (studio illumination). The high reso-
lution images of the DSLR dataset were acquired in a home



Figure 3. Images examples from the four datasets (Amazon, Caltech-256, Webcam, DSLR) used (Monitor category).

SSF - Spline (Our) SGF - Geodesic [18]
Target (P3) Source 1 (P0) Source 2 (P1) Source 3 (P2) Mode 1 Mode 2 Mode 1 Mode 2

(Source = Mean) (Source = Source 1)
Amazon (A) DSLR Webcam Caltech 48.2 40.9 Mean (C , D , W) 31.2
Amazon (A) Webcam DSLR Caltech 46.1 37.0 34.5 28.4
Caltech (C) DSLR Webcam Amazon 44.9 38.5 Mean (A , D , W) 28.4
Caltech (C) Webcam DSLR Amazon 43.1 31.9 31.9 22.8
DSLR (D) Amazon Caltech Webcam 62.1 42.8 Mean (A , C , W) 31.0
DSLR (D) Caltech Amazon Webcam 60.8 43.1 44.1 32.8

Webcam (W) Caltech Amazon DSLR 65.8 41.5 Mean (A , C , D) 30.7
Webcam (W) Amazon Caltech DSLR 65.1 40.9 45.2 32.0

Table 1. Classification accuracies on visual object recognition (Data 1).

environment (natural lighting) using a digital SLR cam-
era. The lower resolution images of the Webcam dataset
were taken in a analogous ambience as the DSLR ones, but
include color and white balance artifacts as well substan-
cial noise. The DSLR and Webcam datasets have roughly
around 30 instances for a category whereas the Amazon has
a average of 90 instances for each category.

The well-known Caltech-256 [20] was also included as
a fourth dataset. It contains images of 256 object classes.

We followed a standard protocol for extracting and cod-
ing image features to represent the objects and for the
train/test procedure [18, 19, 16, 36]. All images were re-
sized to the same dimensions and converted to grayscale.
We extracted 64-dimensional SURF features [2], with a
fixed blob response threshold. The images were encoded
using a codebook of size 800 generated by k-means clus-
tering on a subset of Amazon database. Then for all do-
mains the images were encoded by a 800 bin histogram.
The histograms were normalized and then z-scored in or-
der to each dimension have zero mean and unit standard
deviation. From this data (D = 800) the subspaces were
computed using PCA. Across the experiments the value of
d was set to 175-225 and we used 10-15 intermediate points
(in each experiment was used a equal value d and number of
intermediate points for SGF and SSF cases). The accuracy
is reported over 20 different trials.

We divided the experiments on the visual object recog-
nition task in two parts caracterized by different settings of
data used : Data 1: we use all the four datasets (Amazon,
Caltech256, DSLR, Webcam) and we extracted 10 classes

common to them : Backpack, Touring-Bike, Computer-
Keyboard, Laptop-101, Computer-Monitor, Computer-
Mouse, Calculator, Head-Phones, Coffee-Mug and Video-
Projector. There are in total 2533 images (8 to 151 samples
per category per dataset). Data 2: we use three datasets
(Amazon, DSLR, Webcam) and we extracted all the 31
classes The results are reported in Tables 1 and 2.

An important step in our algorithm is to define an or-
der for the sources (P0, ....,Pm−1). To address this task
we used a metric called rank of domain proposed in [16].
This metric can be used to order the source domains based
on how suitable they are to domain adaptation. For exam-
ple, when the target is the Amazon (P3) the best source is
the Caltech (P2) followed by the Webcam (P1) and by the
DSLR (P0) (see Table 4 [16]).

It can be seen that in Mode 1 the results empirically
demonstrate the claims of our work. The benefits of the pro-
posed SSF over the SGF are significative. Even in Mode 2,
our paradigm outerperforms the SGF, since the data con-
tained in the Source 1 is better adapted using the subspaces
sampled from the spline. The spline allows to explicitly in-
tegrate the multi-source domains while the SGF uses the
mean of all the sources. This enables to model better the
domain shift and take fully advantage of all the trainning
datasets.

8. Conclusions and Future Work
To the best of our knowledge, this is the first work that

proposes an avenue that allows to extended the popular
paradigm proposed by Gopalan et al. [18, 19] (SGF) to deal



SSF - Spline Curve (Our) SGF - Geodesic Curve [18]
Target (P2) Source 1 (P0) Source 2 (P1) Mode 1 Mode 2 Mode 1 Mode 2

(Source = Mean) (Source = Source 1)
Amazon (A) DSLR Webcam 40.2 36.1 Mean (D , W) 29.0
Amazon (A) Webcam DSLR 37.5 31.4 31.5 27.5
DSLR (D) Amazon Webcam 49.6 29.5 Mean (A , W) 22.4
DSLR (D) Webcam Amazon 37.3 45.9 33.9 40.2

Webcam (W) Amazon DSLR 47.8 38.1 Mean (A , D) 32.8
Webcam (W) DSLR Amazon 44.6 43.3 37.5 38.6

Table 2. Classification accuracies on visual object recognition (Data 2).

with polynomial curves on the Grassman manifold and to
integrate multi-source domains. We proposed a mathemati-
cally well-founded idea to do it by exploiting the geometric
insight of rolling maps [30, 37] to describe smooth poly-
nomial functions using splines (SSF). Our paradigm pro-
vides more flexibility to model the domain shift between
the train/test datasets, and allow us to fully take advantage
of the multiple training datasets that are available nowdays.

We believe that the proposed SSF could be useful to
solve several other problems in vision. Recently, the
Gopalan’s work (SGF) [18, 19] has been also used with
sucess for estimating geographic location from images
[17, 23] and for unconstrained face recognition [26]. The
SSF can be a promising solution to improve those challeng-
ing problems.
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