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Abstract

A graph-based system to simulate the movements and in-

teractions of multiple random walkers (MRW) is proposed

in this work. In the MRW system, multiple agents traverse

a single graph simultaneously. To achieve desired interac-

tions among those agents, a restart rule can be designed,

which determines the restart distribution of each agent ac-

cording to the probability distributions of all agents. In par-

ticular, we develop the repulsive rule for data clustering. We

illustrate that the MRW clustering can segment real images

reliably. Furthermore, we propose a novel image cosegmen-

tation algorithm based on the MRW clustering. Specifically,

the proposed algorithm consists of two steps: inter-image

concurrence computation and intra-image MRW clustering.

Experimental results demonstrate that the proposed algo-

rithm provides promising cosegmentation performance.

1. Introduction

A random walk, a process in which a walker moves ran-

domly from one node to another in a graph, can be used to

analyze the underlying data structure of the graph. Many

properties of a random walk are quantifiable algebraically

based on graph theory [6], and can be solved by optimiza-

tion tools efficiently. Therefore, random walks have been

used in various graph-based learning tasks, including data

mining [4, 35] and interactive image segmentation [11, 15].

A study in [18, 19] showed that spectral clustering [26] is

also related to the random walk theory.

Whereas the conventional random walk theory describes

the movements of a single walker (or agent), we propose

a system of multiple random walkers (MRW) to simulate

multiple agents on a graph simultaneously. Those agents

traverse the graph according to a transition matrix, but they

also interact with one another to achieve a desired goal. Our

MRW system can support a variety of interactions by em-

ploying different restart rules. In particular, we develop the

repulsive restart rule for data clustering. With this restart

rule, as the random process continues, multiple agents repel

one another and form their own dominant regions. Eventu-

ally, the power balance among the agents is achieved, and

their distributions converge. By comparing the stationary

distributions, clustering can be achieved. We demonstrate

that this MRW process can cluster point data and segment

real images reliably.

Moreover, we apply the proposed MRW system to the

problem of segmenting similar images jointly. Recently, at-

tempts to extract common foreground objects from a set of

similar images have been made. This approach, called co-

segmentation, was first addressed by Rother et al. [23] and

has been researched actively [20, 12, 14, 3, 5, 30, 7, 24, 31].

Compared with segmenting each image independently, it is

advantageous to delineate similar objects from multiple im-

ages. However, since repeating image features do not al-

ways imply the most important and informative parts of a

scene, cosegmentation is still a challenging vision problem.

For cosegmentation, we introduce the notion of concur-

rence distribution, which represents the similarity of each

node in an image to foreground objects in the other images.

Then, the MRW clustering is performed by incorporating

the concurrence distribution into the repulsive restart rule.

Experimental results show that the proposed MRW algo-

rithm improves the segmentation accuracy significantly, as

compared with recent state-of-the-art cosegmentation tech-

niques [14, 30, 24, 31], on the iCoseg dataset [3].

The rest of this paper is organized as follows: Section 2

reviews related work. Section 3 proposes the MRW system

for clustering. Section 4 discusses the characteristics of the

MRW clustering with image examples. Sections 5 develops

the MRW cosegmentation algorithm, and Section 6 presents

experimental results. Section 7 concludes this work.

2. Related Work

Data Clustering: The task of partitioning data into disjoint

subsets based on the underlying data structure is a primi-

tive activity to perceive information. The volume of data

that people produce and process has grown rapidly, and dis-

covering meaningful information from big data has become

an essential subject. Since robust clustering is difficult to



achieve because of noise and outliers in real-world data, var-

ious approaches have been attempted [32, 25].

Many phenomena in social and biological systems, as

well as engineering problems, can be modelled with graphs,

where nodes represent system elements and edges connect

the elements to represent their relationships. Graph-based

clustering hence has drawn much attention, and numerous

algorithms have been proposed [26, 21, 34, 16, 29].

Image Cosegmentation: Rother et al. [23] first formulated

the cosegmentation problem by incorporating the inter-

image consistency into a Markov random field (MRF) en-

ergy function. Instead of the l1-norm, Mukherjee et al. [20]

used the l2-norm to measure the similarity between fore-

ground histograms. Hochbaum and Singh [12] developed a

reward model satisfying the submodular condition and thus

solved it efficiently using the graph cuts. These early tech-

niques have been proposed to extract almost identical ob-

jects from different backgrounds.

Joulin et al. [14] considered the cosegmentation of fore-

ground objects with more appearance variations, by for-

mulating the cosegmentation as a discriminative clustering

problem. Batra et al. [3] developed an interactive coseg-

mentation algorithm, which intelligently suggests to the

user where to scribble next. They also made a cosegmen-

tation dataset with manually-annotated groundtruth, called

iCoseg, publicly available.

Collins et al. [7] used the random walk algorithm in [11]

as a core segmentation tool, and achieved the cosegmenta-

tion by enforcing the constraint that foreground histograms

should match one another. The proposed algorithm is also

based on a random walker process. However, while [11]

considers whether a single walker reaches a foreground or

background seed first, the proposed algorithm employs mul-

tiple random walkers, who interact one another, and derives

segmentation results from their stationary distributions.

Recently, several cosegmentation algorithms have been

proposed to achieve robust correspondence between fore-

ground objects. Chang et al. [5] used saliency models to

exclude regions that infrequently appear across images. Vi-

cente et al. [30] generated object proposals from each im-

age, and used a random forest classifier to score a pair of

proposals from different images. Rubio et al. [24] devel-

oped a region matching method to establish the correspon-

dences between common objects among images. Wang et

al. [31] used a functional map to represent consistent ap-

pearance relations between a pair of images, and jointly op-

timized the segmentation maps of all images.

3. Multiple Random Walkers

This section introduces the notion of MRW. We first de-

scribe the conventional random walk, which is a Markov

process of a single random walker (or agent). We then pro-

pose the MRW system to simulate movements and interac-

tions of multiple agents on a graph.

3.1. Single Random Walker

Let G = (V,E) be an undirected, weighted graph. The

node set V consists of data points xi, i = 1, . . . , N . Edge

eij in the edge set E connects xi and xj . Also, let W ∈
R

N×N be a symmetric matrix, in which the (i, j)th element

wij is the weight of eij , representing the affinity between

xi and xj . Typically, wij is defined as

wij =

{

exp
(

−
d2(xi,xj)

σ2

)

if eij ∈ E,

0 otherwise,
(1)

where d is a dissimilarity function and σ2 is a scale param-

eter.

A random walker travels on the graph G. The transition

probability aij that the walker moves from node j to node

i is obtained by dividing wij by the degree of node j, i.e.,

aij = wij/
∑

k wkj . In other words, the transition matrix

A = [aij ] is computed by normalizing each column of the

affinity matrix W. Let p(t) = [p
(t)
1 , · · · , p

(t)
N ]T be a col-

umn vector, in which p
(t)
i denotes the probability that the

walker is found at node i at time instance t. We then have

the temporal recursion

p(t+1) = Ap(t). (2)

If the graph has a finite number of nodes and is fully con-

nected, A is irreducible and primitive [13]. Then, the

walker has a unique stationary distribution π, satisfying

π = Aπ, and π = limt→∞ p(t) regardless of an initial

condition p(0). The stationary distribution π conveys use-

ful information about the underlying data structure of the

graph, and it is thus exploited in vision applications [11, 10].

RWR [22] is a generalization of the random walk, in

which the walker is compelled to return to specified nodes

with a restart probability ǫ. The RWR recursion is

p(t+1) = (1− ǫ)Ap(t) + ǫr, (3)

where r = [r1, r2, · · · , rN ]T is the restart distribution with
∑

i ri = 1 and ri ≥ 0. With probability 1 − ǫ, the walker

moves ordinarily as in (2). On the other hand, with proba-

bility ǫ, the walker is forced to restart with the distribution

r. When ri = 1 and rj = 0 for all j 6= i, the stationary

distribution of the RWR represents the affinity of each node

to the specific node i. This property has been exploited in

image segmentation [15] and data mining [22].

We note that RWR can be interpreted as the ordinary ran-

dom walk as well. The RWR recursion in (3) can be rewrit-

ten as

p(t+1) = (1− ǫ)Ap(t) + ǫBp(t) = Ãp(t), (4)



where B is a square matrix, all columns of which are equal

to r, and Ã = (1 − ǫ)A + ǫB is the equivalent transition

matrix. There exists i such that ri > 0. Thus, bii > 0 and

ãii > 0. It is known in matrix analysis [13] that an irre-

ducible matrix with at least one positive diagonal elements

is primitive. Therefore, the RWR recursion yields a unique

stationary distribution regardless of an initial condition, as

long as the graph is connected (it does not need to be fully

connected).

3.2. MRW

The conventional random walk in (2) or (3) describes

the movements of a single agent. In contrast, we consider

multiple agents who share the same graph and affect the

movements of one another.

Suppose there are K agents on a graph. Let p
(t)
k denote

the probability distribution of agent k at time t. Similar to

(3), random movements of agent k are governed by

p
(t+1)
k = (1− ǫ)Ap

(t)
k + ǫr

(t)
k , k = 1, . . . ,K. (5)

Thus, with probability 1 − ǫ, agent k travels on the graph

according to the transition matrix A, independently of the

other agents. However, with probability ǫ, agent k visits

the nodes according to the time-varying restart distribution

r
(t)
k = [r

(t)
k,1, · · · , r

(t)
k,N ]T .

We can make the agents interact with one another, by

determining the restart distribution as

r
(t)
k = (1− δt)r

(t−1)
k + δtφk(P

(t)) (6)

where the function φk is referred to as the restart rule.

It determines a probability distribution φk from P(t) =

{p
(t)
k }Kk=1, which is the set of the probability distributions

of all agents at time t.
In (6), δ is a constant within [0, 1], called the cooling

factor. In an extreme case of δ = 0, the restart distribu-

tion r
(t)
k becomes time-invariant, and the MRW recursion

of each agent in (5) is identical with the RWR recursion in

(3). In the other extreme case of δ = 1, r
(t)
k = φk(P

(t))

does not directly depend on the previous distribution r
(t−1)
k .

Suppose that 0 < δ < 1. We have

‖r
(t)
k − r

(t−1)
k ‖∞ = δt‖φk(P

(t))− r
(t−1)
k ‖∞ ≤ δt. (7)

Thus, if s ≥ t ≥ T , ‖r
(s)
k − r

(t)
k ‖∞ ≤ δT /(1− δ). So each

element in the restart distribution r
(t)
k is a Cauchy sequence

in terms of time t. Since a Cauchy sequence in R is conver-

gent, the restart distribution r
(t)
k converges to a fixed distri-

bution r
(∞)
k . Therefore, as t approaches infinity, the MRW

recursion in (5) becomes the RWR recursion, and agent k
has a stationary distribution eventually. To summarize we

have the following convergence theorem.

Theorem 1 If the graph is connected and 0 ≤ δ < 1, each

agent in the MRW system in (5) and (6) has a stationary

distribution, given by

πk = lim
t→∞

p
(t)
k . (8)

The term ‘multiple random walks’ was used in [2, 8],

but their graph simulations are different from the proposed

MRW system. They assume that multiple particles are in-

dependent of one another, or annihilate one another, or co-

alesce into one at a meeting node. Then, the expected time

for covering all nodes, or annihilating all particles, or co-

alescing into a single particle is computed. On the con-

trary, in our system, multiple walkers adapt their move-

ments based on other walkers’ distributions. Then, we ex-

tract useful information from the stationary distributions of

the multiple walkers.

3.3. Repulsive Restart Rule for Clustering

By designing the restart rule φk in (6), we can simulate

a variety of agent interactions to achieve a desired goal. As

a particular example, we propose the repulsive restart rule

for clustering data. For notational simplicity, let us omit the

superscripts for time instances.

In the MRW system,

pk = [p(x1|ωk), · · · , p(xN |ωk)]
T

(9)

where p(xi|ωk) is the probability that agent k is found at

node i. According to the Bayes’ rule, the posterior proba-

bility is given by

p(ωk|xi) =
p(xi|ωk)p(ωk)

∑

l p(xi|ωl)p(ωl)
, (10)

which represents the probability that node i is occupied by

agent k. The repulsive restart rule sets the ith element of

φk(P) as

φk,i = α · p(ωk|xi) · p(xi|ωk) (11)

where α is a normalizing factor to make φk(P) a probabil-

ity distribution. Suppose that agent k is dominant at node i,
i.e., it has a high posterior probability p(ωk|xi) and a high

likelihood p(xi|ωk). Then, it restarts at that node with a

high probability, and tends to become more dominant. This

has the effect that a dominant agent at a node repels the

other agents. The repulsive restart rule in (11) can be rewrit-

ten as

φk(P) = αQkpk (12)

where Qk is a diagonal matrix whose (i, i)th element is the

posterior probability p(ωk|xi).
For clustering, we perform the MRW simulation in (5)

and (6), by employing the restart rule in (12), to obtain the



(a) t = 0 (b) t = 1 (c) t = 5 (d) t = 15 (e) t = 30 (f) t = 70 (g) t = 100 (h) t = 200

Figure 1. Double random walkers with the repulsive restart rule. Red and blue walkers move interactively to divide a point set into two

clusters. The top two rows depict the probability distributions of the red and blue walkers, and the bottom row shows the clustering results.

The clustering decides that a point belongs to the red cluster, if the red walker has a higher probability at the point than the blue walker.

stationary distribution πk of each agent k. Then, node i is

assigned a cluster label li based on the maximum a posteri-

ori (MAP) criterion,

li = argmax
k

p(ωk|xi). (13)

Figure 1 illustrates an MRW process of double random

walkers with the repulsive restart rule. In Figure 1(a), the

top two rows show initial probability distributions of the

red and blue walkers, which are randomly generated. The

bottom row is the result of the clustering. The clustering

result at t = 0 is meaningless. However, as the iteration

goes on, each walker repels the other walker, while form-

ing a dominant cluster region. Consequently, the probabil-

ity distributions of the two walkers converge, respectively,

and the power balance between the walkers is achieved. By

comparing those probabilities at each node, we obtain the

clustering result in Figure 1(h), which coincides with the

intuitive clustering of the human visual system.

4. MRW Clustering – Image Examples

This section illustrates how the MRW clustering algo-

rithm with the repulsive restart rule can segment real im-

ages. With those image examples, we discuss the character-

istics of the MRW algorithm.

4.1. Methodology

Given an input image, we first construct a graph G =
(V,E). The image is initially over-segmented into SLIC

super-pixels [1], each of which becomes a node in V . For

the edge set E, we use the edge connection scheme in [33].

Specifically, each node is connected not only to its spatial

neighbors but also to the neighbors of the neighbors, and all

boundary nodes at the image border are connected to one

another.

For each edge eij , we determine the affinity weight wij

in (1), by employing the dissimilarity function

d(xi,xj) =
∑

l

λldl(xi,xj). (14)

We use five dissimilarities dl of node features, including

RGB and LAB super-pixel means, boundary cues, bag-of-

visual-words histograms of RGB and LAB colors [27]. We

average those dissimilarities using empirically determined

weights λl. Please refer to the supplemental materials for

details. By normalizing each column of the affinity matrix

W = [wij ], we obtain the transition matrix A.

To achieve bilayer segmentation, we employ double ran-

dom walkers, called foreground walker and background

walker, whose probability distributions are denoted by pf

and pb, respectively. These two walkers make interactions

according to

p
(t+1)
f = (1− ǫ)Ap

(t)
f + ǫr

(t)
f

p
(t+1)
b = (1− ǫ)Ap

(t)
b + ǫr

(t)
b (15)

with the repulsive restart rule. By Theorem 1, it is guaran-

teed that the probability distributions converge to stationary

distributions πf and πb, respectively. However, πf and πb

depend on the initial distributions p
(0)
f and p

(0)
b . Assuming

the center prior that foreground objects tend to appear near

the image center, we initialize p
(0)
f and p

(0)
b to be uniformly

distributed at the interior nodes and the boundary nodes, re-

spectively, as shown in Figure 2(a).

4.2. Examples

Figure 2 illustrates the repulsive MRW process in an

image, which is shown in the lower right corner. In Fig-

ure 2(a), the top two rows show the initial probability distri-

butions of the foreground and background walkers, based

on the center prior, respectively. The bottom row is the

segmentation result, based on the MAP decision in (13).

At early stages, the foreground region is identified around



(a) t = 0 (b) t = 3 (c) t = 10 (d) t = 15 (e) t = 20 (f) t = 25 (g) t = 30 (h) t = 50

Figure 2. A repulsive MRW process of foreground and background walkers in an image. The input image is shown in the lower right

corner. At each time instance t, from top to bottom, the probability distributions of the foreground and background walkers, pf and pb,

and the segmentation result are shown.

the image center due to the initial distributions. However,

as the iteration continues, the foreground walker explores

nearby similar nodes, while competing with the background

walker. The repulsive restart rule facilitates discriminative

clustering. Finally, in Figure 2(h), the probability distribu-

tions converge, and we obtain a satisfactory segmentation

result that extracts the bear faithfully.

Figure 3 shows more examples. For comparison, we

also provide the segmentation results of the normalized cuts

(Ncut) algorithm [26] and the spectral k-means (SKM) al-

gorithm [21]. Both Ncut and SKM are spectral clustering

algorithms, which can be interpreted using the framework

of the conventional random walks [18, 19]. Thus, the pro-

posed MRW is related to Ncut and SKM. However, the

proposed algorithm is different from the spectral cluster-

ing. Note that, using the definition of the transition matrix

in [18, 19], the spectral clustering processes ‘right’ eigen-

vectors of the transition matrix for the clustering. On the

contrary, the proposed algorithm uses the stationary distri-

bution, which is a ‘left’ eigenvector of the transition matrix.

Furthermore, whereas the conventional random walks con-

sider only a single agent, the proposed algorithm employs

multiple agents and exploits their interactions.

In Figure 3, we see that Ncut and SKM tend to divide im-

ages along the strongest edges. In contrast, the proposed al-

gorithm extracts more meaningful foreground regions. We

note that this is not a fair comparison, since the proposed al-

gorithm assumes the center prior in the initialization of the

foreground and background distributions. The objective of

this comparison is to demonstrate different characteristics

of the proposed algorithm from the spectral clustering, not

to claim superior performance of the proposed algorithm.

The proposed algorithm is fully automatic, but it has

common components with the interactive segmentation

techniques [11, 15]. Especially, in [15], for each cluster

label, the RWR recursion is performed by employing user

scribbles as the restart distribution. The segmentation is

achieved by comparing the stationary distributions for the

(a) Input (b) Ncut (c) SKM (d) RWR (e) MRW

Figure 3. Bilayer segmentation results of the proposed MRW clus-

tering in comparison with the conventional approaches: Ncut [26],

SKM [21], and RWR. In the RWR results, the initial distributions

based on the center prior are used as the fixed restart distributions.

different labels. Thus, the initial distributions in the pro-

posed algorithm can be regarded as those scribbles. But,

whereas [15] assumes that user scribbles are completely

trustable, the proposed algorithm automatically begins with

rough initial guesses. As shown in Figure 2, the rough

guesses at t = 0 are refined according to the interactions of

the walkers, as t increases. In other words, while [15] uses

fixed restart distributions, the proposed algorithm evolves

restart distributions adaptively to image contents in a time-

varying manner. Figure 3(d) shows the RWR segmentation

results when the rough guesses based on the center prior are



used as the fixed restart distributions. RWR yields inferior

performance to the proposed algorithm, since the walkers

do not interact and the restart distributions are fixed.

5. Image Cosegmentation

We propose a novel algorithm for image cosegmentation

based on the MRW system. The input is a set of images I =
{I1, · · · , IZ}, which contain similar objects. The objective

is to segment those objects jointly from all input images.

5.1. Initialization

For each image Iu in I, we construct a graph indepen-

dently of the other images, and adopt a foreground walker

and a background walker. We use the graph construction

scheme in Section 4.1. Let pf(u) and pb(u) denote the prob-

ability distributions of the foreground walker and the back-

ground walker in Iu, respectively. They are also initialized

based on the center prior, as described in Section 4.1.

5.2. InterImage Concurrence Computation

To exploit the correlation among images, we compute

the concurrence distribution cf(u) of the foreground walker,

which indicates the similarity of each node in image Iu to

foreground objects in the other images.

Let Wuv ∈ R
M×N be a matrix, in which the (i, j)th el-

ement wij represents the affinity from node j in image Iv
to node i in image Iu. Here, M and N are the numbers of

nodes in Iu and Iv , respectively. These inter-image affini-

ties are computed between all nodes in Iv and all nodes in

Iu. We compute each wij using a dissimilarity function,

similar to (14). However, we use features, e.g. SIFT [17]

and texton [9], which are widely used in object detection

and classification. For more details, please refer to the sup-

plemental materials. Then, we obtain the transfer matrix

Auv from Iv to Iu by normalizing each column in Wuv .

The transfer matrix Auv represents the correspondences

from nodes in Iv to nodes in Iu probabilistically. It hence

can transfer the foreground distribution pf(v) in Iv to Iu.

The transferred distribution, Auvpf(v), can be used as an

inter-image estimate of the object location in Iu. How-

ever, since the correspondences may be inaccurate espe-

cially on homogeneous regions, Auvpf(v) may be concen-

trated around a few nodes. For example, the foreground

distribution pf(v) in Figure 4(c) is transferred to Auvpf(v)

in Figure 4(d), but only the lower right part of the object

is overly highlighted. To overcome this limitation, in im-

age Iu, we perform the RWR recursion in (3) by employ-

ing Auvpf(v) as the restart distribution r. Notice that the

corresponding stationary distribution can be computed as

Sur = SuAuvpf(v), where

Su = ǫ (I− (1− ǫ)Au)
−1

. (16)

(a) Image Iv (b) Image Iu

(c) pf(v) (d) Auvpf(v) (e) SuAuvpf(v)

Figure 4. Transferring the foreground distribution pf(v) in im-

age Iv to image Iu. For the purpose of illustration, the manually

obtained ground-truth pf(v) is used in this example.

In Figure 4(e), we see that this new estimate SuAuvpf(v)

approximates the object location in Iu more faithfully.

By integrating the inter-image estimates from all images,

we obtain the concurrence distribution cf(u) of the fore-

ground walker in Iu as

cf(u) =
1

Z
Su

∑

v

Auvpf(v), (17)

where Z is the number of input images. In other words,

cf(u) is the overall inter-image estimate of the object loca-

tion in Iu, obtained from all images. We compute the con-

currence distribution cb(u) of the background walker in a

similar manner.

5.3. IntraImage MRW Clustering

Next, we perform an MRW clustering process to re-

fine the foreground and background distributions, pf(u) and

pb(u), by employing the concurrence distributions cf(u) and

cb(u).

The repulsive restart rule in (12) is effective for cluster-

ing nodes according to their intra-image feature vectors. On

the other hand, the concurrence distributions cf(u) and cb(u)
provide the inter-image estimates of object and background

locations, respectively. Thus, to exploit both the intra and

inter information, we define the hybrid restart rule for the

foreground walker at image Iu as

φf(u)

(

{pf(u),pb(u)}
)

= γ αQf(u)pf(u) + (1− γ)cf(u)
(18)

where Qf(u) is a diagonal matrix whose elements are the

posterior probabilities of the foreground walker and α is a

normalizing factor, as in (12). Also, γ is a parameter to

controls the balance between the repulsive interaction and

the concurrence preservation. In this work, γ is fixed to

0.3. We also define the hybrid restart rule φb(u) for the

background walker in a similar manner.

Using these hybrid restart rules, we perform the iterative

MRW process to obtain the stationary distributions πf(u)



(a) Input (b) Initial (c) 1st pass (d) 2nd pass (e) 6th pass

Figure 5. The evolution of foreground distributions in the multi-

pass clustering. As the passes go on, the Taj Mahal is more clearly

highlighted.

and πb(u) of the foreground and background walkers. Then,

from the stationary distributions, we obtain the posterior

probabilities of the foreground and background walkers at

each node. Finally, we can achieve the bilayer segmentation

of image Iu based on the MAP criterion in (13).

5.4. MultiPass Refinement

A single execution of the two steps, i.e. (Step 1) inter-

image concurrence computation and (Step 2) intra-image

MRW clustering, provides satisfactory cosegmentation re-

sults in most cases. However, multiple executions of the

steps are beneficial in some cases. In such multi-pass re-

finement, the resultant stationary distributions at Step 2 are

used as the input for computing the concurrent distributions

at Step 1 in the next execution.

Figure 5 exemplifies the multi-pass refinement. Fig-

ure 5(b) shows the initial foreground distributions. In the

first pass, they are used to compute the stationary distribu-

tions of the foreground walkers in Figure 5(c). Those sta-

tionary distributions highlight not only the Taj Mahal but

also less important regions, such as the sky. By feeding

these distributions as new initial distributions in the second

pass, we obtain the stationary distributions in Figure 5(d),

and so on. Note that, as the passes go on, the Taj Mahal is

more clearly highlighted.

We need a stopping criterion for the multi-pass refine-

ment. The fundamental assumption of cosegmentation is

Algorithm 1 Image Cosegmentation

Input: Graphs G = {G1, · · · , GZ} for a set of input images I

1: Initialize P(u) = {pf(u),pb(u)} for each Iu ⊲ Section 4.1

2: repeat for each image Iu
3: Inter-image concurrence computation ⊲ Section 5.2

4: Intra-image MRW clustering ⊲ Section 5.3

5: Foreground extraction C = {C1, · · · , CZ}
6: Computation of the foreground distance

∑
u,v

df(Cu, Cv)
7: until the foreground distance stops decreasing

8: Pixel-level refinement

Output: Segmentation maps C = {C1, · · · , CZ}

that foreground objects in images should be similar to one

another. In other words, every foreground node in image Iu
should have a similar node in another image Iv . To quan-

tify this property, let Cu denote the set of the nodes in Iu
that are classified as the foreground. Then, the foreground

distance df(Cu, Cv) from Iu to Iv is defined as

df(Cu, Cv) =
∑

i∈Cu

min
j∈Cv

d(xi,xj) (19)

where d is the dissimilarity function used to compute the

inter-image affinity Wuv . Then, the overall foreground dis-

tance among all images is computed as
∑

u,v df(Cu, Cv).
The multi-pass refinement is terminated when the overall

distance stops decreasing.

Since each image is over-segmented into super-pixels to

reduce the number of graph nodes, the resultant foreground

and background distributions can be further refined at the

pixel level using a bilateral filter [28]. Based on the spatial

distances and the LAB color differences in an input image,

we filter the foreground and background distributions. The

segmentation accuracy is improved by about 1% with this

pixel-level refinement. Algorithm 1 summarizes the pro-

posed cosegmentation algorithm.

6. Experimental Results

We test the performance of the proposed MRW coseg-

mentation (MRW-CS) algorithm on the iCoseg dataset [3],

which is composed of 643 images of 38 object classes. For

each object class, similar images were searched with the

same theme, and sometimes were selected from the same

user’s photo album. This is a realistic scenario for image

cosegmentation, which attempts to improve the segmenta-

tion accuracy of an input image by employing similar im-

ages. A segmentation accuracy is defined as the percentage

of correctly labeled pixels.

MRW-CS performs the inter-image concurrence compu-

tation to exploit the correlation across images. If this step

is skipped, MRW-CS is reduced to the MRW clustering

in Section 4, which segments each image independently.

Thus, we refer to the MRW clustering in Section 4 as the



Figure 6. Pairs of segmentation results, obtained by MRW-IS

(left) and MRW-CS (right).

Table 1. Cosegmentation performance on iCoseg data set.

# of images MRW

Class (used/total) [14] [30] [24] [31] IS CS

1 Alaskan bear 9/19 74.8 90.0 86.4 90.4 78.0 87.3

2 Balloon 8/24 85.2 90.1 89.0 90.4 64.1 97.7

3 Baseball 8/25 73.0 90.1 90.5 94.2 52.8 97.1

4 Bear 5/5 74.0 95.3 80.4 88.1 75.1 93.7

5 Elephant 7/15 70.1 43.1 75.0 86.7 68.1 93.1

6 Ferrari 11/11 85.0 89.9 84.3 95.6 83.7 91.9

7 Gymnastics 6/6 90.9 91.7 87.1 90.4 90.2 96.1

8 Kite 8/18 87.0 90.3 89.8 93.9 70.6 95.7

9 Kite panda 7/7 73.2 90.2 78.3 93.1 77.1 96.0

10 Liverpool 9/33 76.4 87.5 82.6 89.4 71.1 88.5

11 Panda 8/25 84.0 92.7 60.0 88.6 85.8 84.8

12 Skating 7/11 82.1 77.5 76.8 78.7 76.8 91.6

13 Statue 10/41 90.6 93.8 91.6 96.8 78.6 94.5

14 Stonehenge 5/5 56.6 63.3 87.3 92.5 77.3 95.9

15 Stonehenge 2 9/18 86.0 88.8 88.4 87.2 82.6 90.7

16 Taj Mahal 5/5 73.7 91.1 88.7 92.6 70.7 95.2

Average 78.9 85.4 83.5 90.5 75.2 93.1

independent segmentation (MRW-IS). For both CS and IS,

we fix the restart probability ǫ in (5) to 0.2, and the cooling

factor δ in (6) to 0.95. Also, for computing posterior prob-

abilities in (10), the prior probabilities for foreground and

background walkers are set to p(ωf) = p(ωb) =
1
2 .

Figure 6 compares MRW-CS with MRW-IS. IS attempts

to separate an object from its background, but the defini-

tion of ‘object’ is ambiguous. For instance, given the single

image of ‘Statue,’ it is not clear whether the object should

consist of the head only or both the head and body. Thus, IS

may fail to delineate desired objects, especially in the cases

of weak boundaries or background clutter. In contrast, CS

overcomes the ambiguity, by extracting regions that occur

repeatedly across images. In Figure 6, CS segments out the

baseball player, the gymnast, and the statue faithfully.

Table 1 compares the accuracies of the proposed MRW-

IS and MRW-CS with those of conventional algorithms. For

each class, a number of images are selected for the coseg-

mentation. Since [30], the number has been fixed, but the

combination of the images is unknown. Hence, for each

class, the cosegmentation is performed with randomly se-

lected images. Then, the accuracy is averaged over 20 ran-

dom selections. Note that CS outperforms the conventional

algorithms in most cases. On average, as compared with

the state-of-the-art in [31], CS improves the accuracy by

about 3%. Figure 7 demonstrates that the proposed MRW-

CS yields fine results, even though individual images are

challenging. Due to the page limitation, we provide more

(a) Balloon

(b) Baseball

(c) Kite Panda

(d) Skating

(e) Statue

(f) Stonehenge

Figure 7. Examples of cosegmentation results. Best viewed in

color.

examples in the supplemental materials.

7. Conclusions

We proposed the MRW system to simulate the interac-

tions of multiple agents on a graph. To achieve desired in-

teractions, a restart rule can be designed to determine the

restart distribution of an agent according to the probability

distributions of all agents. As a particular example, we de-

veloped the repulsive rule for data clustering. We discussed

the characteristics of the MRW clustering with image exam-

ples. Moreover, we proposed an efficient image cosegmen-

tation algorithm, composed of two main steps: inter-image

concurrence computation and intra-image MRW clustering.

Experimental results demonstrated that the proposed algo-

rithm outperforms the state-of-the art techniques signifi-

cantly on the iCoseg dataset. Future research issues include

the exploration of more applications of the MRW system

and the development of other restarting rules.
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