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Texture is ubiquitous and provides useful cues of material properties
of objects and their identity, especially when shape is not useful. Hence,
a significant amount of effort in the computer vision community has gone
into recognizing texture via tasks such as texture perception and description,
material recognition, segmentation, and even synthesis.

Perhaps the most studied task in texture understanding is the one of
material recognition, as captured in benchmarks such as CuRET [4], KTH-
TIPS [1], and, more recently, FMD [13]. However, while at least the FMD
dataset contains images collected from the Internet, vividly dubbed “images
in the wild”, all these datasets make the simplifying assumption that textures
fill images. Thus, they are not necessarily representative of the significantly
harder problem of recognizing materials in natural images, where textures
appear in clutter. Building on a recent dataset collected by the computer
graphics community, the first contribution of this paper is a first large-
scale analysis of material and perceptual texture attribute recognition and
segmentation in clutter (Fig. 1).

Motivated by the challenge posed by recognizing texture in clutter, we
develop a new texture descriptor. Texture representations based on orderless
pooling of local image descriptors set the state-of-the-art in many image un-
derstanding tasks, not only for textures, but for objects and scenes too. Cur-
rently, however, Convolutional Neural Networks (CNNs) have emerged as
the new state-of-the-art for recognition, exemplified by remarkable results
in image classification [9], detection [5] and segmentation [7] on a number
of widely used benchmarks. Importantly, CNNs pre-trained on such large
datasets have been shown [2, 5, 10] to contain general-purpose feature ex-
tractors, transferrable to many other domains.

Domain transfer in CNNs is usually achieved by using as features the
output of a deep, fully-connected layer of the network. From the perspec-
tive of textures, however, this choice has three drawbacks. The first one
(I) is that, while the convolutional layers are akin to non-linear filter banks,
the fully connected layers capture their spatial layout. While this may be
useful for representing the shape of an object, it may not be as useful for
representing texture. A second drawback (II) is that the input to the CNN
has to be of fixed size to be compatible with the fully connected layers,
which requires an expensive resizing of the input image, particularly when
features are computed for many different regions [5, 6]. A third and more
subtle drawback (III) is that deeper layers may be more domain-specific and
therefore potentially less transferrable than shallower layers.

The second contribution of this paper is to propose FV-CNN, a pooling
method that overcomes these drawbacks. The idea is to regard the convolu-
tional layers of a CNN as a filter bank and build an orderless representation
using Fisher vector [11] as a pooling mechanism, as is commonly done in
the bag-of-words approaches. Although the suggested change is simple, the
approach is remarkably flexible and effective. First, pooling is orderless and
multi-scale, hence suitable for textures. Second, any image size can be pro-
cessed by convolutional layers, avoiding costly resizing operations. Third,
convolutional filters, pooled by FV-CNN, are shown to transfer more easily
than fully-connected ones even without fine-tuning. While others [6, 8] have
recently proposed alternative pooling strategies for CNNs, we show that our
method is more natural, faster and often significantly more accurate.

The third contribution of the paper is a thorough evaluation of these
descriptors on a variety of benchmarks, from textures to objects. In tex-
tures, we evaluate material and describable attributes recognition and seg-
mentation on new datasets derived from OpenSurfaces. When used with
linear SVMs, FV-CNN improves the state of the art on texture recognition
by a significant margin, obtaining 79.8% accuracy on the Flickr material
dataset (previous best 66.7% [3]) and 81.8% accuracy on KTH-2b (previ-
ous best of 76.2% [3]). Like textures, scenes are also weakly structured and
a bag-of-words representation is effective. FV-CNN obtains 81% accuracy
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Figure 1: Texture recognition in clutter. Example of top retrieved texture
segments by attributes (top two rows) and materials (bottom) in the Open-
Surfaces dataset.

on the MIT indoor scenes dataset [12], significantly outperforming the cur-
rent state-of-the-art of 70.8% [16]. What is remarkable is that, where [16]
finds that CNNs trained on scene recognition data perform better than CNNs
trained on an object domain (ImageNet), when used in FV-CNN not only
there is an overall performance improvement, but the domain-specific ad-
vantage is entirely removed. This indicates that FV-CNN are in fact better
at domain transfer. Our method also matches the previous best in PASCAL
VOC 2007 classification dataset providing measurable boost over CNNs and
is closely following competitor methods on CUB 2010-2011 datasets when
no ground-truth object bounding boxes are given: FV-CNN achieves 66.7%
accuracy on the CUB 2010-2011 dataset [14] requiring only image labels for
training and 73.0% accuracy given the object bounding box, closely match-
ing the current best methods that additionally require landmark annotations
during training (76.37% [15]).
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