
Motion Part Regularization: Improving Action Recognition via Trajectory
Group Selection

Bingbing Ni
ADSC Singapore

bingbing.ni@adsc.com.sg

Pierre Moulin
UIUC USA

moulin@ifp.uiuc.edu

Xiaokang Yang
SJTU China

xkyang@sjtu.edu.cn

Shuicheng Yan
NUS Singapore
eleyans@nus.edu.sg

Abstract

Dense local trajectories have been successfully used in
action recognition. However, for most actions only a few
local motion features (e.g., critical movement of hand, arm,
leg etc.) are responsible for the action label. Therefore,
highlighting the local features which are associated with
important motion parts will lead to a more discriminative
action representation. Inspired by recent advances in sen-
tence regularization for text classification, we introduce a
Motion Part Regularization framework to mine for discrim-
inative groups of dense trajectories which form important
motion parts. First, motion part candidates are generated
by spatio-temporal grouping of densely extracted trajec-
tories. Second, an objective function which encourages
sparse selection for these trajectory groups is formulated
together with an action class discriminative term. Then,
we propose an alternative optimization algorithm to effi-
ciently solve this objective function by introducing a set of
auxiliary variables which correspond to the discriminative-
ness weights of each motion part (trajectory group). These
learned motion part weights are further utilized to form
a discriminativeness weighted Fisher vector representation
for each action sample for final classification. The proposed
motion part regularization framework achieves the state-of-
the-art performances on several action recognition bench-
marks.

1. Introduction

Video based action recognition is a challenging task
due to large variation of human posture/movement and sig-
nificant background/irrelavant motions. Spatio-temporal
local motion features, such as spatio-temporal interest
points (STIPs) [10], HOG3D [7], Cuboids [2] and espe-
cially the recent prevailing dense trajectories [23, 25], have
shown great discriminative capability in action recognition.
Typically, hundreds of thousands of dense local trajectories
are extracted from a given video clip. After feature extrac-
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Figure 1. Motivation of our work. Note that our motion part regu-
larization framework generate discriminativeness weighted Fisher
vector representation, which is more discriminative than the un-
weighted traditional Fisher vector.

tion, a bag-of-words [23] or Fisher vector [25] action rep-
resentation vector is calculated by pooling the entire video.
However, this processing pipeline has obvious drawbacks.
For most actions, only a small subset of local motion fea-
tures out of the entire video is relevant to the action label.
For example, when a person is waving his hand while walk-
ing, only the movement around the arm/hand is responsi-
ble for the action waving hand. Another example is when
there exist severe background motions, it would be demand-
ing that the video-level action representation should make
the foreground motion highlighted. Unfortunately, in either
bag-of-words or Fisher vector, redundant and noisy features
extracted over the entire video sequence may dominate the
representation and downgrade the discriminative capability.

Based on the latent structural model [4], several local
motion feature selection methods have been proposed for
action recognition. Wang et al. [31] proposed a max-margin
hidden conditional random field framework to select dis-
criminative spatio-temporal interest points by considering
the spatial relationship among the local features. Roo and
Aggarwal [18] matched two local motion feature graphs for
action detection. Graph-based approach is also adopted for
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video annotation and classification [30, 29]. To recognize
action, Yuan et al. [33] searched for video volumes that con-
tain discriminative STIP features. Raptis et al. [17] utilized
a latent model to select discriminative clusters of motion
trajectories. Kong et al. [8] proposed to select interaction
phrases for human interaction recognition. However, these
selection method have several limitations. First, the local
features selected by these methods are very sparse (i.e., of-
ten less than 10 local features or feature clusters for each
video sample). This is partly because of the fact that current
optimization scheme for solving a latent structural SVM
problem is very costly if the number of latent variables is
large. As a consequence, realistic action videos have very
large variations and reasonable action representation can-
not be achieved with such sparse local features. Moreover,
even a small amount of irrelevant background motion or
variation of human movement will cause local feature con-
stellation based action models to fail. A good evidence is
that the action classification accuracies achieved by these
selection methods [31, 17] on benchmarks are not compa-
rable to those resulting from bag-of-words or Fisher vector
representations based on dense trajectories [23, 25]. Sec-
ond, training a good latent structural SVM model heavily
depends on a good initialization or latent part annotation.
Third, in some scenarios, full body motion might not be
completely useless. For example, the statistics of the whole
body motion features can be used to recognize actions such
as walking, running, etc.

Motivated by these observations, we believe that a good
trade-off between the above two types of methods, i.e.,
global uniform pooling of dense local motion features or
selecting a sparse set of discriminative local features, can
achieve better action recognition performance. Namely,
instead of selecting some local features, we can measure
the discriminative score of each local feature and rely on
these scores to pool the local features in a weighted man-
ner. For such a purpose, we first cluster dense trajecto-
ries into spatio-temporal groups, which are called motion
parts in this work. Then, we propose a simple yet effec-
tive learning approach which can select discriminative mo-
tion parts in a soft manner, i.e., to assign a weight to each
motion part to indicate its discriminativeness and use these
learned weights for more discriminative action representa-
tion by attenuating the of effect of irrelevant motion parts.
Our method is inspired by the recent work called Sentence
Regularization for document classification [32]. In [32], the
key observation is that the text words in only a few sen-
tences are relevant to the document label, which is very sim-
ilar to the action recognition scenario: only a few motion
parts that are associated with important moving body parts
such as hand, arm, leg, etc., convey high discriminative in-
formation. In this sense, each motion part can be regarded
as a sentence that contains a set of local trajectory features

which are indexed into some visual words. For an action
video, this results in tens of thousands of motion parts (sen-
tences), and the visual words within these sentences are
shared, i.e., we have overlapping groups of visual words.
To select discriminative local motion part/trajectory group,
for each local motion feature in each group we introduce
an auxiliary variable, which can be regarded as a local copy
of the global weight of the visual word it belongs to. The
introduction of these local copies helps to convert the over-
lapping group lasso feature selection problem (which is not
efficient to solve) to a non-overlapping group lasso prob-
lem. We thus introduce a simple yet effective alternative
optimization scheme to simultaneously optimize the global
classifier model weights associated with the visual words
and the local copies of these weights. Finally, we utilize
these learned weights of local motion parts to compute the
discriminativeness weighted action representation for each
action video. The motivation of our method is illustrated
in Figure 1. Experiments on several benchmarks including
Hollywood2 [12], HMDB51 [9], and Olympic Sports [14]
show that the proposed method improves action recognition
performance.

The rest of this paper is organized as follows. First, we
discuss the related work in Section 2. Section 3 presents the
proposed motion part regularization framework and our ac-
tion representation pipeline. Extensive experimental results
and discussions on several benchmark datasets are given in
Section 4. Section 5 concludes the paper.

2. Related Work
Besides selecting information local motion features, sev-

eral researchers have explored the idea of selecting the
most informative spatio-temporal volumes for human ac-
tion recognition, mostly based on the latent structural SVM
model [4]. Satkin and Hebert [19] proposed to select the
most discriminative temporal cropping of training videos to
improve action recognition performance. The best tempo-
ral cropping for each training video is inferred by iteratively
mining data using a leave-one-video-out scheme followed
by a latent structural SVM refinement. In Duchenne et
al. [3], video is segmented into overlapping spatio-temporal
volumes and a sliding-window SVM detector is utilized
for action detection. Shi et al. [20] proposed a discrim-
inative action segmentation and recognition using semi-
Markov model. Niebles et al. [14] represented an activ-
ity as temporal compositions of motion segments. The en-
tire video volume is first decomposed into several temporal
sub-volumes and bag of STIP [10] features are computed
within each sub-volume. A query video is matched to the
best video sub-volume from the training videos. Tang et
al. [21] developed variable-duration hidden Markov mod-
els for partitioning the video into variable-length temporal
sub-volumes. A max-margin latent structural SVM is uti-



lized to automatically discover discriminative temporal par-
titions. Recently, Ni et al. [13] utilized the human key pose
information to adaptively select the best video sub-volume
for action recognition. Latent structural SVM model is also
utilized.

On one hand, these methods mostly select spatio-
temporal video sub-volumes and calculate the bag-of-word
representations within the selected sub-volumes. However,
these sub-volumes might not well correspond to informative
moving parts of human, e.g., hand, arm, leg, head etc. In
contrast, spatio-temporally grouped dense trajectory clus-
ters (motion part) are more related to semantic parts of the
human body. On the other hand, most of these methods are
based on latent structural SVM model, and as mentioned in
the introduction, the quality of the learned model heavily re-
lies on model initialization. In contrast, our proposed train-
ing algorithm is simple, effective and stable which does not
depend on the initialization. Also, these methods use sparse
features/feature groups, which is less discriminative than
dense sampling based methods like ours. Wang et al. [26]
mine discriminative motion groups associated with human
skeleton joints for RGB-D action recognition, however, this
method heavily rely on the extra skeleton joints informa-
tion.

3. Action Recognition via Motion Part Regu-
larization

We introduce the details of our proposed action recogni-
tion pipeline based on motion part regularization in this sec-
tion. The pipeline includes motion part generation, discrim-
inative motion part selection via motion part regularization,
and discriminativeness weighted action representation for-
mulation based on the learned motion part weights.

We begin with the notations used in this paper. Assume
we are given D video samples. For the video sample d, we
denote the set of local motion feature vectors (e.g., MBH,
HOF, HOG, or trajectory shape descriptor for dense trajec-
tories [23, 25]) as {xi}i=1:Nd where Nd is the number of
local features extracted in the video sample d. In the bag-
of-words context, each local feature is indexed to a visual
word and we assume the size of the visual word vocabulary
(dictionary) is V . In this work, we use V = 4000 visual
words. Each video sample d is therefore represented as a
V -dimensional vector of word occurrence frequencies xd,
known as video level representation. The label associated
with video sample d is denoted as yd. In a binary classifica-
tion (action detection) setting, yd ∈ {+1,−1}.

3.1. Motion Part Generation

Our goal is to select discriminative mid-level visual parts
to represent action. The mid-level representations are ex-
pected to correspond to semantic parts/regions of the hu-

man body which are conducting important movement re-
lated to the action label. Although there exist other options
for mid-level action representations such as densely sam-
pled video sub-volumes [27, 15], we believe that the dense
trajectory cluster/group proposed in [17] is a more appropri-
ate choice, since the dense trajectories within a local clus-
ter present very similar motion characteristics and they are
spatio-temporally very close to each other (most likely be-
long to the same body part).

Following [17], we first extract dense trajectories over
the entire video volume [23]. We follow the default settings
of [23] for dense trajectory extraction. To partition/cluster
the dense local trajectories into a set of semi-local trajectory
clusters, we compute the similarity among trajectory pairs
and form an Nd × Nd affinity matrix for a video that con-
tains Nd trajectories. We use the same distance measure for
a pair of trajectories as in [17] by considering their temporal
overlapping, spatial proximity and speed similarity. Follow-
ing [17], we also enforce the affinity to be zero for trajectory
pairs that are not spatially close (i.e., distance larger than
some threshold). We then apply the graph based clustering
method used in [17] to partition the trajectories into groups.
To minimize the risk of missing important motion parts, we
run the partition algorithm using four scales (i.e., maximum
allowed number of trajectories within each cluster/group)
to form trajectory clusters with different average sizes. We
name each trajectory group as a Motion Part, i.e., the tra-
jectories within such a group is spatially nearby, temporally
overlapping and present very similar motion characteristics.

3.2. Motion Part Regularization

We assume a linear classifier model, which is applied to
predict the class label of d-th video sample:

f = wTxd + b. (1)

Here xd is the V -dimensional bag-of-words (histogram)
representation of video sample d (we overload the notation
of x to denote both local feature descriptor and video level
representation). w is the corresponding V -dimensional
classifier model coefficients and b is a bias. The primary
goal of classifier learning is to estimate the optimal model
parameter w which minimizes some pre-defined loss func-
tion. Although there are various options for the loss func-
tion, a very simple yet common choice is the logistic regres-
sion function:

L(w, b) = −
D∑
d=1

log
(

1 + exp
(
− yd(wTxd + b)

))
. (2)

Note that for a normalized input xi, the absolute value
of each entry of the model coefficients w naturally mea-
sures the discriminative capability of its corresponding vi-
sual word in classification. If the j-th entry of w (wj) has



a high value, it indicates that the corresponding visual word
j, j ∈ {1, · · · , V } is very discriminative for the underlying
classification task.

Besides the empirical loss minimization term L, usually
we also employ some regularization penalty to endow the
solution with some specific property. For example, the well-
known `1 regularizer enforces a sparse solution, i.e., to en-
courage the number of nonzero entries of w to be small:

Ωl(w) = ‖w‖1. (3)

In the case that features (i.e., the entries of the histogram
vector xd) can be assigned into groups, a group sparsity
penalty encourages all of the weights in a group to either be
zero or nonzero, which is known as group lasso [34]. We
can represent the group lasso regularizer as:

Ωgl(w) =

G∑
g=1

‖wg‖2, (4)

where we assume the entries of w form G groups.
Recalling that the objective in this work is to select

discriminative motion parts (trajectory groups), we show
that our problem well fits into the group sparsity (group
lasso) regularization framework. In particular, dense tra-
jectories are clustered into groups (motion parts), and se-
lecting discriminative motion parts is equivalent to enforc-
ing that only a few trajectory groups are selected during the
classifier learning. Namely, some trajectory groups receive
high weights and others recieve lower weights. A key obser-
vation is that our trajectory groups are formed locally and
therefore they are heavily overlapping. In other words, as
the visual word vocabulary is globally defined, each visual
word may occur in many motion parts (trajectory groups).
Mathematically, we use d to index over video samples and
p to index over motion parts (trajectory groups) within a
video sample. We further denote by Pd the number of mo-
tion parts in action video d. Equation (4) can be expanded
as:

Ωgl(w) =

D∑
d=1

Pd∑
p=1

‖wd,p‖2, (5)

where wd,p corresponds to the sub-vector of w such that the
corresponding features (visual words) are present in motion
part p of video d, i.e., different wd,p vectors may have heavy
overlap.

Although there exist many general solvers for the above
overlapping group lasso problem, they might not perform
efficiently in our problem, since we have hundred to thou-
sands of motion parts generated in one video. Moreover, if
we sum up over the entire training video set, the total num-
ber of overlapping groups could be more than one million.
To address this issue, inspired by [32], the key idea is to

introduce a set of auxiliary variables v to de-overlap the
groups {wd,p}.

Each entry of v defines a weight for each local tra-
jectory feature, thus the length of the vector v is the to-
tal number (denoted by N ) of dense trajectories extracted
over the entire training video set. In other words, each vj
(j ∈ {1, · · · , N}) can be regarded as a local copy of the
associated entry in w according to the visual word that the
j-th (of the entire training trajectory set) trajectory feature
is indexed to. v can be also decomposed into {vd,p}. Each
vd,p is associated with the trajectory features in the p-the
motion part (trajectory group) of the d-th video, in the simi-
lar way that wd,p is defined. Namely, each vd,p can also be
regarded as a local copy of its corresponding wd,p. The di-
mensionality of vd,p will be identical to the size (number of
trajectories) of the motion part (d, p), with one dimension
per word token.

Using the auxiliary variable v, sparse group (motion
part) selection could be enforced by the following regular-
izer:

Ωgl(v) =

D∑
d=1

Pd∑
p=1

‖vd,p‖2, (6)

and since each vd,p is just a local copy of wd,p and its el-
ements are not shared by other vd′,p′ (d 6= d′, p 6= p′),
the original overlapping lasso problem is converted into a
non-overlapping one. What remains is to enforce each vj
(j ∈ {1, · · · , N}) to agree with its corresponding entry in
the global model coefficient vector w. To achieve this, we
introduce an assignment matrix M. M is a N × V binary
matrix, such that Mi,j = 1 if the local trajectory feature i is
indexed to visual word j and 0 otherwise. Therefore, each
row of the matrix M sums up to one. Using the assignment
matrix M, the agreement between the global model coef-
ficient vector w and the local copy v can be enforced by
the penalty ‖v −Mw‖22. Based on the above definitions,
the integrated learning objective for motion part selection is
formulated as:

min
w,b,v

L(w, b)+λl‖w‖1+λgl

D∑
d=1

Pd∑
p=1

‖vd,p‖2+β‖v−Mw‖22,

(7)
where λl, λgl and β are the weighting factors for the spar-
sity, group sparsity and global-local agreement terms, re-
spectively. From the objective function (7), we note that to
optimize it with respect to either w, b, or v is quite straight-
forward if the other variable is fixed. We therefore introduce
an alternative optimization scheme as follows.

Update v. With fixed value of (w, b), minimizing the
cost function (7) with respect to v reduces to:

min
v
λgl

D∑
d=1

Pd∑
p=1

‖vd,p‖2 + β‖v −Mw‖22, (8)



which is a standard unconstrained quadratic programming
problem with `2 regularizer. The problem is also convex.
Since {vd,p} are no longer overlapping, we separately solve
for each vd,p. We denote by Md,p the sub-matrix of M
corresponding to the motion part (d, p). By applying the
proximal projection operator used in non-overlapping group
lasso, the optimal value voptd,p is easily derived as:

voptd,p = prox
Ωgl,

λgl
β

(Md,pw)

=

 0, ‖Md,pw‖2 < λgl
β ;

‖Md,pw‖2−
λgl
β

‖Md,pw‖2 Md,pw, else.
(9)

Update w and b. We denote the entry of v which cor-
responds to n-th instance in the set of trajectories of the
training videos by vn, i.e., n ∈ {1, · · · , N}. We denote
the occurrence frequency (count) of visual word i in the
training videos by Ni. Let vi,n denote the entry of v cor-
responding to the n-th instance (token) of visual word i for
n ∈ {1, · · · , Ni}. We can rewrite the optimization problem
with respect to w by fixing v as:

min
w,b
L(w, b) + λl‖w‖1 + β‖v −Mw‖22. (10)

After simple mathematic manipulation, Equation (10) is
equivalent to:

min
w,b
L(w, b) + λl‖w‖1 + β‖w − u‖22 (11)

where u is a vector with the same length of w and each
ui = 1

Ni

∑Ni
n=1 vi,n, where i ∈ {1, · · · , V }. Intuitively,

each entry of the global model coefficient vector w is reg-
ularized towards the mean of its corresponding local copy
variables in v. We note that an accelerated proximal gra-
dient method (APG) [22] can be derived to solve w, since
L(w, b) +β‖w−u‖22 is convex and continuous. The prox-
imal operator for the `1 regularizer λl‖w‖1 (lasso) is given
by the soft-thresholding operator:

[prox`1,λl(w)]j =

 wj − λl, wj > λl;
0, |wj | ≤ λl;
wj + λl, wj < −λl.

(12)

Note that Equation (11) is convex and continues with re-
spect to b, we can therefore minimize it with any gradient
descent based method. In this work, we also use AGP to
solve for the optimal value of b.

We iteratively update v, w, and b with the other param-
eters fixed to their old values. In practice, our algorithm
usually converges within 200 iterations during our experi-
ments. We set the convergence condition as relative changes
in the `2 norm of the parameter vector w is small than
ε = 10−5, or the maximum number of iterations (we set
500) is reached. To choose the best parameter values of λl,

λgl and β from the candidate set {10−5, 10−4, · · · , 105},
we perform three-fold cross-validation on the training set.
We note that in [32], alternating directions method of multi-
pliers (ADMM) is employed for optimizing the group lasso
problem; however, we found in experiment that ADMM is
sometimes unstable. In practice, we found our simple opti-
mization scheme is more stable and efficient.

3.3. Action Representation: Discriminativeness
Weighted Fisher Vector

We apply the above learning framework to softly select
the discriminative motion parts for each action category,
i.e., we treat this category as the positive class and the other
training video samples which do not belong to it as negative
training samples. Therefore, for each action class, we ob-
tain a set of motion parts paired with learned discriminative
weights (scores), i.e., ‖vd,p‖2. We perform normalization
for these motion part weights among difference classes.

To represent each motion part (to form a mid-level fea-
ture vector for each trajectory group), we use the improved
Fisher vector (IFV) encoding [16] of dense trajectories de-
scriptors including MBH, HOG, HOF and trajectory shape
for the trajectories within each motion part. The number
of Gaussian mixture models is set as 256. We also fol-
low [16] to compute square-rooting and normalization for
the improved Fisher vector. To reduce feature dimension,
we further apply PCA and keep 95% energy. Different fea-
ture channels are concatenated. A motion part feature and
its corresponding weight is then denoted as (p, s). We de-
note by s the discriminativeness score.

Given a testing video sample, since we do not have the
class label information (which is to be predicted), it is not
possible to learn the motion part weights (discriminative-
ness) using our proposed method. We therefore propose the
following part matching and weight propagation scheme for
computing the action representation for a testing video.

First, we construct a database of training motion parts,
which consist of 1) the training motion parts with top
10% discriminative weights (denoted as discriminative set);
and 2) randomly sampled training motion parts with lower
scores (denoted as background set). We set the size of the
background set two times of that of the discriminative set.

For each testing video sample, we first generate motion
parts using the dense trajectory grouping algorithm intro-
duced in Section 3. Then for each testing motion part,
we match its mid-level representation vector (IFV) to those
of the motion parts from the above mentioned motion part
database and search for its best K (we set K = 7 in this
work) matches. Since each training motion part is associ-
ated with a discriminative weight s, we can then transfer
the mean value of the weights associated with the matched
training parts towards the testing motion part. After this dis-
criminative weight transfer, every motion part in the testing



video is endowed with a discriminative weight. We assume
that all the dense trajectory features within each motion part
inherit the motion part’s weight. We can then form a dis-
criminativeness weighted Fisher vector representation for
the testing video as follows.

Assume the set of trajectory features paired with dis-
criminative scores of the testing video is denoted as X =
{xt, st}t=1:T , where T denotes the number of local features
of the testing video sample. We then recall that the gradient
with respect to the Gaussian mean ui of an improved Fisher
vector [16] can be formulated as (we take the example of
mean, and the gradient of variance calculation is similar):

GXui =
1

T
√
ωi

T∑
t=1

γt(i)
(xt − ui

σi

)
, (13)

where ui and σi is the mean and variance of the i-th Gaus-
sian component, respectively. ωi is the weight of the Gaus-
sian component ui. γt(i) is the soft assignment of the local
feature descriptor xt to Gaussian component ui. Then, our
discriminativeness weighted Fisher vector can be written as:

GXui =
1

T
√
ωi

T∑
t=1

γt(i)st

(xt − ui
σi

)
. (14)

Again, we use the square-rooting and normalization for
the resulting Fisher vector representation. Note that im-
portant motion part (as well as the local dense trajectories
within it) receives higher weight st, therefore its impor-
tance/significance in the resulting Fisher vector will be high.

What remains is how to match the testing motion part
representation vector to database motion part vectors. Be-
cause of the high-dimensionality, direct matching using Eu-
clidean distance cannot achieve good performance. In-
spired by the recent success of exemplar-SVM [11], for
each database motion part, we learn a detector, by taking it-
self as the only positive training sample and randomly sam-
pling some negative samples from the database. Therefore,
each database motion part is endowed with a part detec-
tor. For each testing part, we can therefore search its K
best matches by simply applying all the database part de-
tectors and ranking the response scores. The pipeline of
our method is shown in Figure 2. For action classification,
we use a linear SVM classifier based on LibSVM [1]. The
penalty parameter is set as C = 100.

4. Experiment
4.1. Experimental Settings

We perform action recognition on several benchmark
datasets to evaluate the effectiveness of our method as well
as to study its algorithmic behavior. We compare our
method with the state-of-the-art action recognition methods

in terms of recognition accuracy. The datasets on which
we test the algorithms include 1) Hollywood2 movie action
dataset [12]; 2) HMDB51 YouTube action dataset [9]; and
3) Olympic Sports dataset [14]. The details about various
dataset are briefly summarized as follows.

1. The Hollywood2 dataset [12]: It consists of 12 action
classes such as answering the phone, driving car, eat-
ing, etc., with 1, 707 video samples in total. We follow
the same experimental settings as in [23] [24]. The
mean average precision (mAP) over all classes is re-
ported.

2. The HMDB51 dataset [9]: Collected from YouTube,
it contains 51 action categories and 6, 766 video se-
quences. The action categories include simple facial
actions, general body movements and human interac-
tions. We follow the experimental setting used in [24].
Average accuracy over the three train-test splits is re-
ported.

3. The Olympic Sports dataset [14]: It consists of sports
action videos collected from YouTube, which contains
16 sports actions (such as high-jump, pole-vault, bas-
ketball lay-up, discus, etc.) with a total of 783 video
samples. Following [25], we also use 649 samples for
training and 134 samples for testing as recommended
by the authors. Mean average precision (mAP) over all
action classes is reported.

4.2. Qualitative Results

First, we visualize the learned discriminative motion
parts (trajectory groups). In Figure 3, we show several
examples of the top 1% ranked (based on the learned
discriminative scores/weights) motion parts from various
action categories from the HMDB51 dataset. Different
motion parts are color-coded. From Figure 3, we ob-
serve that: our algorithm can automatically discover impor-
tant/discriminative/representative motion parts for various
action categories. For example, our algorithm discovers the
important motions around the lower/upper arms and shoul-
ders for the golf swing motion; it discovers the cup to mouth
movement which is the most representative motion for the
action drink; and it also discovers the critical movement of
hand/lower arm for the action category punch.

4.3. Quantitative Results

We also compare various state-of-the-art action recog-
nition algorithms on these action video benchmarks. For
our method, we use the recently proposed improved dense
motion trajectories [25] for feature extraction (We use the
implementation provided by the authors [25] and follow
the same parameter settings). Following [25], global back-
ground motion compensation and human detection is also
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Figure 2. Illustration of the pipeline of our method, including motion part regularization learning, discriminative motion part database
generation and discriminativeness weighted Fisher vector generation for a testing video.
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Figure 3. Examples of 1% ranked (based on the learned discriminative scores/weights) motion parts (trajectory groups) discovered by our
motion part regularization learning framework. Each row corresponds to one class of action with the action label given at the top left of the
first image.

applied, for the purpose of flow warping (stabilization)
and outlier trajectory removal, respectively. For our algo-
rithm, we retain the top 10% ranked discriminative mo-
tion parts from the training video to form the discriminative
part database, which is used to compute discriminativeness

weighted Fisher vector representation for each video sam-
ple.

We compare our method with the follows algorithms: 1)
Harris3D (STIP) [10] + HOG/HOF; 2) improved dense tra-
jectories [25] with both BOW and IFV feature encodings;



Table 1. Comparison of action recognition performance on the Hollywood2, HMDB51, and Olympic Sports datasets.
Method Hollywood2 [12] HMDB51 [9] Olympic Sports [14]

Harris3D [10] + HOG/HOF – 20.2% (from [9]) –
Improved Trajectory + BOW (IFV) [25] 62.2% (64.3%) 52.1%(57.2%) 83.3% (91.1%)

Jiang et al. [6] 59.5% 40.7% 80.6%
Jain et al. [5] 62.5% 52.1% 83.2%

Motion Atoms/Phrases [27] (+low level) – – 79.5% (84.9%)
LHM + Dense Trajectory [28] 59.9% – 83.2%

Motion Actons [35] 61.4% 54.0% –
Stacked Fisher Vector [15] – 66.8% –

Motion Part Regularization (ours) 66.7% 65.5% 92.3%

3) the method proposed by Jain et al. [5] which decom-
poses visual motion to stabilize dense trajectories; 4) the
model proposed by Jiang et al. [6] which explores the the
relationship among dense trajectory clusters; 5) the latent
hierarchical model (LHM) proposed by Wang et al. [28];
6) the motion atoms and phrases representation [27]; 7)
the motion actons [35]; 8) the stacked Fisher vector encod-
ings [15]. Table 1 shows the comparison results. We re-
port the results of comparing algorithms from their original
papers if applicable. From Table 1, we make the follow-
ing observations. First, our proposed method either outper-
form the state-of-the art methods or achieves the state-of-
the-art performances on the tested databases. The stacked
Fisher vector [15] performs slightly better than our method
on HMDB51 dataset; however, this result is achieved by
combining two IFV vectors: one pooled from low level tra-
jectory features and another pooled from mid-level features.
In contrast, our method only use a single discriminative-
ness weighted IFV vector. This shows that finding the most
discriminative and representative motion part is helpful for
high performance action recognition. We also note that
methods based on IFV always give high recognition per-
formed, e.g., [25, 15] and our method, which demonstrates
that IFV is a high-performance feature coding scheme for
action representation. Finally, our mid-level feature selec-
tion scheme is better than other mid-level mining methods,
e.g., [35] and [27].

To study the effect of the size of the discriminative mo-
tion part database (number of selected discriminative parts)
on the final classification performance, we select the top
1%, 5%, 7%, 10%, and 20% discriminative motion parts
from the training videos to compose the database, and com-
pute the corresponding video level representationes (dis-
criminativeness weighted Fisher vector) based on them. We
show the corresponding classification performances (mAP)
for the Hollywood2 and HMDB51 databases in Figure 4.
We see that in general the classification performance in-
creases with respect to the increase of the discriminative
part database size. However, the accuracy improvement
becomes negligible when more than top 10% discrimina-

tive parts are selected to compose the database. There-
fore, in our experiment, we choose the top 10% discrimi-
native motion parts to compose the discriminative motion
part database if not otherwise specified.
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Figure 4. Classification performances w.r.t the number of top (%)
ranked discriminative motion parts used for motion part database
construction and video representation calculation.

5. Conclusion
In this paper, we propose a motion part regularization

framework for discriminative mid-level motion representa-
tion (i.e., trajectory group) selection, based on overlapping
group lasso. We also propose a de-overlap scheme along
with an efficient alternative optimization algorithm to solve
the motion part selection problem. The selected discrimi-
native motion parts are then utilized to form discriminative-
ness weighted Fisher vector action representation. Our ex-
periments on several action video benchmarks demonstrate
that our method can select discriminative motion part for
action representation and it improves the state-of-the-art on
several benchmarks.
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