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Abstract

Despite the proven efficacy of hyperspectral imaging in
many computer vision tasks, its widespread use is hindered
by its low spatial resolution, resulting from hardware lim-
itations. We propose a hyperspectral image super resolu-
tion approach that fuses a high resolution image with the
low resolution hyperspectral image using non-parametric
Bayesian sparse representation. The proposed approach
first infers probability distributions for the material spec-
tra in the scene and their proportions. The distributions
are then used to compute sparse codes of the high resolu-
tion image. To that end, we propose a generic Bayesian
sparse coding strategy to be used with Bayesian dictionar-
ies learned with the Beta process. We theoretically analyze
the proposed strategy for its accurate performance. The
computed codes are used with the estimated scene spec-
tra to construct the super resolution hyperspectral image.
Exhaustive experiments on two public databases of ground
based hyperspectral images and a remotely sensed image
show that the proposed approach outperforms the existing
state of the art.

1. Introduction
Spectral characteristics of hyperspectral imaging have

recently been reported to enhance performance in many
computer vision tasks, including tracking [22], recognition
and classification [14], [32], [28], segmentation [25] and
document analysis [20]. They have also played a vital role
in medical imaging [34], [18] and remote sensing [13], [4].
Hyperspectral imaging acquires a faithful spectral represen-
tation of the scene by integrating its radiance against several
spectrally well-localized basis functions. However, contem-
porary hyperspectral systems lack in spatial resolution [2],
[18], [11]. This fact is impeding their widespread use. In
this regard, a simple solution of using high resolution sen-
sors is not viable as it further reduces the density of the
photons reaching the sensors, which is already limited by
the high spectral resolution of the instruments.

Figure 1. Left: A 16 × 16 spectral image at 600nm. Center: The
512× 512 super resolution spectral image constructed by the pro-
posed approach. Right: Ground truth (CAVE database [30]).

Due to hardware limitations, software based approaches
for hyperspectral image super resolution (e.g. see Fig. 1)
are considered highly attractive [2]. At present, the spatial
resolution of the systems acquiring images by a gross quan-
tization of the scene radiance (e.g. RGB and RGB-NIR) is
much higher than their hyperspectral counterparts. In this
work, we propose to fuse the spatial information from the
images acquired by these systems with the hyperspectral
images of the same scenes using non-parametric Bayesian
sparse representation.

The proposed approach fuses a hyperspectral image with
the high resolution image in a four-stage process, as shown
in Fig. 2. In the first stage, it infers probability distribu-
tions for the material reflectance spectra in the scene and a
set of Bernoulli distributions, indicating their proportions
in the image. Then, it estimates a dictionary and trans-
forms it according to the spectral quantization of the high
resolution image. In the third stage, the transformed dic-
tionary and the Bernoulli distributions are used to compute
the sparse codes of the high resolution image. To that end,
we propose a generic Bayesian sparse coding strategy to be
used with Bayesian dictionaries learned with the Beta pro-
cess [23]. We theoretically analyze the proposed strategy
for its accurate performance. Finally, the computed codes
are used with the estimated dictionary to construct the su-
per resolution hyperspectral image. The proposed approach
not only improves the state of the art results, which is veri-
fied by exhaustive experiments on three different public data
sets, it also maintains the advantages of the non-parametric
Bayesian framework over the typical optimization based ap-
proaches [2], [18], [29], [31].
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Figure 2. Schematics of the proposed approach: (1) Sets of distributions over the dictionary atoms and the support indicator vectors are
inferred non-parametrically. (2) A dictionary Φ is estimated and transformed according to the spectral quantization of the high resolution
image Y. (3) The transformed dictionary and the distributions over the support indicator vectors are used for sparse coding Y. This step is
performed by the proposed Bayesian sparse coding strategy. (4) The codes are used with Φ to construct the target super resolution image.

The rest of the paper is organized as follows. After re-
viewing the related literature in Section 2, we formalize the
problem in Section 3. The proposed approach is presented
in Section 4 and evaluated in Section 5. Section 6 provides
a discussion on the parameter settings of the proposed ap-
proach, and Section 7 concludes the paper.

2. Related Work

Hyperspectral sensors have been in use for nearly two
decades in remote sensing [13]. However, it is still difficult
to obtain high resolution hyperspectral images by the satel-
lite sensors due to technical and budget constraints [17].
This fact has motivated considerable research in hyperspec-
tral image super resolution, especially for remote sensing.
To enhance the spatial resolution, hyperspectral images are
usually fused with the high resolution pan-chromatic im-
ages (i.e. pan-sharpening) [25], [11]. In this regard, con-
ventional approaches are generally based on projection and
substitution, including the intensity hue saturation [16] and
the principle component analysis [10]. In [1] and [7] , the
authors have exploited the sensitivity of human vision to
luminance and fused the luminance component of the high
resolution images with the hyperspectral images. However,
this approach can also cause spectral distortions in the re-
sulting image [8].

Minghelli-Roman et al. [21] and Zhukov et al. [35] have
used hyperspectral unmixing [19], [3] for spatial resolu-
tion enhancement of hyperspectral images. However, their
methods require that the spectral resolutions of the images

being fused are close to each other. Furthermore, these ap-
proaches struggle in highly mixed scenarios [17]. Zurita-
Milla et al. [36] have enhanced their performance for such
cases using the sliding window strategy.

More recently, matrix factorization based hyperspectral
image super resolution for ground based and remote sens-
ing imagery has been actively investigated [18], [29], [17],
[31], [2]. Approaches developed under this framework fuse
high resolution RGB images with hyperspectral images.
Kawakami et al. [18] represented each image from the two
modalities by two factors and constructed the desired im-
age with the complementary factors of the two representa-
tions. Similar approach is applied in [17] to the remotely
acquired images, where the authors used a down-sampled
version of the RGB image in the fusion process. Wycoff
et al. [29] developed a method based on Alternating Direc-
tion Method of Multipliers (ADMM) [6]. Their approach
also requires prior knowledge about the spatial transform
between the images being fused. Akhtar et al. [2] pro-
posed a method based on sparse spatio-spectral representa-
tion of hyperspectral images that also incorporates the non-
negativity of the spectral signals. The strength of the ap-
proach comes from exploiting the spatial structure in the
scene, which requires processing the images in terms of
spatial patches and solving a simultaneous sparse optimiza-
tion problem [27]. Yokoya et al. [31] made use of coupled
feature space between a hyperspectral and a multispectral
image of the same scene.

Matrix factorization based approaches have been able
to show state of the art results in hyperspectral image su-



per resolution using the image fusion technique. However,
Akhtar et al. [2] showed that their performance is sensi-
tive to the algorithm parameters, especially to the sizes of
the matrices (e.g. dictionary) into which the images are fac-
tored. Furthermore, there is no principled way to incorpo-
rate prior domain knowledge to enhance the performance of
these approaches.

3. Problem Formulation
Let Yh ∈ Rm×n×L be the acquired low resolution hy-

perspectral image, where L denotes the spectral dimen-
sion. We assume availability of a high resolution image
Y ∈ RM×N×l (e.g. RGB) of the same scene, such that
M � m,N � n and L � l. Our objective is to estimate
the super resolution hyperspectral image T ∈ RM×N×L
by fusing Y and Yh. For our problem, Yh = Ψh(T)
and Y = Ψ(T), where Ψh : RM×N×L → Rm×n×L and
Ψ : RM×N×L → RM×N×l.

Let Φ ∈ RL×|K| be an unknown matrix with columns
ϕk, where k ∈ K = {1, ...,K} and |.| denotes the car-
dinality of the set. Let Y

h
= ΦB, where the matrix

Y
h ∈ RL×mn is created by arranging the pixels of Yh as

its columns and B ∈ R|K|×mn is a coefficient matrix. For
our problem, the basis vectors ϕk represent the reflectance
spectra of different materials in the imaged scene. Thus,
we also allow for the possibility that |K| > L. Normally,
|K| � mn because a scene generally comprises only a few
spectrally distinct materials [2]. Let Φ̂ ∈ Rl×|K| be such
that Y = Φ̂A, where Y ∈ Rl×MN is formed by arranging
the pixels of Y and A ∈ R|K|×MN is a coefficient matrix.
The columns of Φ̂ are also indexed in K. Since Y

h
and Y

represent the images of the same scene, Φ̂ = ΥΦ, where
Υ ∈ Rl×L is a transformation matrix, associating the spec-
tral quantizations of the two imaging modalities. Similar to
the previous works [2], [18], [29], this transform is consid-
ered to be known a priori.

In the above formulation, pixels of Y and Yh are likely
to admit sparse representations over Φ̂ and Φ, respectively,
because a pixel generally contains very few spectra as com-
pared to the whole image. Furthermore, the value of |K|
can vary greatly between different scenes, depending on the
number of spectrally distinct materials present in a scene.
In the following, we refer to Φ as the dictionary and Φ̂ as
the transformed dictionary. The columns of the dictionar-
ies are called their atoms and a complementary coefficient
matrix (e.g. A) is referred as the sparse code matrix or the
sparse codes of the corresponding image. We adopt these
conventions from the sparse representation literature [24].

4. Proposed Approach
We propose a four-stage approach for hyperspectral im-

age super resolution that is illustrated in Fig. 2. The pro-

posed approach first separates the scene spectra by learn-
ing a dictionary from the low resolution hyperspectral im-
age under a Bayesian framework. The dictionary is trans-
formed using the known spectral transform Υ between the
two input images as Φ̂ = ΥΦ. The transformed dictionary
is used for encoding the high-resolution image. The codes
Ã ∈ R|K|×MN are computed using the proposed strategy.
As shown in the figure, we eventually use the dictionary
and the codes to construct T = ΦÃ, where T ∈ RL×MN

is formed by arranging the pixels of the target image T.
Hence, accurate estimation of Ã and Φ is crucial for our ap-
proach, where the dictionary estimation also includes find-
ing its correct size, i.e. |K|. Furthermore, we wish to in-
corporate the ability of using the prior domain knowledge
in our approach. This naturally leads towards exploiting
the non-parametric Bayesian framework. The proposed ap-
proach is explained below, following the sequence in Fig. 2.

4.1. Bayesian Dictionary Learning

We denote the ith pixel of Yh by yhi ∈ RL, that ad-
mits to a sparse representation βhi ∈ R|K| over the dic-
tionary Φ with a small error εhi ∈ RL. Mathematically,
yhi = Φβhi + εhi . To learn the dictionary in these settings1,
Zhou et al. [33] proposed a beta process [23] based non-
parametric Bayesian model, that is shown below in its gen-
eral form. In the given equations and the following text,
we have dropped the superscript ‘h’ for brevity, as it can be
easily deduced from the context.

yi = Φβi + εi ∀i ∈ {1, ...,mn}
βi = zi � si

ϕk ∼ N (ϕk|µko
,Λ−1

ko
) ∀k ∈ K

zik ∼ Bern(zik|πko)
πk ∼ Beta(πk|ao/K, bo(K − 1)/K)

sik ∼ N (sik|µso
, λ−1
so

)

εi ∼ N (εi|0,Λ−1
εo )

In the above model, � denotes the Hadamard/element-
wise product; ∼ denotes a draw (i.i.d.) from a distribution;
N refers to a Normal distribution; Bern and Beta repre-
sent Bernoulli and Beta distributions, respectively. Further-
more, zi ∈ R|K| is a binary vector whose kth component
zik is drawn from a Bernoulli distribution with parameter
πko

. Conjugate Beta prior is placed over πk, with hyper-
parameters ao and bo. We have used the subscript ‘o’ to
distinguish the parameters of the prior distributions. We re-
fer to zi as the support indicator vector, as the value zik = 1
indicates that the kth dictionary atom participates in the ex-
pansion of yi. Also, each component sik of si ∈ R|K| (the
weight vector) is drawn from a Normal distribution.

1The sparse code matrix B (with βh
i∈{1,...,mn} as its columns) is also

learned. However, it is not required by our approach.



For tractability, we restrict the precision matrix Λko of
the prior distribution over a dictionary atom to λkoIL, where
IL denotes the identity in RL×L and λko

∈ R is a prede-
termined constant. A zero vector is used for the mean pa-
rameter µko

∈ RL, since the distribution is defined over a
basis vector. Similarly, we let Λεo = λεoIL and µso = 0,
where λεo ∈ R. These simplifications allow for fast infer-
encing in our application without any noticeable degrada-
tion of the results. We further place non-informative gamma
hyper-priors over λso

and λεo , so that λs ∼ Γ(λs|co, do)
and λε ∼ Γ(λε|eo, fo), where Γ denotes the Gamma dis-
tribution and co, do, eo and fo are the hyper-parameters.
The model thus formed is completely conjugate, therefore
Bayesian inferencing can be performed over it with Gibbs
sampling using analytical expressions. We derive these ex-
pressions for the proposed approach and state the final sam-
pling equations below. Detailed derivations of the Gibbs
sampling equations can be found in the provided supple-
mentary material.

We denote the contribution of the kth dictionary atomϕk
to yi as, yiϕk

= yi − Φ(zi � si) + ϕk(ziksik), and the
`2 norm of a vector by ‖.‖2. Using these notations, we ob-
tain the following analytical expressions for the Gibbs sam-
pling process used in our approach:
Sample ϕk: from N (ϕk|µk, λ−1

k IL), where

λk = λko + λεo

mn∑
i=1

(ziksik)2;µk =
λεo
λk

mn∑
i=1

(ziksik)yiϕk

Sample zik: from Bern
(
zik| ξπko

1−πko+ξπko

)
, where

ξ = exp
(
− λεo

2
(ϕT

kϕks
2
ik − 2sikyT

iϕk
ϕk)

)
Sample sik: from N (sik|µs, λ−1

s ), where

λs = λso
+ λεoz

2
ikϕ

T
kϕk ; µs =

λεo
λs

zikϕ
T
kyiϕk

Sample πk: from Beta(πk|a, b), where

a =
ao
K

+
mn∑
i=1

zik ; b =
bo(K − 1)

K
+ (mn)−

mn∑
i=1

zik

Sample λs: from Γ(λs|c, d), where

c =
Kmn

2
+ co ; d =

1
2

mn∑
i=1

||si||22 + do

Sample λε: from Γ(λε|e, f), where

e =
Lmn

2
+ eo ; f =

1
2

mn∑
i=1

||yi −Φ(zi � si)||22 + fo

As a result of Bayesian inferencing, we obtain sets of
posterior distributions over the model parameters. We are
interested in two of them. (a) The set of distributions over
the atoms of the dictionary, ℵ def= {N (ϕk|µk,Λ

−1
k ) : k ∈

K} ⊂ RL and (b) the set of distributions over the com-
ponents of the support indicator vectors = def= {Bern(πk) :
k ∈ K} ⊂ R. Here, Bern(πk) is followed by the kth com-
ponents of all the support indicator vectors simultaneously,
i.e. ∀i ∈ {1, ...,mn}, zik ∼ Bern(πk). These sets are used
in the later stages of the proposed approach.

In the above model, we have placed Gaussian priors over
the dictionary atoms, enforcing our prior belief of relative
smoothness of the material spectra. Note that, the correct
value of |K| is also inferred at this stage. We refer to the
pioneering work by Paisley and Carin [23] for the theoret-
ical details in this regard. In our inferencing process, the
desired value of |K| manifests itself as the total number of
dictionary atoms for which πk 6= 0 after convergence. To
implement this, we start with K → ∞ and later drop the
dictionary atoms corresponding to πk = 0 during the sam-
pling process.

With the computed ℵ, we estimate Φ (stage 2 in Fig. 2)
by drawing multiple samples from the distributions in the
set and computing their respective means. It is also possible
to directly use the mean parameters of the inferred distribu-
tions as the estimates of the dictionary atoms, but the former
is preferred for robustness. Henceforth, we will consider
the dictionary, instead of the distributions over its atoms, as
the final outcome of the Bayesian dictionary learning pro-
cess. The transformed dictionary is simply computed as
Φ̂ = ΥΦ. Recall that, the matrix Υ relates the spectral
quantizations of the two imaging modalities under consid-
eration and it is known a priori.

4.2. Bayesian Sparse Coding

Once Φ̂ is known, we use it to compute the sparse codes
of Y. The intention is to obtain the codes of the high res-
olution image and use them with Φ to estimate T. Al-
though some popular strategies for sparse coding already
exist, e.g. Orthogonal Matching Pursuit [26] and Basis Pur-
suit [12], but their performance is inferior when used with
the Bayesian dictionaries learned using the Beta process.
There are two main reasons for that. (a) Atoms of the
Bayesian dictionaries are not constrained to `2 unit norm.
(b) With these atoms, there is an associated set of Bernoulli
distributions which must not be contradicted by the under-
lying support of the sparse codes. In some cases, it may be
easy to modify an existing strategy to cater for (a), but it is
not straightforward to take care of (b) in these approaches.

We propose a simple, yet effective method for Bayesian
sparse coding that can be generically used with the dictio-
naries learned using the Beta process. The proposal is to fol-
low a procedure similar to the Bayesian dictionary learning,



with three major differences. For a clear understanding, we
explain these differences as modifications to the inferenc-
ing process of the Bayesian dictionary learning, following
the same notational conventions as above.

1) Use N (ϕ̂k|µko
, λ−1
ko

Il) as the prior distribution over
the kth dictionary atom, where λko

→ ∞ and µko
= ϕ̂k.

Considering that Φ̂ is already a good estimate of the dic-
tionary2, this is an intuitive prior. It entails, ϕ̂k is sampled
from the following posterior distribution while inferencing:
Sample ϕ̂k: from N (ϕ̂k|µk, λ−1

k Il), where

λk = λko
+ λεo

MN∑
i=1

(ziksik)2;

µk =
λεo
λk

MN∑
i=1

(ziksik)yi bϕk
+
λko

λk
µko

In the above equations, λko
→ ∞ signifies λk ≈ λko

and
µk ≈ µko

. It further implies that we are likely to get simi-
lar samples against multiple draws from the distribution. In
other words, we can not only ignore to update the posterior
distributions over the dictionary atoms during the inferenc-
ing process, but also approximate them with a fixed matrix.
A sample from the kth posterior distribution is then the kth

column of this matrix. Hence, from the implementation per-
spective, Bayesian sparse coding directly uses the atoms of
Φ̂ as the samples from the posterior distributions.

2) Sample the support indicator vectors in accordance
with the Bernoulli distributions associated with the fixed
dictionary atoms. To implement this, while inferencing,
we fix the distributions over the support indicator vectors
according to =. As shown in Fig. 2, we use the vector
π ∈ R|K| for this purpose, which stores the parameters of
the distributions in the set =. While sampling, we directly
use the kth component of π as πk. It is noteworthy that us-
ing π in coding Y also imposes the self-consistency of the
scene between the high resolution image Y and the hyper-
spectral image Yh.

Incorporating the above proposals in the Gibbs sampling
process and performing the inferencing can already result
in a reasonably accurate sparse representation of y over
Φ̂. However, a closer examination of the underlying proba-
bilistic settings reveals that a more accurate estimate of the
sparse codes is readily obtainable.

Lemma 4.1 With y ∈ R(Φ̂) (i.e. ∃α s.t. y = Φ̂α) and
|K| > l, the best estimate of the representation of y, in the
mean squared error sense3, is given by α̃opt = E

[
E[α|z]

]
,

where R(.) is the range operator, E[.] and E[.|.] are the

2This is true because bΦ is an exact transform of Φ, which in turn, is
computed with high confidence.

3The metric is chosen based on the existing literature in hyperspectral
image super resolution [18],[17],[2].

expectation and the conditional expectation operators, re-
spectively.

Proof: Let α̃ ∈ R|K| be an estimate of the representation α
of y, over Φ̂. We can define the mean square error (MSE)
as the following:

MSE = E
[
||α̃−α||22

]
(1)

In our settings, the components of a support indicator vector
z are independent draws from Bernoulli distributions. LetZ
be the set of all possible support indicator vectors in R|K|,
i.e. |Z| = 2|K|. Thus, there is a non-negative probability
of selection P (z) associated with each z ∈ Z such that∑

z∈Z P (z)=1. Indeed, the probability mass function p(z)
depends on the vector π that assigns higher probabilities to
the vectors indexing more important dictionary atoms.

We can model the generation of α as a two step se-
quential process: 1) Random selection of z with probability
P (z). 2) Random selection of α according to a conditional
probability density function p(α|z). Here, the selection of
α implies the selection of the corresponding weight vector
s and then computing α = z � s. Under this perspective,
MSE can be re-written as:

MSE =
∑
z∈Z

P (z)E
[
||α̃−α||22 | z

]
(2)

The conditional expectation in (2) can be written as:

E
[
||α̃−α||22|z

]
= ||α̃||22 − 2α̃TE[α|z] + E

[
||α||22|z

]
(3)

We can write the last term in (3) as the following:

E
[
||α||22|z

]
=
∥∥E[α|z]

∥∥2

2
+ E

[∥∥α− E[α|z]
∥∥2

2
|z
]

(4)

For brevity, let us denote the second term in (4) as Vz. By
combining (2)-(4) we get:

MSE =
∑
z∈Z

P (z)
∥∥α̃− E[α|z]

∥∥2

2
+
∑
z∈Z

P (z)Vz (5)

= E
[∥∥α̃− E[α|z]

∥∥2

2

]
+ E

[
Vz

]
(6)

Differentiating R.H.S. of (6) with respect to α̃ and equating
it to zero, we get α̃opt = E

[
E[α|z]

]
4, that minimizes the

mean squared error.
Notice that, with the aforementioned proposals incorpo-

rated in the sampling process, it is possible to independently
perform the inferencing multiple, say Q, times. This would
result in Q support indicator vectors zq and weight vectors
sq for y, where q ∈ {1, ...Q}.

Lemma 4.2 For Q→∞, 1
Q

Q∑
q=1

zq � sq = E
[
E[α|z]

]
.

4Detailed mathematical derivation of each step used in the proof is also
provided in the supplementary material.



Proof: We only discuss an informal proof of Lemma 4.2.
The following statements are valid in our settings:
(a) ∃αi,αj s.t. (αi 6= αj)∧(αi = z�si)∧(αj = z�sj)
(b) ∃zi, zj s.t. (zi 6= zj) ∧ (α = zi � si) ∧ (α = zj � sj)
where ∧ denotes the logical and; αi and αj are instances
of two distinct solutions of the underdetermined system
y = Φ̂α. In the above statements, (a) refers to the possi-
bility of distinct representations with the same support and
(b) refers to the existence of distinct support indicator vec-
tors for a single representation. Validity of these conditions
can be easily verified by noticing that z and s are allowed
to have zero components. For a given inferencing process,
the final computed vectors z and s are drawn according to
valid probability distributions. Thus, (a) and (b) entail that
the mean of Q independently computed representations, is
equivalent to E

[
E[α|z]

]
when Q→∞.

3) In the light of Lemma 4.1 and 4.2, we propose to in-
dependently repeat the inferencing process Q times, where
Q is a large number (e.g. 100), and finally compute the
code matrix Ã (in Fig. 2) as Ã = 1

Q

∑Q
q=1 Zq � Sq ,

where Ã has α̃i∈{1,...,MN} as its columns. The matrices
Zq,Sq ∈ R|K|×MN are the support matrix and the weight
matrix, respectively, formed by arranging the support indi-
cator vectors and the weight vectors as their columns. Note
that, the finally computed codes Ã may by dense as com-
pared to individual Zq .

With the estimated Ã and the dictionary Φ, we com-
pute the target super resolution image T by re-arranging
the columns of T = ΦÃ (stage 4 in Fig. 2) into the pixels
of hyperspectral image.

5. Experimental Evaluation
The proposed approach has been thoroughly evaluated

using ground based imagery as well as remotely sensed
data. For the former, we performed exhaustive experiments
on two public databases, namely, the CAVE database [30]
and the Harvard database [9]. CAVE comprises 32 hy-
perspectral images of everyday objects with dimensions
512 × 512 × 31, where 31 represents the spectral dimen-
sion. The spectral images are in the wavelength range 400 -
700nm, sampled at a regular interval of 10nm. The Harvard
database consists of 50 images of indoor and outdoor scenes
with dimensions 1392 × 1040 × 31. The spectral samples
are taken at every 10nm in the range 420 - 720nm. For the
remote sensing data, we chose a 512 × 512 × 224 hyper-
spectral image5 acquired by the NASA’s Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) [15]. This image
has been acquired over the Cuprite mines in Nevada, in the
wavelength range 400 - 2500nm with 10nm sampling in-
terval. We followed the experimental protocol of [2] and
[18]. For benchmarking, we compared the results with the

5http://aviris.jpl.nasa.gov/data/free data.html.

existing best reported results in the literature under the same
protocol, unless the code was made public by the authors.
In the latter case, we performed experiments using the pro-
vided code and the optimized parameter values. The re-
ported results are in the range of 8 bit images.

In our experiments, we consider the images from the
databases as the ground truth. A low resolution hyperspec-
tral image Yh is created by averaging the ground truth over
32× 32 spatially disjoint blocks. For the Harvard database,
1024 × 1024 × 31 image patches were cropped from the
top left corner of the images, to make the spatial dimen-
sions of the ground truth multiples of 32. For the ground
based imagery, we assume the high resolution image Y to
be an RGB image of the same scene. We simulate this im-
age by integrating the ground truth over its spectral dimen-
sion using the spectral response of Nikon D7006. For the
remote sensing data, we consider Y to be a multispectral
image. Following [2], we create this image by directly se-
lecting six spectral images from the ground truth against
the wavelengths 480, 560, 660, 830, 1650 and 2220 nm.
Thus, in this case, Υ is a 6 × 224 binary matrix that se-
lects the corresponding rows of Φ. The mentioned wave-
lengths correspond to the visible and mid-infrared channels
of USGS/NASA Landsat 7 satellite.

We compare our results with the recently proposed ap-
proaches, namely, the Matrix Factorization based method
(MF) [18], the Spatial Spectral Fusion Model (SSFM) [17],
the ADMM based approach [29], the Coupled Matrix Fac-
torization method (CMF) [31] and the spatio-spectral sparse
representation approach, GSOMP [2]. These matrix factor-
ization based approaches constitute the state of the art in
this area [2]. In order to show the performance difference
between these methods and the other approaches mentioned
in Section 2, we also report some results of the Component
Substitution Method (CSM) [1], taken directly from [18].

The top half of Table 1 shows results on seven different
images from the CAVE database. We chose these images
because they are commonly used for benchmarking in the
existing literature [2],[29],[18]. The table shows the root
mean squared error (RMSE) of the reconstructed super res-
olution images. The approaches highlighted in red addi-
tionally require the knowledge of the down-sampling matrix
that converts the ground truth to the acquired hyperspectral
image. Hence, they are of less practical value [2]. As can be
seen, our approach outperforms most of the existing meth-
ods by a considerable margin on all the images. Only the re-
sults of GSOMP are comparable to our method. However,
GSOMP operates under the assumption that nearby pixels
in the target image are spectrally similar. The assumption is
enforced with the help of two extra algorithm parameters.
Fine tuning these parameters is often non-trivial, as many

6The response and integration limits can be found at
http://www.maxmax.com/spectral response.htm



Table 1. Benchmarking of the proposed approach: The RMSE val-
ues are in the range of 8 bit images. The best results are shown in
bold. The approaches highlighted in red additionally require the
knowledge of the spatial transform between the input images.

CAVE database [30]
Method BeadsSpoolsPaintingBalloonsPhotos CD Cloth

CSM [1] 28.5 - 12.2 13.9 13.1 13.3 -
MF [18] 8.2 8.4 4.4 3.0 3.3 8.2 6.1
SSFM [17] 9.2 6.1 4.3 - 3.7 - 10.2
ADMM [29] 6.1 5.3 6.7 2.1 3.4 6.5 9.5
CMF [31] 6.6 15.0 26.0 5.5 11.0 11.0 20.0
GSOMP [2] 6.1 5.0 4.0 2.3 2.2 7.5 4.0
Proposed 5.4 4.6 1.9 2.1 1.6 5.3 4.0

Harvard database [9]
Img 1Img b5 Img b8 Img d4 Img d7Img h2Img h3

MF [18] 3.9 2.8 6.9 3.6 3.9 3.7 2.1
SSFM [17] 4.3 2.6 7.6 4.0 4.0 4.1 2.3
GSOMP [2] 1.2 0.9 5.9 2.4 2.1 1.0 0.5
Proposed 1.1 0.9 4.3 0.5 0.8 0.7 0.5

Table 2. Exhaustive experiment results: The means and the stan-
dard deviations of the RMSE values are computed over the com-
plete databases.

CAVE database [30] Harvard database [9]
Method Mean ± Std. Dev Mean ± Std. Dev

GSOMP [2] 3.66 ± 1.51 2.84 ± 2.24
Proposed 3.06 ± 1.12 1.74 ± 1.49

of the nearby pixels in an image can also have dissimilar
spectra. There is no provision for automatic adjustment of
the parameter values for such cases. Therefore, an image
reconstructed by GSOMP can often suffer from spatial arti-
facts. For instance, even though the parameters of GSOMP
are optimized specifically for the sample image in Fig. 3,
the spatial artifacts are still visible. The figure also com-
pares the RMSE of our approach with that of GSOMP, as
a function of the spectral bands of the image. The RMSE
curve is lower and smoother for the proposed approach.

The results on the images from the Harvard database are
shown in the bottom half of Table 1. These results also favor
our approach. Results of ADMM and CMF have never been
reported for the Harvard database. In Table 2, we report the
means and the standard deviations of the RMSE values of
the proposed approach over the complete databases. The re-
sults are compared with GSOMP using the public code pro-
vided by the authors and the optimal parameter settings for
each database, as mentioned in [2]. Fair comparison with
other approaches is not possible because of the unavailabil-
ity of the public codes and results on the full databases.
However, based on Table 1 and the mean RMSE values
of 4.24 ± 2.08 and 4.98 ± 1.97 for ADMM and MF, re-
spectively, reported by Wycoff et al. [29], on 20 images

Figure 3. Comparison of the proposed approach with GSOMP [2]
on image ‘Spools’ (CAVE database) [30].

from the CAVE database, we can safely conjecture that the
other methods are unlikely to outperform our approach on
the full databases. Table 2 clearly indicates the consistent
performance of the proposed approach. For our approach,
results on the individual images of the complete databases
can be found in the supplementary material of the paper,
where we also provide the Matlab code/demo for the pro-
posed approach (that will eventually be made public).

For qualitative analysis, Fig. 4 shows spectral samples
from two reconstructed super resolution hyperspectral im-
ages, against wavelengths 460, 540 and 620nm. The spec-
tral images are shown along the ground truth and their ab-
solute difference with the ground truth. Spectral samples
of the input 16 × 16 hyperspectral images are also shown.
Successful hyperspectral image super resolution is clearly
evident from the images. Further qualitative results on the
images mentioned in Table 1 are given in the supplemen-
tary material of the paper. For the remote sensing image
acquired by AVIRIS, the RMSE value of the proposed ap-
proach is 1.63. This is also lower than the previously re-
ported values of 2.14, 3.06 and 3.11 for GSOMP, MF and
SSFM respectively, in [2]. For the AVIRIS image, the spec-
tral samples of the reconstructed super resolution image at
460, 540, 620 and 1300 nm are shown in Fig. 5.

6. Discussion
In the above experiments, we initialized the Bayesian

dictionary learning stage as follows. The parameters
ao, bo, co, do, eo and fo were set to 10−6. From the sam-
pling equations in Section 4.1, it is easy to see that these
values do not influence the posterior distributions much, and
other such small values would yield similar results. We ini-
tialized πko = 0.5, ∀ k, to give the initial Bernoulli distri-
butions the largest variance [5]. We initialized the Gibbs
sampling process with K = 50 for all the images. This
value is based on our prior belief that the total number of
the materials in a given scene is generally less than 50. The
final value of |K| was inferred by the learning process itself,
which ranged over 10 to 33 for different images. We initial-
ized λεo to the precision of the pixels in Yh and randomly
chose λso

= 1. Following [33], λko
was set to L. The

parameter setting was kept unchanged for all the datasets



Figure 4. Super resolution image reconstruction at 460, 540 and 620 nm: The images include the low resolution spectral image, ground
truth, reconstructed spectral image and the absolute difference between the ground truth and the reconstructed spectral image. (Left)
‘Spools’ from the CAVE database [30]. (Right) ‘Img 1’ form the Harvard database [9].

without further fine tuning. We ran fifty thousand Gibbs
sampling iterations from which the last 100 were used to
sample the distributions to compute Φ. On average, this
process took around 3 minutes for the CAVE images and
around 8 minutes for the Harvard images. For the AVIRIS
data, this time was 12.53 minutes. The timing is for Matlab
implementation on an Intel Core i7 CPU at 3.6 GHz with 8
GB RAM. For the Bayesian sparse coding stage, we again
used 10−6 as the initial value for the parameters ao to fo.
We respectively initialized λso and λεo to the final values of
λs and λε of the dictionary learning stage. We ran the infer-
encing process Q = 128 times with 100 iterations in each
run. It is worth noticing that, in the proposed sparse coding
strategy, it is possible to run the inferencing processes inde-
pendent of each other. This makes the sparse coding stage
naturally suitable for multi-core processing. On average, a
single sampling process required around 1.75 minutes for
a CAVE image and approximately 7 minutes for a Harvard
image. For the AVIRIS image, this time was 11.23 minutes.

The proposed approach outperforms the existing meth-
ods on ground based imagery as well as remotely sensed
data, without requiring explicit parameter tuning. This dis-
tinctive characteristic of the proposed approach comes from
exploiting the non-parametric Bayesian framework.

7. Conclusion

We proposed a Bayesian sparse representation based ap-
proach for hyperspectral image super resolution. Using the
non-parametric Bayesian dictionary learning, the proposed
approach learns distributions for the scene spectra and their
proportions in the image. Later, this information is used to
sparse code a high resolution image (e.g. RGB) of the same
scene. For that purpose, we proposed a Bayesian sparse
coding method that can be generically used with the dic-

Figure 5. Spectral images at 460, 540, 620 and 1300 nm for the
AVIRIS [15] data. Reconstructed spectral images (512 × 512)
are shown along their absolute difference with the ground truth
(512×512). The low resolution images (16×16) are also shown.

tionaries learned using the Beta process. Theoretical anal-
ysis is provided to show the effectiveness of the method.
We used the learned sparse codes with the image spectra
to construct the super resolution hyperspectral image. Ex-
haustive experiments on three public data sets show that the
proposed approach outperforms the existing state of the art.
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