
Fisher Vectors Meet Neural Networks: A Hybrid Classification Architecture

Florent Perronnin and Diane Larlus
Computer Vision Group, Xerox Research Centre Europe

Abstract

Fisher Vectors (FV) and Convolutional Neural Networks
(CNN) are two image classification pipelines with different
strengths. While CNNs have shown superior accuracy on
a number of classification tasks, FV classifiers are typically
less costly to train and evaluate. We propose a hybrid archi-
tecture that combines their strengths: the first unsupervised
layers rely on the FV while the subsequent fully-connected
supervised layers are trained with back-propagation. We
show experimentally that this hybrid architecture signifi-
cantly outperforms standard FV systems without incurring
the high cost that comes with CNNs. We also derive compet-
itive mid-level features from our architecture that are read-
ily applicable to other class sets and even to new tasks.

1. Introduction

The goal of image classification is to tag an image with
one or multiple class names based on its content. Our pri-
mary focus in this work is on learning classifiers on a large
scale, i.e. when many classes and images are involved. This
topic has received much attention [10, 53, 43, 31, 28, 47, 11]
thanks in large part to the release of datasets such as Ima-
geNet [12] and to the organization of public competitions
such as the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [42] since 2010.

In 2010-2011, the leading approaches to ILSVRC [43,
31] were based on the Fisher Vector [38, 39] (FV) or the
closely related Super Vector (SV) [57]. These pipelines in-
volve extracting local descriptors, encoding them with high-
order statistics, aggregating them, and feeding them to ker-
nel classifiers (e.g. SVMs). However, in 2012 it was shown
that Convolutional Neural Networks [30] (CNNs) trained in
a supervised fashion with large amounts of labeled data out-
performed the FV [28]. CNNs are feed-forward architec-
tures involving multiple computational layers that alternate
linear operations such as convolutions and non-linear oper-
ations such as max-pooling. Since then CNNs have consis-
tently led the classification task at ILSVRC [28, 56, 46, 48].

Despite their success, deep architectures come with chal-
lenges. This includes the requirement for large amounts of

training data, their high computational cost which makes
training on GPUs [28] or on very large clusters [29] a ne-
cessity, or their lack of geometric invariance [17]. This ex-
plains why the FV is still very competitive for certain tasks
– see e.g. the winning system [19] at the Fine-Grained Vi-
sual Competition 2013 [3]. Hence, several works [47, 49]
have started exploring the combination of FVs and CNNs.

Our first contribution is a novel hybrid architecture that
combines the best of both worlds – see Fig. 1. Its first lay-
ers are unsupervised and involve the computation and di-
mensionality reduction of high-dimensional FVs. This is
followed by a set of supervised fully connected Neural Net-
work (NN) layers – akin to a Multi-Layer Perceptron (MLP)
– trained through back-propagation.

The motivation behind our hybrid architecture is three-
fold. First, since the convolutional layers of the CNN share
much with the coding/aggregation steps of the FV (see sec-
tion 3.3), we wanted to understand whether FVs were com-
petitive with representations learned by the convolutional
layers of the CNN. Our experiments show that the accuracy
of our architecture comes close to that of the CNN model of
Krizhevsky et al. [28]. Second, while FVs are designed to
work well with linear classifiers (because they correspond
to the explicit feature map of the Fisher Kernel), we wanted
to understand whether FV classification could be improved
with non-linear classifiers. Our work is the first to provide
a positive answer thus showing that much still needs to be
learned about the FV. Third, in speech recognition MLPs on
top of “handcrafted” features were the state-of-the-art until
recently [55, 9]. Hence, we wanted to understand how such
a combination performed on image classification.

Because it is unpractical to collect large amounts of la-
beled data for each new task, we are also interested in trans-
ferring the mid-level features learned by our architecture.
Transferring features derived from image classifiers either
to different class sets or even to new tasks (e.g. image re-
trieval or object detection) has been a very active research
topic [51, 50, 18, 13, 34, 1, 16]. Our second contribution is
to show that the mid-level features derived from our hybrid
architecture are competitive with those derived from CNNs.

The remainder of the article is organized as follows. Sec-
tion 2 reviews related works. In section 3 we describe the

1



proposed architecture and explain how it relates to standard
FV and CNN pipelines. Section 4 validates the proposed
architecture experimentally. We first show its competi-
tiveness for large-scale classification on ILSVRC’10 and
ILSVRC’12. We then show that the mid-level features we
derive from the ILSVRC classifiers can be transferred to
other classification tasks on PASCAL VOC’07 and VOC’12
and to instance-level image retrieval on Holidays and UKB.

2. Related Work

We now review hybrid systems that combine FVs (or re-
lated representations such as the VLAD [26]) and NNs and
works that derive representations from image classifiers.

Hybrid systems. Simonyan et al. [47] define a FV layer as
a set of five operations: i) FV encoding, ii) supervised di-
mensionality reduction, iii) spatial stacking, iv) `2 normal-
ization and v) PCA dimensionality reduction. Such FV lay-
ers are stacked into a FV network. Peng et al. [37] explored
a similar idea for action recognition. Sydorov et al. [49]
on the other hand propose to improve on the FV by jointly
learning the SVM classifier and the GMM visual vocabu-
lary. This is inspired by back-propagation as used to learn
NN parameters: the SVM gradients are back-propagated to
compute the GMM gradients. This idea was extended to
the VLAD [36]. Our hybrid architecture is orthogonal to
and can be combined with [47, 37] and [49, 36] – see the
conclusion. Finally, Gong et al. [17] address the lack of ge-
ometric invariance of CNNs by extracting CNN activations
from large patches, embedding them using VLAD encoding
and aggregating them at multiple scales.

Mid-level features from classifiers. A simple approach to
compute a representation from a set of image classifiers is
to input an image to these classifiers and to stack their out-
puts into a vector [51, 50]. An issue with this approach
is that the number of classes constrains the representation
dimension. To control this dimension, Bergamo et al. [4]
and Gordo et al. [18] proposed to learn classifiers with an
intermediate hidden layer whose number of units can be
parametrized and to represent a new image as the output
of this intermediate layer. A natural extension is to learn
deeper architectures, i.e. architectures with more than one
hidden layer, and to use the output of these intermediate
layers as features for the new tasks. Krizhevsky et al. [28]
showed qualitatively that the output of the penultimate layer
could be used for image retrieval. This finding was quan-
titatively validated for a number of tasks including image
classification [13, 34, 56, 6, 41], image retrieval [41, 1], ob-
ject detection [16], and action recognition [34]. We show
that the output of the intermediate layers of our architecture
can also be used as generic image representations.

3. System Architecture
Fig. 1 illustrates the proposed architecture. The first set

of unsupervised layers relies on the FV framework. The re-
sulting representation is then fed to a set of fully connected
supervised layers. We first detail the two sets of layers of
our architecture. We then highlight the main differences be-
tween this architecture and standard FV and CNN pipelines.

3.1. Unsupervised layers

Architecture. Our architecture involves three unsupervised
layers that sequentially perform local feature extraction, FV
encoding and dimensionality reduction.

Local feature extraction layer (u1). Our framework is
independent of a particular choice of local descriptors. Fol-
lowing [45] we use SIFT and color descriptors but other lo-
cal descriptors could have been included. We resize images
to 100K pixels while keeping the aspect ratio. We extract
24×24 patches every 4 pixels at 5 scales thus leading to ap-
proximately 10K patches per image. From each patch we
extract two types of local descriptors: 128-dim SIFT de-
scriptors [32] and 96-dim Local Color Statistics (LCS) [8].
Their dimensionality is reduced with PCA respectively to
77-dim and 45-dim. Following [44] we concatenate to these
descriptors the xy coordinates as well as the scale of the
patches, thus yielding 80-dim and 48-dim descriptors.

FV encoding layer (u2). Perronnin and Dance [38] ap-
plied the Fisher Kernel [22] framework to images by using
as a generative model of local descriptors a Gaussian Mix-
ture Model (GMM). This was later refined by Perronnin et
al. [39] and was shown to be a state-of-the-art patch encod-
ing technique [5, 27, 45]. Given a GMM with K Gaus-
sians, let us denote its parameters by λ = {wk, µk, σk, k =
1 . . .K} with wk, µk, and σk respectively the mixture
weight, mean vector and standard deviation vector of Gaus-
sian k (assuming a diagonal covariance). In the FV frame-
work, the D-dim descriptor x is embedded with a function
Φ(x) = [ϕ1(x), . . . , ϕK(x)] into a 2KD-dim space where
each function ϕk(x) : RD → R2D is defined by:

ϕk(x) =

»
γ(k)√
wk

„
x− µk

σk

«
,
γ(k)√
2wk

„
(x− µk)2

σ2
k

− 1

«–
(1)

and γ(k) denotes the soft assignment of descriptor x to
Gaussian k. We use a GMM with 1K=1,024 Gaussians. The
per-patch FVs are aggregated with sum-pooling, square-
rooted and `2-normalized. One FV is computed on the SIFT
descriptors and one on the LCS descriptors. The two FVs
are concatenated into a 256K-dim representation.

FV dimensionality reduction layer (u3). These FVs are
too high-dimensional to be processed as is both for memory
and computational reasons. To address this issue we use a
simple PCA dimensionality reduction followed by whiten-
ing and `2-normalization. PCA followed by whitening has
been recently rediscovered as a useful transformation for
tasks such as retrieval and classification [23] or detection



Figure 1. Proposed hybrid architecture. Image patches are described by PCA-projected SIFT descriptors (u1). These descriptors are then
embedded using FV-encoding and aggregated. This image-level representation is normalized by square-rooting and `2-normalization (u2).
The resulting FV is PCA-projected and re-normalized (u3). The supervised layers (s1), (s2), .. (sL−1) involve a linear projection followed
by a reLU. The last layer (sL) involves a linear projection followed by a softmax or a sigmoid and produces the label estimates. Our
architecture can be considered deep as it stacks several unsupervised and supervised layers. To simplify the figure, we assumed that only
SIFT descriptors were extracted. However, in practice, we also leverage color descriptors (see text).

[20]. In our experiments, the FV dimensionality is reduced
from 256K down to 4K. This value stroke a good compro-
mise between efficiency gain and accuracy loss.
Learning. All previous layers are learned in an unsuper-
vised fashion. A significant advantage of such a strategy
is that the corresponding parameters can be learned once
and for all on a representative set of unlabeled images. In
our experiments, this is done on a subset of 10K images
of the ILSVRC’10 training set. The PCA reduction of the
local descriptors and the GMM were learned on a sub-
sample of 1M local descriptors randomly extracted from
these 10K images. Given that the number of training im-
ages was smaller than the FV dimensionality (10K<256K),
we learned the FV-level PCA in the dual.

3.2. Supervised layers

The PCA-reduced FVs output by the last unsupervised
layer (u3) are input to the first supervised layer (s1).
Architecture. The supervised part of our architecture con-
sists of a set of L fully connected layers that involve a
linear projection followed by a non-linearity. If xn−1

is the input of (sn), xn is its output and if σ denotes
the non-linearity, we have xn = σ(Fn(xn−1)) where
Fn(x) = Wnx + bn and Wn and bn are the parameters
to be learned. For the intermediate hidden layers (s1) to
(sL−1), we use a rectified Linear Unit (reLU) non-linearity
σ(x) = max(0, x) which showed improved convergence
with respect to sigmoid non-linearities both in computer vi-
sion [28] and speech recognition [55, 9]. As for the out-
put of the last layer (sL), in the mono-label case (e.g. Ima-
geNet) we use a softmax non-linearity which given the vec-
tor x = [x(1), . . . , x(E)] performs the following transfor-
mation: x(e)→ exp(x(e))/

∑E
i=1 exp(x(i)). This ensures

that output scores are non-negative and sum to unity and
thus provides a probabilistic-like output. In the multi-label
case (e.g. PASCAL VOC) we use a sigmoid non-linearity:

x(e)→ 1/(1 + exp(−x(e))). This enables multiple output
classes to have strong activations (i.e. close to 1). We exper-
imented with a number of supervised layers varying from 1
to 4 (i.e. 0 to 3 hidden supervised layers).
Learning. To train the parameters of these supervised lay-
ers, we use the standard objective that involves minimiz-
ing the cross-entropy between the network output and the
ground-truth. We assume that we have N labeled training
images with yn,c = 1 if image n is tagged with class label
c and yn,c = 0 otherwise. We denote by ŷn,c the predic-
tion of label c for image n as output by the last supervised
layer. By definition ŷn,c = xL(c). In the mono-label case,
we maximize:

N∑
n=1

C∑
c=1

yn,c log(ŷn,c) (2)

while in the multi-label case, we maximize:
N∑

n=1

C∑
c=1

yn,c log(ŷn,c) + (1− yn,c) log(1− ŷn,c). (3)

We initialize the weights from a zero-mean Gaussian.
For the optimization, we use back-propagation with mini-
batch stochastic gradient descent and a batch size of 128.
The learning rate is fixed during an iteration (one pass over
the data). Once the validation error does not decrease any
more (i.e. it decreases by less than 0.1% absolute between
two iterations) we divide the step-size by 10. We repeat this
procedure twice, i.e. we have 3 learning rates. The starting
step-size was cross-validated in our experiments. To avoid
over-fitting, we use drop-out [28] at the input of all super-
vised layers. We use the same drop-out rate for all layers
although using different values might improve results [9].

3.3. Comparison with FV and CNN pipelines

Relationship with FVs. With respect to the standard large-
scale classification FV pipeline [45], our architecture ex-
hibits two significant differences.



Figure 2. Comparison of a Neural Network classifier with a single
hidden layer and a kernel classifier based on random feature maps.

The first one is the PCA that we use to reduce the di-
mension of the FVs, both for memory and computational
reasons. To handle the challenge of high-dimensional vec-
tors, Sánchez and Perronnin [43] use Product Quantiza-
tion (PQ) [25] which does not reduce the feature dimen-
sion. This is justified by their choice of a linear classifier
whose capacity is the feature dimension + 1. In the linear
case, high-dimensional features are necessary to get a high
enough capacity. In our case, since we use a non-linear net-
work, the capacity is not constrained by the dimension of
the features that enter the supervised layers.

The second difference is the fact that, in the standard FV
classification pipeline, supervised learning relies on kernel
classifiers, and generally on linear classifiers. In what fol-
lows, we distinguish the linear and non-linear cases. The
linear case can be readily interpreted as a special case of
our architecture where there is a single supervised layer, i.e.
L=1. The non-linear kernel case can be understood as an
architecture with two layers (L=2) where the parameters of
the first layer are not learned but fixed – see for instance
[2]. In a two-layer architecture, the first layer can be inter-
preted as a non-linear mapping Ψ and the second layer as a
linear classifier in the embedding space. Interestingly if Ψ
involves random Gaussian projections followed by a reLU
non-linearity, Ψ is the feature map of the arc-cosine kernel
of order one as proposed by Cho and Saul [7]. This shows
a close connection between NNs with a single hidden layer
and a reLU non-linearity, and arc-cosine kernel classifiers.
The main difference is that in the former case both layers
are trained in a supervised fashion while in the latter only
the second layer is learned in a supervised fashion while the
parameters of the first layer are set at random – see Fig. 2.
In section 4, we show the superiority of the proposed archi-
tecture over the arc-cosine kernel alternative.
Relationship with CNNs. While FVs and CNNs seem
quite different at first glance, several authors pointed out
that they have a lot in common [47, 49]. Indeed, the FV
extraction pipeline can also be interpreted as a series of lay-
ers that alternate linear and non-linear operations and can
be paralleled with the convolutional layers of the CNN. The
main difference between the proposed architecture and the
standard CNN [28] is that our first layers are unsupervised
while in [28] all layers are learned in a supervised fashion.

An advantage of our architecture is that one can view the
learning of the first layers as an unsupervised pre-training
stage. Since these layers do not need to be retrained for each
task, our architecture is fast to train (see “convergence” in
section 4.1). As a corollary, we can train efficiently mul-
tiple models for bagging purposes, starting from different
random initializations, as the unsupervised layers are fixed.
Also, we note that the cost of forward-passing one sample
through the unsupervised layers is much higher than the cost
of forward-passing through the supervised layers (by a fac-
tor ∼100). Hence, at inference time when bagging multiple
models, we perform only once the costly operations through
the unsupervised layers and we repeat only the costless op-
erations through the supervised layers.

4. Experiments
We first provide a detailed analysis of the proposed

architecture on ILSVRC’10. We then report results on
ILSVRC’12. Finally, we show that we can extract from
the intermediate levels of our architecture mid-level features
which can be used for classification (on PASCAL VOC’07
and VOC’12) and retrieval (on Holidays and UKB).

4.1. A detailed study on ILSVRC’10

ILSVRC’10 [42] contains 1K classes and ∼1.4M im-
ages: 1.2M for training, 50K for validation, and 150K for
testing. We follow the challenge training/validation/test
protocol and evaluation measure, i.e. the top-5 error rate.
FV dimensionality reduction. We first quantify the influ-
ence of the FV dimensionality reduction in layer (u3). In
this experiment, we use a single supervised layer for clas-
sification, i.e. a linear logistic classifier. Where we do not
perform dimensionality reduction, we use PQ to reduce the
memory footprint of the 256K-dim FVs. Using the standard
setting of [45] (FV divided into sub-vectors of 8 dimensions
and 8 bits per sub-vector), we obtain a 25.5% top-5 error.
This is exactly the accuracy reported in [45] (with 1M-dim
descriptors in their case). If we perform PCA to 4K-dim, we
obtain 27.2% which is only 1.7% higher. However, this 64-
fold compression significantly speeds-up subsequent com-
putations in supervised layers.
Model complexity and drop-out. We now study the influ-
ence of two key parameters which control the complexity of
our supervised layers: the number of supervised layers and
the number of units per layer (in all the following experi-
ments, the number of units is constant across hidden lay-
ers). As more complex models might more easily overfit,
we study the influence of these two parameters jointly with
the drop-out rate. Results are summarized in Fig. 3.

We make the following observations. Drop-out does not
help when training a linear classifier (0 hidden layer), most
certainly because we operate on low-dimensional descrip-
tors (4K) and therefore there is little opportunity to overfit.



Figure 3. Top-5 error as a function of the drop-out rate for a variable number of hidden layers and a variable number of hidden units per
layer: 1,024 (left), 2,048 (middle) and 4,096 (right) units per hidden layer (always the same number of units in each hidden layer).

The 0.5 value which is generally used in CNNs [28] does
not work in our architecture and the optimal seems to be
around 0.2 whatever the number of hidden layers and units.
Finally, more hidden layers does not seem to help for too
small a number of hidden units (see Fig. 3 left). However,
it makes a difference for a larger number of units (see Fig.
3 right) and the performance saturates with 3 hidden layers.
Comparison with kernel methods. In section 3.3, we dis-
cussed the link between kernel classifiers and NNs with one
hidden layer. We especially highlighted the close relation-
ship between the arc-cosine kernel classifier and NNs with
1 hidden layer employing reLU non-linearities. Therefore,
we compare these two alternatives. Since the arc-cosine
kernel is not common in computer vision, we also com-
pare with the RBF kernel. Because of the large number
of training samples (1.2M), we train the non-linear kernel
classifiers in the primal by leveraging explicit feature maps.
In the arc-cosine kernel case, we use the feature map pro-
posed by Cho and Saul [7] which involves a random Nor-
mal projection followed by a reLU non-linearity. In the
RBF kernel case, we use the explicit feature map of Rahimi
and Recht [40] which involves a random Normal projec-
tion, a random offset and a cosine non-linearity. We cross-
validated the kernel bandwidth of the RBF.

Results are reported in Fig. 4(a) as a function of the di-
mensionality of the feature map (for the arc-cosine and RBF
kernels) and of the number of units in the hidden layer (in
the NN case). The arc-cosine and RBF kernels perform
similarly and significantly worse than a NN with one hid-
den layer, especially for a small number of random projec-
tions / hidden units. Just to perform on par with the lin-
ear baseline (NN with no hidden layer), both the arc-cosine
and RBF kernels need to project the original samples in a
32K-dim space (8 times larger than the original 4K-dim fea-
tures). While it might be possible to obtain better results
with these kernels by projecting in even higher dimensional
spaces, this is much more costly than the NN alternative.
Convergence. We report in Fig. 4(b) the evolution of the
objective as well as the validation accuracy over the itera-

tions when learning a model with 3 hidden supervised lay-
ers with 4K units and a drop-out rate of 0.2 (the best results
reported in Fig. 3 right). We observe that the convergence
is much faster than what is reported in [28] (10 passes in
our case vs. 90 in [28]). We believe that this is because the
first layers of our architecture are pre-trained in an unsu-
pervised manner and are kept fixed during the supervised
learning process, thus reducing the number of parameters
to be learned. Running 24 threads on a Linux server with
Intel R©CoreTM i5-2400 CPUs @ 3.10GHz and 128GBs of
RAM, a pass over the data is carried out in ∼ 1h with our
C++ implementation. Hence, the whole training process
takes about 10h on a single server. Using multiple servers, it
is possible to train in parallel multiple models from different
initializations and to bag their outputs.
Bagging. We consider architectures with 0, 1, 2 and 3 hid-
den supervised layers. For each architecture, we train 8 dif-
ferent models using different random seed initializations.
To combine the output of multiple networks, we multiply
the probabilistic outputs. Results are presented in Fig. 4(c)
when combining 2, 4 or 8 models. The larger the number
of hidden layers, the greater the impact of bagging. This
does not come as a complete surprise. Indeed, when there
is no hidden supervised layer the objective to be optimized
is convex and therefore different initializations lead to the
same solution. The larger the number of hidden layers, the
greater the opportunity to converge to different solutions. In
the case of 3 hidden layers, we go from a top-5 error rate of
22.6% with no bagging to 20.2% with bagging.
Data augmentation. A standard way to avoid overfitting
when training classifiers and especially deep architectures is
to artificially augment the data by introducing transformed
versions of the original images. For instance, Krizhevsky et
al. [28] uses a predefined set of crops, flips and color pertur-
bations. To avoid manually choosing the transformations,
we run the Iterative Transformation Pursuit (ITP) algorithm
of Paulin et al. [35] on a subset of ILSVRC’10 (using all
1K classes but only 30 images per class) and choose a set
of 4 transformations on top of the original images. Hence,



(a) (b) (c)

Figure 4. Top-5 error on ILSVRC’10. (a) Comparison of a linear classifier, a NN with 1 hidden layer and kernel classifiers with explicit
feature maps. (b) Log-posterior objective and validation error as a function of the number of passes over the training data. (c) Impact of
bagging for NNs with 0, 1, 2 and 3 hidden layers and 4K units per hidden layer. For each model, we chose the best validation drop-out rate.

Proposed hybrid
hidden units data augm. bagging top-5 error (in %)

4K no no 22.6
4K no yes 20.2
4K yes no 19.8
4K yes yes 18.1
8K yes yes 17.6

State-of-the-art
[45] FV 25.5
[35] FV + ITP 25.1
[47] deep Fisher network 20.8
[35] DeCAF + ITP 18.6
[28] AlexNet CNN 17.0

Table 1. Impact of data augmentation and bagging on ILSVRC’10
for an architecture with 3 hidden supervised layers. We also com-
pare with the state-of-the-art.

the number of images is multiplied by 5. Data augmen-
tation is used both at training and test time. At test time,
we multiply the predictions corresponding to the different
transformations of the images.

In the case where we have no hidden supervised layer
(i.e. we learn a linear classifier on top of the 4K-dim PCA-
reduced FVs), the error rate is decreased from 27.2% with
no data augmentation to 25.2% with data augmentation. In
the case where we have 3 hidden supervised layers, we re-
port the results in Table 1. We observe a 2.8% improve-
ment without bagging (from 22.8% to 19.8%) and a 2.1%
improvement with bagging (from 20.2% to 18.1%).
Learned representations. It is interesting to visualize what
is learned by our architecture. For this purpose, we in-
spected the output of the intermediate unsupervised and su-
pervised layers – see Fig. 5 and its caption. The conclu-
sion is that the output of supervised layers is more semanti-
cally consistent than the output of unsupervised layers. This
makes for a strong case to use the output of supervised lay-
ers as generic mid-level features – see section 4.3.
Comparison with the state-of-the-art. To obtain the best
possible results with our architecture, we use three hidden
supervised layers with 8K hidden units. We perform data

Proposed hybrid (Bag-8) 19.8
[42] Best challenge FV results 26.2
[28] AlexNet CNN (Bag-5) 16.4
[56] Zeiler CNN (Bag-6) 14.7
[46] OverFeat CNN (Bag-7) 13.2
[48] Simonyan CNN (Bag-7) 7.5

Table 2. Comparison with the state-of-the-art on ILSVRC’12.
When relevant, we indicate how many models are bagged. Top-
5 error (in %).

augmentation (original image + 4 transforms) and bag 8
models. This leads to a top-5 error rate of 17.6%. Note that
if we perform only training set (but not test set) augmenta-
tion we obtain 19.0%. We compare these results with the
state-of-the-art in Table 1. We report significantly better re-
sults than a FV baseline [45] and the FV + ITP results [35].
Our system is competitive with respect to CNNs [28, 35].
Note that Simonyan et al. [47] report a 14.3% top-5 error
by combining deep Fisher networks and CNNs. Similarly,
we could combine the output of our model with that of a
standard CNN.

4.2. Results on ILSVRC’12

We also benchmark our architecture on ILSVRC’12 [42]
for which many results have been reported recently in the
literature. This dataset contains 1K classes, ∼1.2M training
images and 50k validation images. Since the test labels are
not available, we report results on the validation set as is
standard practice. We use training set augmentation and
bag 8 models. To avoid overfitting our architecture to the
validation data, we use the best architecture of ILSVRC’10:
three hidden supervised layers with 8K hidden units and a
0.2 drop-out rate in all supervised layers. We obtain a top-5
error rate of 19.8%.

We compare to the state-of-the-art in Table 2. Our accu-
racy is significantly better than the best FV-based results re-
ported on this dataset (during the challenge). However, it is
somewhat below the CNN systems [28, 56, 46] and signifi-
cantly below the recent very deep architecture by Simonyan



Figure 5. Visualizing the output of intermediate layers for an architecture with 3 hidden supervised layers and 4K units per hidden layer. For
a given layer, we show the images with the strongest responses for four random neurons (one line per neuron). Left: x0 is considered, i.e.
the output of the last unsupervised layer (u3). While the neuron outputs are visually consistent (e.g. same color), they are not necessarily
semantically consistent. This is because all the learning prior to (u3) is unsupervised. Right: x3 is considered, i.e. the output of the
penultimate layer (s3). Supervised learning makes the neuron outputs much more semantically consistent.

and Zisserman [48]. We still believe that our architecture
has merits of its own. Especially, it does not require GPUs
or very large clusters [29] to be trained. Training the system
from scratch on a small CPU cluster (8 machines) takes∼10
days: 7 days for the extraction of the PCA-reduced FVs and
3 days for the supervised training of the 8 models. This is to
be compared e.g. with the 2-3 weeks reported by Simonyan
and Zisserman in [48] to train a single model with a four
NVIDIA Titan black GPU system.

4.3. Transferring mid-level features

In standard CNN architectures trained on large datasets
such as ImageNet, the outputs of intermediate layers have
been used as mid-level features in a large variety of new
tasks. We now show that our architecture has the same
property. We start from a model learned on ILSVRC’12
(3 hidden supervised layers with 4K units and a drop-out
rate of 0.2) and study how such a classifier can transfer to
new tasks for which we have less (or no) training data. We
consider both classification and instance retrieval tasks.

4.3.1 Classification

Experiments are conducted on PASCAL VOC’07 and
VOC’12 [14, 15] which contain 20 classes. VOC’07 is split
into 2,501 training, 2,510 validation and 4,952 test images.
VOC’12 is composed of 5,717 training, 5,823 validation,
and 10,991 test images. Following the PASCAL guidelines,
we first propose a study on VOC’07 and report a single run
on VOC’12 (evaluated on the PASCAL server). On both
datasets, we report the mean Average Precision (mAP).
Transfer strategy. We follow the strategy that involves
extracting the output of the penultimate layer (xL−1 in
our case), `2-normalizing it and feeding it to a classi-
fier [13, 16]. We consider both linear and non-linear clas-
sifiers. In the non-linear case, to stay in the spirit of the
proposed architecture, we learn a NN with fully connected

classifier data augm. bagging mAP (in %)
linear no no 71.1 ± 0.12
linear yes no 72.9 ± 0.19
linear yes yes 74.5

non-linear no no 73.1 ± 0.13
non-linear yes no 74.8 ± 0.25
non-linear yes yes 76.2

Table 4. mAP on VOC’07 for linear vs. non-linear classifiers,
with/without data-augmentation and with/without bagging.

layers, reLU non-linearities for the hidden layers and sig-
moid non-linearities for the last layer (see section 3.2). We
cross-validated the number of layers, the number of hidden
units and the drop-out rate.
Data augmentation and bagging. Since we have a limited
amount of labeled training VOC images, we use data aug-
mentation on VOC too. To this end, we apply ITP [35] to
select 4 transformations (on top of the original images), and
apply them at training and test time. The ITP learning is
done on the training and validation sets using a linear clas-
sifier. We use the same chosen transformations in both the
linear and non-linear cases. We also consider the bagging
of multiple systems (8 in our experiments).
Results. We show results in Table 4. As observed for
ILSVRC’10, non-linear classifiers improve over linear ones
despite the limited amount of training data. Data augmen-
tation and bagging always help. Our best results of 76.2%
mAP are obtained by bagging 8 classifiers with 3 hidden
layers (2K units per layer).
Comparison with state-of-the-art. We now compare our
results with other mid-level representations in Table 5. For
VOC’12, we trained the system with the best VOC’07 set-
ting and submitted our results to the PASCAL server1. First
we report superior performance with respect to the standard
FV pipeline [45] and its improved version from [6]. We also

1Detailed results available at: http://host.robots.ox.ac.
uk:8080/anonymous/ZPBASO.html

http://host.robots.ox.ac.uk:8080/anonymous/ZPBASO.html
http://host.robots.ox.ac.uk:8080/anonymous/ZPBASO.html


Methods FV x0 x∗ Bag-8 + PCA FV+proj [18] CNN+VLAD [17] CNN [1] CNN [41]
dim 256K 4K 4K 512 4K 512 12K 4K 500

Holidays 82.4 83.5 80.5 ± 0.31 82.7 84.7 79.0 80.2 74.9 64.2
UKB 3.35 3.33 3.36 ± 0.01 3.37 3.43 3.36 - 3.43 3.04

Table 3. Retrieval results on Holidays and UKB. x∗ indicates that we use the output of the best intermediate layer.

VOC’07 VOC’12
Proposed Architecture 76.2 77.7

[45] baseline FV 63.9 -
[6] improved FV 68.0 -
[13] from [6] DeCAF - CNN 73.4 -
[41] Razavian - CNN 77.2 -
[56] Zeiler - CNN - 79.0
[6] Chatfield - CNN 82.4 83.2
[34] Oquab - CNN 77.7 78.7
[21] He - CNN 80.1 -
[52] Wei - CNN 81.5 81.7

Table 5. Comparison with other mid-level representations on PAS-
CAL VOC’07 and VOC’12 (mAP in %).

outperform off-the-shelf DeCAF results and perform on par
with the results of Razavian et al. [41], Oquab et al. [34]
and Zeiler and Fergus [56]. He et al. [21] and Wei et al. [52]
report better performance but with significantly more com-
plex transfer strategies. [21] uses a spatial pyramid pooling
layer, with 50 bins. [52] uses a significantly more com-
plex classification pipeline driven by bounding box propos-
als. The best results are those of Chatfield et al. [6] with a
costly architecture. Note that [34] and [52] also report bet-
ter results with extended class sets (i.e. more than the 1,000
classes of ILSVRC’12).

4.3.2 Instance-level retrieval

We study the application of our mid-level features to in-
stance retrieval. We consider two datasets: INRIA Holi-
days [24] (Holidays) which involves 1,491 images of 500
scenes and the University of Kentucky Benchmark [33]
(UKB) which involves 10,200 images of 2,250 objects. We
use the standard evaluation measures: mean AP (mAP) for
Holidays and 4 times the recall at top 4 on UKB.
Layer choice. We extract and `2-normalize the output of in-
termediate layers and compare them with the dot-product.
As observed by Yosinski et al. [54], the transferability of
features decreases as the distance between the base and tar-
get tasks increases. For UKB, whose images are closer to
the ImageNet ones, we use x2, while for Holidays, which
contains mostly scenes, we use x1. We also report results
for two baselines: using the high-dimensional FVs and the
PCA-reduced FVs, i.e. x0.
Bagging. Bagging can be done by fusing the scores of mul-
tiple queries. However, the query cost of this late fusion
strategy increases linearly with the number of models. In-
stead, we concatenate the representations produced by the
different models, and reduce the dimension of this new rep-

resentation with PCA-whitening (learned on ILSVRC’10).

Results. All results are reported in Table 3. We also com-
pare with other compact global image representations. We
observe that the PCA-reduced FVs obtain very competitive
results and that using the best intermediate layer leads to a
decrease of performance on Holidays and to only a slight
increase on UKB. However, the proposed bagging strategy,
that involves PCA and whitening, leads to improvements
with a competitive result of 84.7% (resp. 3.43) on Holi-
days (resp. UKB) for 4K dimensions. [41] reports 84.3%
on Holidays and 3.64 on UKB with a costly setting that in-
volves extracting and matching multiple CNN features per
image. Our results are obtained by extracting and matching
a single descriptor per image. Babenko et al. [1] also re-
port better results on Holidays (79.3%) for a CNN that has
been retrained using an external dataset of landmarks. This
additional information could be used by our architecture as
well, e.g. by learning an extra set of layers as done on VOC.

5. Conclusion

Summary. We proposed a hybrid architecture for image
classification that combines the benefits of FV and CNN
pipelines. A first set of unsupervised layers involves the
extraction and dimensionality reduction of FVs while the
subsequent supervised layers are fully connected. The pro-
posed approach was shown to significantly improve over
previous FV systems without incurring the high cost asso-
ciated with CNNs. Especially, our system does not require
training with GPUs or large CPU clusters. We also showed
that mid-level representations extracted from our architec-
ture were competitive with the mid-level features extracted
from CNN representations, on several target tasks.

Future work. We believe that our current architecture
can be improved in its last unsupervised layer, i.e. the un-
supervised dimensionality reduction of FVs. On the one
hand PCA significantly reduces the high-dimensional FVs,
and makes the subsequent supervised training and param-
eter search manageable. On the other hand, FVs contain
much fine-grained information [19] that might be discarded
by this operation. An alternative inspired by [47] would
be to use a supervised dimensionality reduction instead of
PCA. Another alternative inspired by [49] would be to back-
propagate the gradients to the currently unsupervised layers
to fine-tune them. We leave this for future work.



Acknowledgments
This work was done in the context of the Project Fire-ID,

supported by the Agence Nationale de la Recherche (ANR-
12-CORD-0016).

References
[1] A. Babenko, A. Slesarev, A. Chigorin, and V. S. Lempitsky.

Neural codes for image retrieval. In ECCV, 2014. 1, 2, 8
[2] Y. Bengio and Y. LeCun. Large-Scale kernel machines, chap-

ter Scaling learning algorithms towards AI. MIT press, 2007.
4

[3] A. Berg, R. Farrell, A. Khosla, J. Krause, L. Fei-Fei, J. Li,
and S. Maji. Fine-Grained Competition (FGComp). http:
//sites.google.com/site/fgcomp2013/, 2013.
1

[4] A. Bergamo, L. Torresani, and A. Fitzgibbon. PiCoDeS:
Learning a compact code for novel-category recognition. In
NIPS, 2011. 2

[5] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. BMVC, 2011. 2

[6] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: delving deep into convolu-
tional nets. In BMVC, 2014. 2, 7, 8

[7] Y. Cho and L. Saul. Kernel methods for deep learning. NIPS,
2009. 4, 5

[8] S. Clinchant, G. Csurka, F. Perronnin, and J.-M. Renders.
XRCE’s participation to imageval. ImageEval @ CVIR,
2007. 2

[9] G. Dahl, T. Sainath, and G. Hinton. Improving deep neural
networks for LVCSR using rectified linear units and dropout.
In ICASSP, 2013. 1, 3

[10] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classi-
fying more than 10,000 image categories tell us? In ECCV,
2010. 1

[11] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio,
Y. Li, H. Neven, and H. Adam. Large-scale object classifica-
tion using label relation graphs. In ECCV, 2014. 1

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In CVPR, 2009. 1

[13] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. DeCAF: A deep convolutional acti-
vation feature for generic visual recognition. In ICML, 2014.
1, 2, 7, 8

[14] M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. The Pascal visual object classes (VOC) chal-
lenge. IJCV, 2010. 7

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.
7

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 1, 2, 7

[17] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale
orderless pooling of deep convolutional activation features.
In ECCV, 2014. 1, 2, 8

[18] A. Gordo, J. Rodrı́guez-Serrano, F. Perronnin, and E. Val-
veny. Leveraging category-level labels for instance-level im-
age retrieval. In CVPR, 2012. 1, 2, 8

[19] P.-H. Gosselin, N. Murray, H. Jégou, and F. Perronnin. Re-
visiting the Fisher vector for fine-grained classification. PRL,
2014. 1, 8

[20] B. Hariharan, J. Malik, and D. Ramanan. Discriminative
decorrelation for clustering and classification. In ECCV,
2012. 3

[21] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In
ECCV, 2014. 8

[22] T. Jaakkola and D. Haussler. Exploting generative models in
discriminative classifiers. In NIPS, 1998. 2

[23] H. Jégou and O. Chum. Negative evidences and co-
occurrences in image retrieval: the benefit of PCA and
whitening. In ECCV, 2012. 2

[24] H. Jégou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
ECCV, 2008. 8

[25] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. IEEE TPAMI, 2011. 4

[26] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, 2010. 2

[27] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and
C. Schmid. Aggregating local image descriptors into com-
pact codes. TPAMI, 2012. 2

[28] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet clas-
sification with deep convolutional neural networks. In NIPS,
2012. 1, 2, 3, 4, 5, 6

[29] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Cor-
rado, J. Dean, and A. Ng. Building high-level features using
large scale unsupervised learning. In ICML, 2012. 1, 7

[30] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard,
W. Hubbard, and L. Jackel. Handwritten digit recognition
with a back-propagation network. NIPS, 1989. 1

[31] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and
T. Huang. Large-scale image classification: fast feature ex-
traction and SVM training. In CVPR, 2011. 1

[32] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 2004. 2

[33] D. Nistér and H. Stewénius. Scalable recognition with a vo-
cabulary tree. CVPR, 2006. 8

[34] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and
transferring mid-level image representations using convolu-
tional neural networks. In CVPR, 2014. 1, 2, 8

[35] M. Paulin, J. Revaud, Z. Harchaoui, F. Perronnin, and
C. Schmid. Transformation pursuit for image classification.
In CVPR, 2014. 5, 6, 7

[36] X. Peng, L. Wang, Y. Qiao, and Q. Peng. Boosting VLAD
with supervised dictionary learning and high-order statistics.
In ECCV, 2014. 2

http://sites.google.com/site/fgcomp2013/
http://sites.google.com/site/fgcomp2013/


[37] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition
with stacked Fisher vectors. In ECCV, 2014. 2

[38] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. CVPR, 2007. 1, 2

[39] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
Fisher kernel for large-scale image classification. ECCV,
2010. 1, 2

[40] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. NIPS, 2007. 5

[41] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. CNN features off-the-shelf: an astounding baseline for
recognition. In CVPR Deep Vision Workshop, 2014. 2, 8

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. arXiv, 2014. 1, 4, 6

[43] J. Sánchez and F. Perronnin. High-dimensional signature
compression for large-scale image classification. In CVPR,
2011. 1, 4

[44] J. Sánchez, F. Perronnin, and T. de Campos. Modeling the
spatial layout of images beyond spatial pyramids. In PRL,
2012. 2

[45] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Im-
age classification with the Fisher vector: theory and practice.
IJCV, 2013. 2, 3, 4, 6, 7, 8

[46] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun. OverFeat: Integrated recognition, localization and
detection using convolutional networks. In ICLR, 2014. 1, 6

[47] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher
networks for large-scale image classification. In NIPS, 2013.
1, 2, 4, 6, 8

[48] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv, 2014. 1,
6, 7

[49] V. Sydorov, M. Sakurada, and C. Lampert. Deep Fisher ker-
nels – End to end learning of the Fisher kernel GMM param-
eters. In CVPR, 2014. 1, 2, 4, 8

[50] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient ob-
ject category recognition using classemes. In ECCV, 2010.
1, 2

[51] G. Wang, D. Hoiem, and D. Forsyth. Learning image simi-
larity from Flickr groups using stochastic intersection kernel
machines. In ICCV, 2009. 1, 2

[52] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and
S. Yan. CNN: single-label to multi-label. arXiv, 2014. 8

[53] J. Weston, S. Bengio, and N. Usunier. Large scale image
annotation: learning to rank with joint word-image embed-
dings. ECML, 2010. 1

[54] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. Quantifying
the transferability of features in deep neural networks. arXiv,
2014. 8

[55] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. le,
P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. Hinton.
On rectified linear units for speech processing. In ICASSP,
2013. 1, 3

[56] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV. 2014. 1, 2, 6, 8

[57] Z. Zhou, K. Yu, T. Zhang, and T. Huang. Image classification
using super-vector coding of local image descriptors. ECCV,
2010. 1


