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Abstract

Research in texture recognition often concentrates on the

problem of material recognition in uncluttered conditions,

an assumption rarely met by applications. In this work we

conduct a first study of material and describable texture at-

tributes recognition in clutter, using a new dataset derived

from the OpenSurface texture repository. Motivated by the

challenge posed by this problem, we propose a new texture

descriptor, FV-CNN, obtained by Fisher Vector pooling of a

Convolutional Neural Network (CNN) filter bank. FV-CNN

substantially improves the state-of-the-art in texture, mate-

rial and scene recognition. Our approach achieves 79.8%

accuracy on Flickr material dataset and 81% accuracy on

MIT indoor scenes, providing absolute gains of more than

10% over existing approaches. FV-CNN easily transfers

across domains without requiring feature adaptation as for

methods that build on the fully-connected layers of CNNs.

Furthermore, FV-CNN can seamlessly incorporate multi-

scale information and describe regions of arbitrary shapes

and sizes. Our approach is particularly suited at localiz-

ing “stuff” categories and obtains state-of-the-art results

on MSRC segmentation dataset, as well as promising results

on recognizing materials and surface attributes in clutter on

the OpenSurfaces dataset.

1. Introduction

Texture is ubiquitous and provides useful cues of mate-

rial properties of objects and their identity, especially when

shape is not useful. Hence, a significant amount of effort in

the computer vision community has gone into recognizing

texture via tasks such as texture perception [1, 2, 12, 13]

and description [7, 11], material recognition [26, 36, 37],

segmentation [20, 29], and even synthesis [9, 43].

Perhaps the most studied task in texture understanding

is the one of material recognition, as captured in bench-

marks such as CuRET [8], KTH-TIPS [5], and, more re-

cently, FMD [38]. However, while at least the FMD dataset

contains images collected from the Internet, vividly dubbed

“images in the wild”, all these datasets make the simplifying
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Figure 1. Texture recognition in clutter. Example of top re-

trieved texture segments by attributes (top two rows) and materials

(bottom) in the OpenSurfaces dataset.

assumption that textures fill images. Thus, they are not nec-

essarily representative of the significantly harder problem

of recognising materials in natural images, where textures

appear in clutter. Building on a recent dataset collected by

the computer graphics community, the first contribution of

this paper is a large-scale analysis of material and percep-

tual texture attribute recognition and segmentation in clut-

ter (Fig. 1 and Sect. 2).

Motivated by the challenge posed by recognising texture

in clutter, we develop a new texture descriptor. In the sim-

plest terms a texture is characterized by the arrangement of

local patterns, as captured in early works [26, 41] by the

distribution of local “filter bank” responses. These filter

banks were designed to capture edges, spots and bars at

different scales and orientations. Typical combinations of

the filter responses, identified by vector quantisation, were

used as the computational basis of the “textons” proposed

by Julesz [22]. Texton distributions were the early versions

of “bag-of-words” representations, a dominant approach in

recognition in the early 2000s, since then improved by new

pooling schemes such as soft-assignment [27, 42, 48] and

Fisher Vectors (FVs) [32]. Until recently, FV with SIFT

features [28] as a local representation was the state-of-the-

art method for recognition, not only for textures, but for

objects and scenes too.

Later, however, Convolutional Neural Networks (CNNs)
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have emerged as the new state-of-the-art for recognition, ex-

emplified by remarkable results in image classification [23],

detection [14] and segmentation [16] on a number of widely

used benchmarks. Key to their success is the ability to lever-

age large labelled datasets to learn increasingly complex

transformations of the input to capture invariances. Impor-

tantly, CNNs pre-trained on such large datasets have been

shown [6, 14, 30] to contain general-purpose feature extrac-

tors, transferrable to many other domains.

Domain transfer in CNNs is usually achieved by using

as features the output of a deep, fully-connected layer of

the network. From the perspective of textures, however,

this choice has three drawbacks. The first one (I) is that,

while the convolutional layers are akin to non-linear filter

banks, the fully connected layers capture their spatial lay-

out. While this may be useful for representing the shape of

an object, it may not be as useful for representing texture. A

second drawback (II) is that the input to the CNN has to be

of fixed size to be compatible with the fully connected lay-

ers, which requires an expensive resizing of the input image,

particularly when features are computed for many different

regions [14, 15]. A third and more subtle drawback (III) is

that deeper layers may be more domain-specific and there-

fore potentially less transferrable than shallower layers.

The second contribution of this paper is FV-CNN

(Sect. 3), a pooling method that overcomes these draw-

backs. The idea is to regard the convolutional layers of a

CNN as a filter bank and build an orderless representation

using FV as a pooling mechanism, as is commonly done

in the bag-of-words approaches. Although the suggested

change is simple, the approach is remarkably flexible and

effective. First, pooling is orderless and multi-scale, hence

suitable for textures. Second, any image size can be pro-

cessed by convolutional layers, avoiding costly resizing op-

erations. Third, convolutional filters, pooled by FV-CNN,

are shown to transfer more easily than fully-connected ones

even without fine-tuning. While other authors [15, 18] have

recently proposed alternative pooling strategies for CNNs,

we show that our method is more natural, faster and often

significantly more accurate.

The third contribution of the paper is a thorough evalu-

ation of these descriptors on a variety of benchmarks, from

textures to objects (Sect. 4). In textures, we evaluate mate-

rial and describable attributes recognition and segmentation

on new datasets derived from OpenSurfaces (Sect. 2). When

used with linear SVMs, FV-CNN improves the state of the

art on texture recognition by a significant margin. Like tex-

tures, scenes are also weakly structured and a bag-of-words

representation is effective. FV-CNN obtains 81.1% accu-

racy on the MIT indoor scenes dataset [34], significantly

outperforming the current state-of-the-art of 70.8% [47].

What is remarkable is that, where [47] finds that CNNs

trained on scene recognition data perform better than CNNs

trained on an object domain (ImageNet), when used in FV-

CNN not only is there an overall performance improve-

ment, but the domain-specific advantage is entirely removed

(Tab. 3). This indicates that FV-CNN are in fact better at do-

main transfer. Our method also matches the previous best in

PASCAL VOC 2007 classification dataset providing mea-

surable boost over CNNs and closely approaches competi-

tor methods on CUB 2010-2011 datasets when ground-truth

object bounding boxes are given.

FV-CNN can be used for describing regions by simply

pooling across pixels within the region. Combined with

a low-level segmentation algorithm this suffices to local-

ize textures within images. This approach is similar to a

recently proposed method called “R-CNN” for localizing

objects [14]. However, in contrast to it we do not need re-

peated evaluations of the CNN since the convolutional fea-

tures can be computed just once for the entire image and

pooled differently. This makes FV-CNN not only faster,

but also as experiments suggest, much more accurate at

texture localization. We achieve state of the art results on

the MSRC segmentation dataset using a simple scheme of

classifying “superpixels” obtaining an accuracy of 87.0%

(previous best 86.5%). The corresponding R-CNN obtains

57.7% accuracy. Segmentation results are promising in the

OpenSurfaces dataset [4] as well.

Finally, we analyze the utility of different network layers

and architectures as filter banks, concluding that: SIFT is

competitive only with the first few layers of a CNN (Fig. 4)

and that significant improvement to the underlying CNN ar-

chitecture, such as the ones achieved by the very deep mod-

els of Simonyan and Zisserman [39], directly translate into

much better filter banks for texture recognition.

2. Texture recognition in clutter

A contribution of this work is the analysis of materials

and texture attributes in realistic imaging conditions. Ear-

lier datasets such as KTH-TIPS were collected in controlled

conditions, which makes their applicability to natural im-

ages unclear. More recent datasets such as FMD and DTD

remove this limitation by building on images downloaded

from the Internet, dubbed images “in the wild”. However,

in these datasets texture always fill the field of view of the

camera. In this paper we remove this limitation by exper-

imenting for the first time with a large dataset of textures

collected in the wild and in cluttered conditions.

In particular, we build on the Open Surfaces (OS) dataset

that was recently introduced by Bell et al. [4] in computer

graphics. OS comprises 25,357 images, each containing a

number of high-quality texture/material segments. Many of

these segments are annotated with additional attributes such

as the material name, the viewpoint, the BRDF, and the ob-

ject class. Not all segments have a complete set of annota-

tions; the experiments in this paper focus on the 58,928 that

contain material names. Since material classes are highly



unbalanced, only the materials that contain at least 400 ex-

amples are considered. This result in 53,915 annotated

material segments in 10,422 images spanning 22 different

classes.1 Images are split evenly into training, validation,

and test subsets with 3,474 images each. Segment sizes are

highly variable, with half of them being relatively small,

with an area smaller than 64 × 64 pixels. While the lack

of exhaustive annotations makes it impossible to define a

complete background class, several less common materials

(including for example segments that annotators could not

assign to a material) are merged in an “other” class that acts

as pseudo-background.

In order to study perceptual properties as well as ma-

terials, we augment the OS dataset with some of the 47

attributes from the DTD [7]. Since the OS segments do

not trigger with sufficient frequency all the 47 attributes,

the evaluation is restricted to eleven of them for which it

was possible to identify at least 100 matching segments.2

The attributes were manually labelled in the 53,915 seg-

ments retained for materials. We refer to this data as

OSA. The complete list of images, segments, labels, and

splits are available at http://www.robots.ox.ac.

uk/˜vgg/data/dtd/.

3. Method

This section describes the methodological contributions

of this paper: region description and segmentation.

3.1. Region description

This section introduces a number of visual descriptors

suitable to model the appearance of image regions. Texture

is traditionally described by orderless pooling of filter bank

responses as, unlike in objects, the overall shape informa-

tion is usually unimportant. However, small under-sampled

textures may benefit if recognized in the context of an ob-

ject. Thus, the primacy of orderless pooling may not always

hold in the recognition of textures in natural conditions.

In order to explore the interplay between shape and or-

derless pooling, we evaluate two corresponding region de-

scriptors: FC-CNN for shape and FV-CNN for texture.

Both descriptors are based on the same CNN features [23]

obtained from an off-the-shelf CNN pre-trained on the Ima-

geNet ILSVRC 2012 data as suggested in [6, 21, 35]. Since

the underlying CNN is the same, it is meaningful to com-

pare FC- and FV-CNN directly.

1The classes and corresponding number of example segments are:

brick (610), cardboard (423), carpet/rug (1,975), ceramic (1,643), con-

crete (567), fabric/cloth (7,484), food (1,461), glass (4,571), granite/-

marble (1,596), hair (443), other (2,035), laminate (510), leather (957),

metal (4,941), painted (7,870), paper/tissue (1,226), plastic/clear (586),

plastic/opaque (1,800), stone (417), tile (3,085), wallpaper (483), wood

(9,232).
2These are: banded, blotchy, chequered, flecked, gauzy, grid, marbled,

paisley, pleated, stratified, wrinkled.

Object descriptor: FC-CNN. The FC-CNN descriptor is

obtained by extracting as features the output of the penul-

timate Fully-Connected (FC) layer of a CNN, including

the non-linear gating function, applied to the input image.

This can be considered an object descriptor because the

fully connected layers allow FC-CNN to capture the overall

shape of the object contained in the region. FC-CNN is ap-

plied to an image region R (which may be the whole image)

by warping the bounding box enclosing R (plus a 10% bor-

der) to a square of a fixed size matching the default CNN

input geometry, obtaining the same R-CNN descriptor in-

troduced by Girshick et al. [14] as a state-of-the-art object

detector in the PASCAL VOC [10] data.

Texture descriptor: FV-CNN. The FV-CNN descriptor

is inspired by the state-of-the-art texture descriptors of [7]

based on the Fisher Vector (FV). Differently from FC-CNN,

FV pools local features densely within the described regions

removing global spatial information, and is therefore more

apt at describing textures than objects. Here FV is computed

on the output of a single (last) convolutional layer of the

CNN, but we compared features from other layers as well

(Sect 4.4). By avoiding the computation of the fully con-

nected layers, the input image does not need to be rescaled

to a specific size; in fact, the dense convolutional features

are extracted at multiple scales and pooled into a single FV

just like for SIFT. The pooled convolutional features are ex-

tracted immediately after the last linear filtering operator

and are not otherwise normalised.

The FV-CNN descriptor is related to the one proposed

by Gong et al. [15]. There VLAD pooling, which is simi-

lar to FV, is applied to FC-CNN-like descriptors extracted

from densely sampled image windows. A key difference of

FV-CNN is that dense features are extracted from the con-

volutional rather than fully-connected layers. This is more

natural, significantly more efficient (as it does not require

recomputing the network for each extracted local descrip-

tor) and, as shown in Sect. 4, more accurate.

3.2. Region segmentation

This section discusses our method to automatically par-

tition an image into a number of recognisable regions. In-

spired by Cimpoi et al. [7] that successfully ported object

description methods to texture descriptors, here we propose

a segmentation technique inspired by object detection. An

increasingly popular method for object detection, followed

for example by R-CNN [14], is to first propose a number of

candidate object regions using low-level image cues, and

then verifying a shortlist of such regions using a power-

ful classifier. Applied to textures, this requires a low-level

mechanism to generate textured region proposals, followed

by a region classifier. A key advantage of this approach

is that it allows applying object- (FC-CNN) and texture-

like (FV-CNN) descriptors alike. After proposal classifica-
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tion, each pixel can be assigned more than one label; this is

solved with simple voting schemes, also inspired by object

detections methods.

The paper explores two such region generation methods:

the crisp regions of [19] and the multi-scale combinatorial

grouping of [3]. In both cases, region proposals are gener-

ated using low-level image cues, such as colour or texture

consistency, as specified by the original methods. It would

of course be possible to incorporate FC-CNN and FV-CNN

among these energy terms to potentially strengthen the re-

gion generation mechanism itself. However, this contra-

dicts partially the logic of the scheme, which breaks down

the problem into cheaply generating tentative segmenta-

tions and then verifying them using a more powerful (and

likely expensive) model. Furthermore, and more impor-

tantly, these cues focus on separating texture instances, as

presented in each particular image, whereas FC-CNN and

FV-CNN are meant to identify a texture class. It is reason-

able to expect instance-specific cues (say the colour of a

painted wall) to be better for segmentation.

4. Results

This section evaluates the proposed region recognition

methods for classifying and segmenting materials, describ-

able texture properties, and higher-level object categories.

Sect. 4.1 evaluates the classification task by assessing how

well regions can be classified given that their true extent is

known and Sect. 4.3 evaluates both classification and seg-

mentation. The rest of the section introduces the evaluation

benchmarks and technical details of the representations.

Datasets. The evaluation considers three texture recogni-

tion benchmarks other than OS (Sect. 2). The first one is the

Flickr Material Dataset (FMD) [37], a recent benchmark

containing 10 material classes. The second one is the De-

scribable Texture Datasets (DTD) [7], which contains tex-

ture images jointly annotated with 47 describable attributes

drawn from the psychological literature. Both FMD and

DTD contain images “in the wild”, i.e. collected in uncon-

trolled conditions. However, differently from OS, these im-

ages are uncluttered. The third texture dataset is KTH-TIPS-

2b [5, 17], containing a number of example images for each

of four samples of 11 material categories. For each ma-

terial, images of one sample are used for training and the

remaining for testing.

Object categorisation is evaluated in the PASCAL VOC

2007 [10] dataset, containing 20 object categories, any

combination of which may be associated to any of the

benchmark images. Scene categorisation uses the MIT In-

door [34] dataset, containing 67 indoor scene classes. Fine-

grained categorisation uses the Caltech/UCSD Bird dataset

(CUB) [45], containing images of 200 bird species.

Note that some of these datasets come with ground truth

region/object localisation. The +R suffix will be appended

to a dataset to indicate that this information is used both at

training and testing time. For example, OS means that seg-

mentation is performed automatically at test time, whereas

OS+R means that ground-truth segmentations are used.

Evaluation measures. For each dataset the correspond-

ing standard evaluator protocols and accuracy measures are

used. In particular, for FMD, DTD, MIT Indoor, CUB,

and OS+R, evaluation uses average classification accuracy,

per-segment/image and normalized for each class. When

evaluating the quality of a segmentation algorithm, how-

ever, one must account for the fact that in most datasets,

and in OS and MSRC in particular, not all pixels are la-

belled. In this case, accuracy is measured per-pixel rather

than per-segment, ignoring all pixels that are unlabelled in

the ground truth. For MSRC, furthermore, accuracy is nor-

malised across all pixels regardless of their category. For

OSA, since some segments may have more than one label,

we are reporting mAP, following the standard procedure for

multi-label datasets. Finally, PASCAL VOC 2007 classifi-

cation uses mean average precision (mAP), computed using

the TRECVID 11-point interpolation [10].3

Descriptor details. FC-CNN and FV-CNN build on the

pre-trained VGG-M [6] model as this performs better than

other popular models such as [21] while having a sim-

ilar computational cost. This network results in 4096-

dimensional FC-CNN features and 512-dimensional local

features for FV-CNN computation. The latter are pooled

into a FV representation with 64 Gaussian components,

resulting in 65K-dimensional descriptors. While the FV-

CNN dimensionality is much higher than the 4K dimen-

sions of FC-CNN, the FV is known to be highly redun-

dant and can be typically compressed by one order of mag-

nitude without appreciable reduction in the classification

performance [31], so the effective dimensionality of FC-

and FV-CNN is likely comparable. We verified that by

PCA-reducing FV to 4096 dimensions and observing only

a marginal reduction in classification performance in the

PASCAL VOC object recognition task described below. In

addition to VGG-M, the recent state-of-the art VGG-VD

(very deep with 19 layers) model of Simonyan and Zisser-

man [39] is also evaluated.

Due to the similarity between FV-CNN and the dense

SIFT FV descriptors used for texture recognition in [7],

the latter is evaluated as well. Since SIFT descriptors

are smaller (128-dimensional) than the convolutional ones

(512-dimensional), a larger number of Gaussian compo-

nents (256) are used to obtain FV descriptors with a com-

parable dimensionality. The SIFT descriptors support is

32× 32 pixels at the base scale.

In order to make results comparable to [7], we use

the same settings whenever possible. FV-CNN and D-

SIFT compute features after rescaling the image by factors

3The definition of AP was changed in later versions of the benchmark.



dataset meas.
IFV

VGG-M VGG-VD FV-SIFT
SoA

(%) FC FV FC+FV FC FV FC+FV FC+FV-VD

(a)

KTH-T2b acc 70.8±2.7 71±2.3 73.3±4.7 73.9±4.9 75.4±1.5 81.8±2.5 81.1±2.4 81.5±2.0 76.0±2.9 [40]

FMD acc 59.8±1.6 70.3±1.8 73.5±2.0 76.6±1.9 77.4±1.8 79.8±1.8 82.4±1.5 82.2±1.4 57.7±1.7 [33, 37]

OS+R acc 39.8 41.3 52.5 54.9 43.4 59.5 60.9 58.7 –

(b)
DTD acc 58.6±1.2 58.8±0.8 66.8±1.6 69.8±1.1 62.9±0.8 72.3±1.0 74.7±1.0 75.5±0.8 –

OSA+R mAP 56.5 54.3 65.2 67.9 49.7 67.2 67.9 68.2 –

(d)

MSRC+R acc 85.7 85.0 95.4 96.9 79.4 97.7 98.8 99.1 –

MSRC+R msrc-acc 92.0 84.0 97.6 98.1 82.0 99.2 99.6 99.5 –

VOC07 mAP11 59.9 76.8 76.4 79.5 81.7 84.9 85.1 84.5 85.2 [44]

MIT Indoor acc 54.9 62.5 74.2 74.4 67.6 81.0 80.3 80.0 70.8 [47]

CUB acc 17.5 46.1 49.9 54.9 54.6 66.7 67.3 65.4 73.9 (62.8∗) [46]

CUB+R acc 27.7 56.5 65.5 68.1 62.8 73.0 74.9 73.6 76.37 [46]
Table 1. Evaluation of texture descriptors. The table compares FC-CNN, FV-CNN on two networks trained on ImageNet – VGG-M and

VGG-VD, and IFV on dense SIFT. We evaluated these descriptors on (a) material datasets (FMD, KTH-T2b, OS+R), (b) texture attributes

(DTD, OSA+R) and (c) general categorisation datasets (MSRC+R,VOC07,MIT Indoor) and fine grained categorisation (CUB, CUB+R).

For this experiment the region support is assumed to be known (and equal to the entire image for all the datasets except OS+R and MSRC+R

and for CUB+R, where it is set to the bounding box of a bird). (∗) using a model without parts. Best results are marked in bold.

VGG-M VGG-VD

dataset measure (%) FC-CNN FV-CNN FV+FC-CNN FC-CNN FV-CNN FC+FV-CNN SoA

OS pp-acc 36.3 48.7 (46.9) 50.5 38.8 55.4 (55.7) 55.2 –

MSRC msrc-acc 56.1 82.3 75.5 57.7 87.0 80.4 86.5 [24]
Table 2. Segmentation and recognition using crisp region proposals of materials (OS) and things & stuff (MSRC). Per-pixel accuracies are

reported, using the MSRC variant (see text) for the MSRC dataset. Results using MCG proposals [3] are reported in brackets for FV-CNN.

2s, s = −3,−2.5, . . . 1.5 (but, for efficiency, discarding

scales that would make the image larger than 10242 pix-

els). Before pooling descriptors with a FV, these are usually

de-correlated by using PCA. Here PCA is applied to SIFT,

additionally reducing its dimension to 80, as this was em-

pirically shown to improve the overall recognition perfor-

mance. However, PCA is not applied to the convolutional

features in FV-CNN as in this case results were worse.

Learning details. The region descriptors (FC-CNN, FV-

CNN, and D-SIFT) are classified using 1-vs-rest Support

Vector Machine (SVM) classifiers. Prior to learning, de-

scriptors are L2 normalised and the learning constant set

to C = 1. This is motivated by the fact that, after data

normalisation, the exact choice of C has a negligible effect

on performance. Furthermore, the accuracy of the 1-vs-rest

classification scheme is improved by recalibrating the SVM

scores after training, by scaling the SVM weight vector and

bias such that the median scores of the negative and positive

training samples for each class are mapped respectively to

the values −1 and 1.

4.1. Region recognition: textures

This and the following section evaluate region recogni-

tion assuming that the ground-truth region R is known (Ta-

ble 1), for example because it fills the entire image. This

section focuses on textures (materials and perceptual at-

tributes), while the next on objects and scenes.

Texture recognition without clutter. This experiment

evaluates the performance of FC-CNN, FV-CNN, D-SIFT,

and their combinations in standard texture recognition

benchmarks such as FMD, KTH-TIPS-2, and DTD. FC-

CNN is roughly equivalent to the DeCAF method used

in [7] for this data as regions fill images; however, while the

performance of our FC-CNN is similar in KTH (∼ 70%),

it is substantially better in FMD (60.7% → 70.4% accu-

racy) and DTD (54.8% → 58.7%). This likely is caused by

the improved underlying CNN, an advantage which is more

obvious in FMD and DTD that are closer to object recogni-

tion than KTH. FV-CNN performs within ±2% in FMD and

KTH but substantially better for DTD (58.7% → 66.6%).

D-SIFT is comparable in performance to FC-CNN in DTD

and KTH, but substantially worse (70.4% → 59.2%) in

FMD. Our conclusion is that, even when textures fill the

input image as in these benchmarks, orderless pooling in

FV-CNN and D-SIFT can be either the same or substan-

tially better than the pooling operated in the fully-connected

layers by FC-CNN.

Combining FC- and FV-CNN improves performance in

all datasets by 1 − 3%. While this combination is al-

ready significantly above the state-of-the-art in DTD and

FMD (+2.6%/11.2%), the method of [7] still outperforms

these descriptors in KTH. However, replacing VGG-M with

VGG-VD significantly improves the performance in all

cases – a testament to the power of deep features. In partic-

ular, the best method FC+FV-CNN-VD, improves the state

of the art by at least 6% in all datasets. Interestingly, this is

obtained by using a single low-level feature type as FC- and



FV-CNN build on the same convolutional features. Adding

D-SIFT results in at most ∼ 1% improvement, and in some

cases it slightly degrades performance.

Texture recognition in clutter. The advantage of FV-CNN

over FC-CNN is much larger when textures do not fill the

image but are extracted from clutter. In OS+R (Sect. 2),

material recognition accuracy starts at about 46% for both

FC-CNN and D-SIFT; however, FV-CNN improves this by

more than 11% (46.5% → 58.1%). The combination of FC-

and FV-CNN improves results further by ∼ 2%, but adding

SIFT deteriorates performance. With the very deep CNN

conclusions are similar; however, switching to VGG-VD

barely affects the FC-CNN performance (46.5 → 48.0%),

but strongly affects the one of FV-CNN (58.1% → 65.1%).

This confirms that FC-CNN, while excellent in object de-

tection, is not a very good descriptor for classifying textured

regions. Results in OSA+R for texture attribute recognition

(Sect. 2) and in MSRC+R for semantic segmentation are

analogous; it is worth noting that, when ground-truth seg-

ments are used in this experiment, the best model achieves

a nearly perfect 99.7% classification rate in MSRC.

4.2. Region recognition: objects and scenes

This section shows that the FV-CNN descriptor, despite

its orderless nature that make it an excellent texture descrip-

tor, excels at object and scene recognition as well. In the re-

mainder of the section, and unless otherwise noted, region

descriptors are applied to images as a whole by considering

these single regions.

FV-CNN vs FC-CNN. As seen in Table 1, in PASCAL

VOC and MIT Indoor the FC-CNN descriptor performs

very well but in line with previous results for this class of

methods [6]. FV-CNN performs similarly to FC-CNN in

PASCAL VOC, but substantially better (+5% for VGG-M

and +13% for VGG-VD) in MIT Indoor. As further dis-

cussed below, this is an example of the ability of FV-CNN

to transfer between domains better than FC-CNN. The gap

between FC-CNN and FV-CNN is the highest for the very

deep VGG-VD models (68.1% → 81.1%), a trend also ex-

hibited by other datasets as seen in Tab. 1. In the CUB

dataset, FV-CNN significantly outperforms FC-CNN both

whether the descriptor is computed from the whole image

(CUB) or from the bird bounding box (CUB+R). In the lat-

ter case, the difference is very large (+10− 14%).

Comparison with alternative pooling methods. FV-CNN

is related to the method of [15], which uses a similar

underlying CNN and VLAD instead of FV for pooling.

Notably, however, FV-CNN results on MIT Indoor are

markedly better than theirs for both VGG-M and VGG-

VD (68.8% → 73.5%/81.1% resp.) and marginally bet-

ter (68.8% → 69.1%) when the same CAFFE CNN is used

(Tab. 3). The key difference is that FV-CNN pools convolu-

Accuracy (%)

CNN FC-CNN FV-CNN FC+FV-CNN

PLACES 65.0 67.6 73.1

CAFFE 58.6 69.7 71.6

VGG-M 62.5 74.2 74.4

VGG-VD 67.6 81.0 80.3
Table 3. Accuracy of various CNNs on the MIT indoor dataset.

tional features, whereas [15] pools fully-connected descrip-

tors extracted from square image patches. Thus, even with-

out spatial information as used by [15], FV-CNN is not only

substantially faster, but at least as accurate. Using the same

settings, that is, the same net and the same three scales, our

approach results in an 8.5× speedup.

Comparison with the state-of-the-art. The best result ob-

tained in PASCAL VOC is comparable to the current state-

of-the-art set by the deep learning method of [44] (85.2% →

85.0%), but using a much more straightforward pipeline. In

MIT Places our best performance is also substantially supe-

rior (+10%) to the current state-of-the-art using deep con-

volutional networks learned on the MIT Place dataset [47]

(see also below). In the CUB dataset, our best performance

is a little short (∼ 3%) of the state-of-the-art results of [46].

However, [46] uses a category-specific part detector and

corresponding part descriptor as well as a CNN fine-tuned

on the CUB data; by contrast, FV-CNN and FC-CNN are

used here as global image descriptors which, furthermore,

are the same for all the datasets considered. Compared to

the results of [46] without part-based descriptors (but still

using a part-based object detector), our global image de-

scriptors perform substantially better (62.1% → 69.1%).

We conclude that FV-CNN is a very strong descriptor.

Results are usually as good, and often significantly better,

than FC-CNN. In most applications, furthermore, FV-CNN

is many times faster as it does not require evaluating the

CNN for each target image region. Finally, FC- and FV-

CNN can be combined outperforming the state-of-the-art in

many benchmarks.

Domain transfer. So far, the same underlying CNN fea-

tures, trained on ImageNet’s ILSVCR, were used for all

datasets. Here we investigate the effect of using domain-

specific features. To do so, we consider the PLACES [47],

trained to recognize places on a dataset of about 2.5 mil-

lion labeled images. [47] showed that, applied to the task of

scene recognition in MIT Indoor, these features outperform

similar ones trained on ILSVCR (denoted CAFFE [21] be-

low) – a fact explained by the similarity of domains. Below,

we repeat this experiment using FC- and FV-CNN descrip-

tors on top of VGG-M, VGG-VD, PLACES, and CAFFE.

Results are shown in Table 3. The FC-CNN results are

in line with those reported in [47] – in scene recognition

with FC-CNN the same CNN architecture performs better

if trained on the Places dataset instead of the ImageNet data



(58.6% → 65.0% accuracy4). Nevertheless, stronger CNN

architectures such as VGG-M and VGG-VD can approach

and outperform PLACES even if trained on ImageNet data

(65.0% → 63.0%/68.1%).

However, when it comes to using the filter banks with

FV-CNN, conclusions are very different. First, FV-CNN

outperforms FC-CNN in all cases, with substantial gains

up to 20% in correspondence of a domain transfer from

ImageNet to MIT Indoor. Second, the advantage of us-

ing domain-specific CNNs disappears. In fact, the same

CAFFE model that is 6.4% worse than PLACES with FC-

CNN, is actually 1.5% better when used in FV-CNN. The

conclusion is that FV-CNN appears to be immune, or at

least substantially less sensitive, to domain shifts.

Our tentative explanation of this surprising phenomenon

is that the convolutional layers are less committed to a spe-

cific dataset than the fully ones. Hence, by using those,

FV-CNN tends to be a more general than FC-CNN.

4.3. Texture segmentation

The previous section considered the problem of region

recognition when the region support is known at test time.

This section studies the problem of recognising regions

when their extent R is not known and also be estimated.

The first experiment (Tab. 2) investigates the sim-

plest possible scheme: combining the region descriptors

of Sect. 4.1 with a general-purpose image segmentation

method, namely the crisp regions of [19]. Two datasets

are evaluated: OS for material recognition and MSRC for

things & stuff. Compared to OS+R, classifying crisp re-

gions results in a drop of about 5% points for all descrip-

tors. As this dataset is fairly challenging with best achiev-

able performance is 55.4%, this is a satisfactory result. But

it also illustrates that there is ample space for future im-

provements. In MSRC, the best accuracy is 87.0%, just a

hair above the best published result 86.5% [25]. Remark-

ably, these algorithms not use any dataset-specific train-

ing, nor CRF-regularised semantic inference: they simply

greedily classify regions as obtained from a general-purpose

segmentation algorithms. Qualitative segmentation results

(sampled at random) are given in Fig. 2 and 3.

Unlike crisp regions, the proposals of [3] are overlap-

ping and a typical image contains thousands of them. We

propose a simple scheme to combine prediction from mul-

tiple proposals. For each proposal we set its label to the

highest scoring class, and score to the highest score. We

then sort the proposals in the increasing order of their score

divided by their area and paste them one by one. This has

the effect of considering larger regions before smaller ones

and more confident regions after less ones for regions of

the same area. Results using FV-CNN shown in Tab. 2 in

4[47] report 68.3% for PLACES applied to MIT Indoor, a small differ-

ence explained by implementation details such as the fact that, for all the

methods, we do not perform data augmentation by jittering.
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Figure 4. CNN filterbank analysis for VGG-M. Performance of

filter banks extracted from various layers network are shown on

various datasets. For each layer conv{1, . . . , 5} we show, the size

of the receptive field [N×N ], and FB×D, where FB is the size

of filter bank and D is the dictionary size in the FV representation.

The performance using SIFT is shown in black plus (+) marks.

brackets (FC-CNN was too slow for our experiments). The

results are comparable to those using crisp regions, and we

obtain 55.7% accuracy on the OS dataset. Our initial at-

tempts at schemes such as non-maximum suppression of

overlapping regions that are quite successful for object seg-

mentation [16] performed rather poorly. We believe this is

because unlike objects, material information is fairly local-

ized and highly irregularly shaped in an image. However,

there is room for improvement by combining evidence from

multiple segmentations.

4.4. Convolutional layer analysis

We study the performance of filter banks extracted from

different layers of a CNN in the FV-CNN framework. We

use the VGG-M network which has five convolutional lay-

ers. Results on various datasets, obtained as in Sect. 4.1

and 4.2, are shown in Fig. 4. In addition we also show the

performance using FVs constructed from dense SIFT using

a number of words such that the resulting FV is roughly the

same size of FV-CNN. The CNN filter banks from layer

3 and beyond significantly outperform SIFT. The perfor-

mance monotonically improves from layer one to five.

5. Conclusions

We have conducted a range of experiments on material

and texture attribute recognition in a large dataset of tex-

tures in clutter. This benchmark was derived from OpenSur-

faces, an earlier contribution of the computer graphics com-

munity, highlights the potential for collaboration between

computer graphics and vision communities. We have also

evaluated a number of state-of-the-art texture descriptors on

these and many other benchmarks. Our main finding is that

orderless pooling of convolutional neural network features

is a remarkably good texture descriptor, versatile enough to

dubbed as a scene and object descriptor, resulting in new

state-of-the-art performance in several benchmarks.
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Figure 2. OS material recognition results. Example test image with material recognition and segmentation on the OS dataset. (a) original

image. (b) ground truth segmentations from the OpenSurfaces repository (note that not all pixels are annotated). (c) FC-CNN and crisp-

region proposals segmentation results. (d) incorrectly predicted pixels (restricted to the ones annotated). (e-f) the same, but for FV-CNN.
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Figure 3. MSRC object segmentation results. (a) image, (b) ground-truth, (c-d) FC-CNN, (d-e) FV-CNN segmentation and errors.
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