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Abstract

This paper presents a nonparametric scene parsing ap-
proach that improves the overall accuracy, as well as the
coverage of foreground classes in scene images. We first im-
prove the label likelihood estimates at superpixels by merg-
ing likelihood scores from different probabilistic classifiers.
This boosts the classification performance and enriches the
representation of less-represented classes. Our second con-
tribution consists of incorporating semantic context in the
parsing process through global label costs. Our method
does not rely on image retrieval sets but rather assigns a
global likelihood estimate to each label, which is plugged
into the overall energy function. We evaluate our system on
two large-scale datasets, SIFTflow and LMSun. We achieve
state-of-the-art performance on the SIFTflow dataset and
near-record results on LMSun.

1. Introduction
Scene parsing is the assignment of semantic labels to

each pixel in a scene image. There are various outdoor
and indoor scenes (e.g., beach, highway, city street and air-
port) that image parsing algorithms try to label. Several
systems [3, 7, 6, 9, 11, 15, 18, 19, 20, 24, 27, 28, 33, 36]
have been designed to semantically classify each pixel in an
image. Among the main challenges which face image pars-
ing methods is that their recognition rate significantly varies
among different types of classes. Background classes,
which typically occupy a large proportion of the image’s
pixels, usually have uniform appearance and are recognised
with a high rate (e.g., water, mountain, and building). Fore-
ground classes, which typically occupy relatively few pixels
in the image, have deformable shapes and can be occluded
or arranged in different forms. Such classes (e.g., person,
car, and sign) represent salient image regions that often cap-
ture the eye of a human observer. However, they frequently
represent failure cases with recognition rates significantly
lower than those of background classes.

Parametric scene parsing methods [16, 20, 27, 34] have
achieved impressive performance on datasets with tens of

labels. However, for relatively large datasets with hundreds
of labels, it is more difficult to apply these methods due to
expensive learning and optimisation requirements.

Recently, nonparametric image parsing methods have
been proposed [6, 10, 25, 18, 29, 33] to efficiently handle
the increasing number of scene categories and semantic la-
bels. Nonparametric methods typically start by reducing the
problem space from individual pixels to superpixels. First,
an image set is retrieved, which contains the training images
that are most visually similar to the query image. The num-
ber of candidate labels for a query image is restricted to the
labels present in the retrieval set only. Second, classification
likelihood scores of superpixels are obtained through visual
features matching. Finally, context is enforced through min-
imizing an energy function which combines the data cost
and knowledge about the classes co-occurences in neigh-
boring superpixels.

A common challenge that faces nonparametric parsing
methods is the image retrieval step. While image retrieval
is useful for limiting the number of labels to consider, it is
regarded as a very critical step in the pipeline [25, 33]. If the
true labels are not included in the retrieved images, there is
no chance to recover from this error. In [33], it is stated that
most of the failure cases occur due to incorrect retrieval.

In this paper, we propose a novel nonparametric im-
age parsing algorithm which targets better overall accuracy,
with better recognition rates of less-represented classes. We
design a system that is efficient and scalable to a continu-
ously increasing number of labels. We make the following
contributions:

1. We improve the likelihood scores of labels at super-
pixels through combining classifiers. Our system com-
bines the output probabilities of multiple classification
models to produce a more balanced score for each la-
bel at each superpixel. We learn the weights for com-
bining the scores by applying likelihood normalization
method on the training set in an automatic way.

2. We incorporate semantic context in a probabilistic
framework. To avoid the elimination of relevant labels
that cannot be recovered at later steps, we do not con-



struct a retrieval set. Instead, we use label costs learned
from the global contextual correlation of labels in sim-
ilar scenes to achieve better parsing results.

Our system achieves state-of-the-art per-pixel recogni-
tion rates on two large-scale datasets: SIFTflow [18] which
contains 2688 images with 33 labels, and LMSun [29]
which contains 45576 images with 232 labels.

2. Related Work

Several parametric and nonparametric scene parsing
techniques have been proposed. Closely related to our
method are the nonparametric systems which aim to achieve
a wide coverage of semantic classes. The systems in
[28, 33, 6] adopt different techniques for boosting the over-
all performance of nonparametric parsing. In [28], the au-
thors combine region-parsing with per-exemplar SVM de-
tector outputs. Per-exemplar detectors are used to transfer
object masks into the test image for segmentation. Their
system achieves impressive improvements in overall accu-
racy, but at the cost of expensive computational require-
ments. Calibrating the data terms requires batch offline
training in a leave-one-out fashion, which is challenging
to scale. [33] and [6] explicitly add superpixels of rare
classes into the retrieval set to improve their representation.
The authors of [33] filter the list of labels for a test image
through an image retrieval step, and rare classes are en-
riched with more samples at query time. Our system differs
in the superpixel classification technique, how we improve
the recognition of rare classes, and how we apply seman-
tic context. We promote the representation of foreground
classes by merging classification costs of different contex-
tual models, which produces more balanced label costs. We
also avoid the bottleneck of image retrieval, and instead rely
on global label costs in the inference step.

The usefulness of semantic context has been thoroughly
explored in several visual recognition algorithms [6, 10, 11,
18, 23, 25, 33]. In the nonparametric scene parsing systems
of [6, 25, 33], context has been used to improve the overall
labeling performance in a feedback mechanism. In [6], ini-
tial labeling of superpixels of a query image is used to adapt
the training set by conditioning on recognized background
classes to improve the representation of rare classes. The
goal is to improve the image retrieval set by adding back
segments of rare classes. The system in [25] constructs
a semantic global descriptor. Image retrieval is improved
through combining the semantic descriptor with the visual
descriptors. In [33], context is incorporated through build-
ing global and local context descriptors based on classifi-
cation likelihood maps similar to [17]. Our method is dif-
ferent from these methods in that we do not use context at
each superpixel in computing a global context descriptor,
but instead we consider contextual knowledge over the im-

age as a whole. We achieve contextually meaningful results
through inferring label correlations in similar scene images.
We also do not have a retrieval set which we aim to enrich.
Instead, we formulate our global context in a probabilistic
framework, where we compute label costs over the whole
image. Also, our global context is performed online without
any offline training. Another image parsing approach which
does not rely on retrieval sets is [10], where image labeling
is performed by transferring annotations from a graph of
patch correspondences across image sets. This approach,
however, requires large memory which is difficult to scale
for large datasets like SIFTflow and LMSun.

Our approach is inspired from combining classifiers
techniques [13] in machine learning, which have been
shown to boost the strengths of single classifiers. Several
fusion techniques have been successfully used in different
areas of computer vision, like face detection [32], multi-
label image annotation [22], object tracking [35], and char-
acter recognition [12]. However, the constituent classifiers
and the mechanisms for combining them are quite differ-
ent from our framework and the other techniques are only
demonstrated on small datasets.

3. Baseline Parsing Pipeline
In this section, we present an overview of our baseline

image parsing system, which consists of three steps: fea-
ture extraction (sec. 3.1), label likelihood estimation at su-
perpixels (sec. 3.2), and inference (sec. 3.3).

Following that, we present our contributions of improv-
ing likelihoods at superpixels and computing label costs for
scene-level global context in sections 4 and 5 respectively.

3.1. Segmentation and Feature Extraction

To reduce the problem space, we divide the image into
superpixels. We start by extracting superpixels from images
using the efficient graph-based method of [8]. For each su-
perpixel, we extract 20 types of local features to describe its
shape, appearance, texture, color, and location, following
the method of [29]. In addition to these features, we extract
Fisher Vector (FV) [21] descriptors at each superpixel us-
ing the VLFeat library [31]. We compute 128-dimensional
dense SIFT feature descriptors on 5 patch sizes (8, 12, 16,
24, 30). We build a dictionary of size 1024 words. We then
extract the FV descriptors and apply PCA to reduce their
size to 512 dimensions. Each superpixel is described by a
2202-dimensional feature vector.

3.2. Label Likelihood Estimation

We use the extracted features at the previous step to com-
pute label likelihoods at each superpixel. Different from tra-
ditional methods, we do not restrict the potential labels for
a test image. We instead compute the likelihood data term
for each class label c ∈ C, where C is the total number of
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Figure 1. Overview of the fusing classifiers approach. Likelihood scores from multiple models (3a) and (3b) are combined to produce the
final likelihoods at superpixels. Likelihood scores of foreground classes (e.g. person) are boosted via our combination technique. The
unbalanced (skewed) model in (3a) produces biased likelihoods towards background classes (e.g. road). This is reflected in the much larger
score (bigger circle) for the road class when compared to the person class and other less-represented classes. For the balanced classifier in
(3b), the scores are more balanced and less-represented classes get a higher chance (bigger circle) of being recognized.

classes in the dataset. The normalized cost D(lsi = c|si) of
assigning label c to superpixel si is given by:

D(lsi = c|si) = 1− 1

1 + e−Lunbal(si,c)
, (1)

where Lunbal(si, c) is the log-likelihood ratio score of label
c, given by Lunbal(si, c) = 1

2 log(P (si|c)/P (si|c̄)), where
c̄ = C \ c is the set of all labels except c, and P (si|c) is
the likelihood of superpixel si given c. We learn a boosted
decision tree (BDT) [4] model to obtain the label likeli-
hoods Lunbal(si, c). For implementation, we use the pub-
licly available boostDT 1 library. At this stage, we train the
BDT model using all superpixels in the training set, which
represent an unbalanced distribution of class labels C.

3.3. Smoothing and Inference

We formulate our optimization problem as that of maxi-
mum a posteriori (MAP) estimation of the final labeling L
using Markov Random Field (MRF) inference. Using only
the estimated likelihoods in the previous section to classify
superpixels yields noisy classifications. Adding a smooth-
ing term V (lsi , lsj ) to the MRF energy function attempts to
overcome that issue by punishing neighboring superpixels
having semantically irrelevant labels. Our baseline attempts
to minimize the following energy function:

E(L) =
∑
si∈S

D(lsi = c|si) + λ
∑

(i,j)∈A

V (lsi , lsj ). (2)

where A is the set of adjacent superpixel indices and
V (lsi , lsj ) is the penalty of assigning labels lsi and lsj to
two neighboring pixels, computed from counts in the train-
ing set combined with the constant Potts model following
the approach of [29]. λ is the smoothing constant. We per-
form inference using the α-expansion method with the code
of [2, 14, 1].

1http://web.engr.illinois.edu/ dhoiem/software/

In the next two sections, we present our main contribu-
tions of how we improve the superpixel classification step
(section 4) and how we incorporate scene-level context to
achieve better results (section 5).

4. Improving Superpixel Label Costs
While foreground objects are usually the most notice-

able regions in a scene image, they are often misclassified
by parsing algorithms. For example, in a city street scene, a
human viewer would typically first notice the people, signs
and cars before noticing the buildings and road. However,
for scene parsing algorithms, foreground regions are often
misclassified as being part of the surrounding background
due to two main reasons. First, in the superpixel classifi-
cation step, any classifier would naturally favor more dom-
inant classes to minimize the overall training error. Sec-
ond, in the MRF smoothing step, many of the superpixels
which were correctly classified as foreground objects, are
smoothed out by neighboring background pixels.

We propose to improve the label likelihood score at each
superpixel to achieve a more accurate parsing output. We
design different classifiers that offer complementary infor-
mation about the data. All the designed models are then
combined to derive a consensus decision. The overview of
our fusing classifiers approach is shown in Figure 1. At test
time, the label likelihood scores of all the BDT models are
merged to produce the final scores at superpixels.

4.1. Fusing Classifiers

Our method is inspired from ensemble classifier tech-
niques that train multiple classifiers and combine them to
reach a better decision. Such techniques are specifically
useful if the classifiers are different [13]. In other words,
the error reduction is related to the uncorrelation between
the trained models [30], i.e. the overall error is reduced if
the classifiers misclassify different data points. Also, it has
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Figure 2. Classification rates (%) of individual classes for the dif-

ferent classification models trained on SIFTflow. Classes are or-

dered in descending order by the mean number of pixels they oc-

cupy (frequency) in scene images. Our goal is to decrease the

correlation between the trained models.

been shown that partitioning the training set performs better

than partitioning the feature space for large datasets [30].

We have observed that the classification error of a given

class is related to the mean number of pixels it occupies in

the scene images, as shown by the blue line in Figure 2.

This agrees with the findings of previous methods [28, 33]

that the classification error rate is related to the frequency

of classes in the training set. However, we go beyond that

by considering the frequency of the classes on the image

level, which targets the problem of smoothing out the less-

represented classes by a neighbouring background class.

To this end, we train three BDT models with the follow-

ing training data criteria: (1) a balanced subsample of all

classes C in the dataset, (2) a balanced subsample of classes

occupying an average of less than x% of their images, and

(3) a balanced subsample of classes occupying an average

of less than ⌈x/2⌉% of their images.

The motivation beyond these choices is to reduce the

correlation between the trained BDT models as shown in

Figure 2. While the unbalanced classifier mainly misclas-

sifies the less-represented classes, the balanced classifiers

recover some of these classes while making more mistakes

on the more represented classes. By combining the like-

lihoods from all the classifiers, a better overall decision is

reached that improves the overall coverage of classes (Fig-

ure 1). We observed that the addition of more classifiers did

not improve the performance for any of our datasets.

The final cost of assigning a label c to a superpixel si
can then be represented as the combination of the likelihood

scores of all classifiers:

D(lsi = c|si) = 1−
1

1 + e−Lcomb(si,c)
(3)

where Lcomb(si, c) is the combined likelihood score ob-

tained by the weighted sum of the scores from all classifiers:

Lcomb(si, c) =
∑

j=1,2,3,4

wj(c)Lj(si, c), (4)

where Lj(si, c) is the score from the jth classifier, and

wj(c) is the normalized weight of the likelihood score of

class c in the jth classifier.

4.2. Normalized Weight Learning

We learn the weights w ≡ [wj(c)] of all classes C in of-

fline settings using the training set. We compute the weights

separately for each classifier. The weight w̃j(c) of class c
for the jth classifier is computed as the average ratio of the

sum of all likelihoods of class c, to the sum of all likelihoods

of all classes ci ∈ C\c of all superpixels si ∈ S:

w̃j(c) =
|Cj |

C

∑
si∈S Lj(si, c)∑

si∈S

∑
ci∈C\c Lj(si, ci)

(5)

where |Cj | is the number of classes covered by the jth clas-

sifier and not covered by any other classifier with a smaller

number of classes.

The normalized weight wj(c) of class c can then be com-

puted as: wj(c) = w̃j(c)/
∑

j=1,2,3,4 w̃j(c). Normalizing

the output likelihoods in this manner gives a better chance

for all classifiers to be considered in the result with an em-

phasis on less-represented classes. In sec. 6, we show the

superior performance of our fusion scheme to other tradi-

tional fusion mechanisms: averaging and median rule.

5. Scene-Level Global Context

When exploiting scene parsing problems, it is useful

to incorporate the semantics of the scene in the labeling

pipeline. For example, if we know that a given scene is a

beach scene, we will expect to find labels like sea, sand,

and sky with a much higher probability than expecting to

find labels like car, building, or fence. We use the initial

labeling results of a test image in estimating the likelihoods

of all labels c ∈ C (sec. 5.1). The likelihoods are estimated

globally over an image, i.e. there is a unique cost per label

per image. We then plug the global label costs into a second

MRF inference step to produce better results (sec. 5.2).

Our approach, unlike previous methods, does not limit

the number of labels to those present in the retrieval set but

instead uses the set to compute the likelihood of class labels

in a k-nn fashion. The likelihoods are normalized by counts

over the whole dataset and smoothed to give a chance to la-

bels not in the retrieval set. We also employ the likelihoods

in MRF optimization, not for filtering the number of labels.

5.1. ContextAware Global Label Costs

We propose to incorporate semantic context through us-

ing label statistics instead of global visual features. The

intuition behind such choice is that ranking by global vi-

sual features often fails to retrieve similar images on the

scene level [29, 33]. For example, a highway scene could
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Figure 3. Scene-level global context. (a) The initial labeling of
a query image is used to (b) assign weights to the unique classes
in the image. A class with a bigger weight is represented by a
larger circle. (c) Training images are ranked by the weighted size
of intersection of their class labels with the query. (d) Global label
likelihoods are computed through label counts in the top-ranked
images.

be confused with a beach scene with road pixels misclassi-
fied as sand. However, ranking by label statistics, given a
relatively good initial labeling, retrieves more semantically
similar images that aim to remove outlier labels (e.g., sea
pixels in street scene), and recover missing labels in a scene.

For a given test image I , minimizing the energy function
in equation 2 produces an initial labeling L of the super-
pixels in the image. If C is the total number of classes in
the dataset, let T ⊂ C be the set of unique labels which
appear in L, i.e. T = {t |∃si : lsi = t}, where si is a su-
perpixel with index i in the test image, and lsi is the label
of si. We exploit semantic context in a probabilistic frame-
work, where we model the conditional distribution P (c|T )
over class labeling C given the initial global labeling of an
image T . We compute P (c|T )∀c ∈ C in a K-nn fashion:

P (c|T ) =
(1 + n(c,KT ))/n(c, S)

(1 + n(c̄, KT ))/|S|
, (6)

where KT is the K-neighborhood of initial labeling T ,
n(c,X) is the number of superpixels with label c in X ,
n(c̄, X) is the number of superpixels with all labels except c
in X , and |S| is the total number of superpixels in the train-
ing set. We normalize the likelihoods and add a smoothing
constant of value 1.

To get the neighborhood KT , we rank the training im-
ages by their distance to the query image. The distance
between two images is computed as the weighted size of
intersection of their class labels, intuitively reflecting that
the neighbors of T are images with many shared labels with
those in T . We assign a different weight to each class in T
in such a way to favor less-represented classes.

As shown in Figure 3, our algorithm works in three steps.

It starts by (1) assigning a weight ωt to each class t ∈ T ,
which is inversely proportional to the number of superpixels
in the test image with label t: ωt = 1− n(t,I)

|I| , where n(t, I)

is the number of superpixels in the test image with label
lsi = t, and |I| is the total number of superpixels in the im-
age. Then, (2) training images are ranked by the weighted
size of intersection of their class labels with the test image.
Finally, (3) the global label likelihood Lglobal(c) = P (c|T )
of each label c ∈ C is computed using equation 6.

Computing the label costs is done online for a query
image without any batch offline training. Our method im-
proves the overall accuracy by using only the ground truth
labels of training images without any global visual features.

5.2. Inference with Label Costs
Once we obtained the likelihoods Lglobal(c) of each

class c ∈ C, we can define a label cost H(c) =
−log(Lglobal(c)). Our final energy function becomes:

E(L) =
∑
si∈S

D(lsi = c|si)+λ
∑

(i,j)∈A

V (lsi , lsj )+
∑
c∈C

H(c).δ(c),

(7)
where δ(c) is the indicator function of label c:

δ(c) =

{
1 ∃si : lsi = c
0 otherwise

We solve equation 7 using α-expansion with the extension
method of [5] to optimize label costs. Optimizing the en-
ergy function in equation 7 effectively minimizes the num-
ber of unique labels in a test image to those which have low
label costs, i.e. which are most relevant to the scene.

6. Experiments
We ran our experiments on two large-scale datasets:

SIFTflow [18] and LMSun [29]. SIFTflow has 2,488 train-
ing images and 200 test images. All images are of out-
door scenes of size 256x256 with 33 labels. LMSun con-
tains both indoor and outdoor scenes, with a total of 45,676
training images and 500 test images. Image sizes vary from
256x256 to 800x600 pixels with 232 labels.

We use the same evaluation metrics and train/test splits
as previous methods. We report the per-pixel accuracy (the
percentage of pixels of test images that were correctly la-
beled), and per-class recognition rate (the average of per-
pixel accuracies of all classes). We evaluate the following
variants of our system: (i) baseline, as described in sec. 3,
(ii) baseline (with balanced BDT), which is the baseline ap-
proach using a balanced classifier, (iii) baseline + FC (NL
fusion), which is the baseline in addition to the fusing clas-
sifiers with normalized-likelihood (NL) weights in sec. 4,
and (iv) full, which is baseline + fusing classifiers + global
costs. To show the effectiveness of our fusion method (sec.
4.2), we report the results of (v) baseline + FC (average



fusion), which is fusing classifiers by averaging their like-

lihoods, and (vi) baseline + FC (median fusion), which is

fusing classifiers by taking the median of their likelihoods.

We also report results of (vii) full (without FV), which is full

system without using the Fisher Vector features.

We fix x = 5 (sec.4.1), a value that was obtained through

empirical evaluation on a small subset of the training set.

6.1. Results

We compare our results with state-of-the-art methods on

SIFTflow in Table 1. We have set K = 64 top-ranked train-

ing images for computing the global context likelihoods

(sec. 5.1). Our full system achieves 81.7% per-pixel accu-

racy, and 50.1% per-class accuracy, which outperforms the

state-of-the-art method of [33] (79.8% / 48.7%). Results

show that our fusing classifiers step significantly boosts the

coverage of foreground classes, where the per-class accu-

racy increases by around 15% over the baseline method.

Our semantic context (sec. 5) improves both the per-pixel

and per-class accuracies through optimizing for fewer labels

which are more semantically meaningful. Fisher Vectors

improved the recognition by around 3%. In Figure 6, we

show examples of parsing results on the SIFTflow dataset.

Method Per-pixel Per-class

Liu et al. [18] 76.7 N/A

Farabet et al. [7] 78.5 29.5

Farabet et al. [7] balanced 74.2 46.0

Eigen and Fergus [6] 77.1 32.5

Singh and Kosecka [25] 79.2 33.8

Tighe and Lazebnick [29] 77.0 30.1

Tighe and Lazebnick [28] 78.6 39.2

Yang et al. [33] 79.8 48.7

Baseline 78.3 33.2

Baseline (with balanced BDT) 76.2 45.5

Baseline + FC (NL fusion) 80.5 48.2

Baseline + FC (average fusion) 78.6 46.3

Baseline + FC (median fusion) 77.3 46.8

Full without Fisher Vectors 77.5 47.0

Full 81.7 50.1

Table 1. Comparison with state-of-the-art per-pixel and per-class

accuracies (%) on the SIFTflow dataset.

Table 2 compares the performance of the same variants

of our system with the state-of-the-art methods on the large-

scale LMSun dataset. LMSun is more challenging than

SIFTflow in terms of the number of images, the number of

classes, and the presence of both indoor and outdoor scenes.

Accordingly, we use a larger value of K = 200 in equation

6. Our method achieves near record performance in per-

pixel accuracy (61.2%), while placing second in per-class

accuracy. The effectiveness of the fusing classifiers tech-

nique is shown in the improvement of both per-pixel (by

3%) and per-class (by 4.5%) accuracies over the baseline

system. The global context step improves the class cover-

age by around 2%. Figure 7 shows the output of our scene
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Figure 4. Analysis of the performance when varying the number

of trees for training the BDT model, at different values of top K

images for the global context step on the SIFTflow dataset. The

y-axis shows the per-pixel accuracies (%) and the x-axis show the

per-class accuracies (%) for different numbers of trees.

parsing system on some images from LMSun.

Method Per-pixel Per-class

Tighe and Lazebnick [29] 54.9 7.1

Tighe and Lazebnick [28] 61.4 15.2

Yang et al. [33] 60.6 18.0

Baseline 57.3 9.5

Baseline (with balanced BDT) 45.4 13.8

Baseline + FC (NL fusion) 60.0 14.2

Baseline + FC (average fusion) 60.5 11.4

Baseline + FC (median fusion) 59.2 14.7

Full without Fisher Vectors 58.2 13.6

Full 61.2 16.0

Table 2. Comparison with state-of-the-art per-pixel and per-class

accuracies (%) on the LMSun dataset.
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Figure 5. Classification rates (%) of individual classes for the base-

line, fused classifiers, and the full system on SIFTflow. Classes are

sorted from most frequent to least frequent.

We next analyze the performance of our system when

varying the number of trees T for training the BDT model

(sec. 4.1), and the number of top training images K in

the global label costs (sec. 5.1). Figure 4 shows the per-

pixel accuracy (on the y-axis) and the per-class accuracy

(on the x-axis) as a function of T for a variety of Ks. In-

creasing the value of T generally produces better classifica-
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Figure 6. Examples of parsing results on the SIFTflow dataset (best viewed in color). Top left is the original image, on its right is the
ground truth labeling, bottom left is the output from the baseline, on its right the output of the balanced classifier. Finally, the output of the
full system is on the far right (third column). The unbalanced classifier often misses the foreground classes by oversmoothing the results.
The balanced classifier performs better with foreground classes, but yields more noisy classification. The full system combines the benefits
of both classifiers, improving both the overall accuracy and the coverage of foreground classes (e.g., building, bridge, window, and person)

tion models that better describe the training data. At T ≥
400, performance levels off. As shown, our global label
costs consistently improve the performance over the base-
line method with no global context. Using more training
images (higher K) improves the performance through con-
sidering more semantically-relevant scene images. How-
ever, performance starts to decrease for very high values of
K (e.g., K = 1000) as more noisy images start to be added.

Figure 5 shows the per-class recognition rate for the
baseline, combined classifiers, and the full system on SIFT-
flow. Our fusing classifiers technique produces more bal-
anced likelihood scores that cover a wider range of classes.
The semantic context step removes outlier labels and re-
covers missing labels, which improves the recognition rates
of both common and rare classes. Recovered classes in-
clude field, grass, bridge, and sign. Failure cases include
extremely rare classes, e.g. cow, bird, desert, and moon.

6.2. Running Time

We analyzed the runtime performance for both SIFT-
flow and LMSun (without feature extraction) on a four-core

2.84GHz CPU with 32GB of RAM without code optimiza-
tion. For the SIFTflow dataset, training the classifier takes
an average of 15 minutes per class. We run the training
process in parallel. The training time highly depends on
the feature dimensionality. At test time, superpixel clas-
sification is efficient, with an average of 1 second per im-
age. Computing global label costs takes 3 seconds. Finally,
MRF inference takes less than one second. We run MRF
inference twice for the full pipeline. LMSun is much larger
than SIFTflow. It takes 3 hours for training the classifier,
less than a minute for superpixel classification per image,
less than 1 minute for MRF inference, and ∼2 minutes for
global label cost computation.

6.3. Discussion

Our scene parsing method is generally scalable as it does
not require any offline training in a batch fashion. However,
the time required for training a BDT classifier increases lin-
early with increasing the number of data points. This is
challenging with large datasets like LMSun. Randomly sub-
sampling the dataset has a negative impact on the overall
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Figure 7. Examples of parsing results on the LMSun dataset (best viewed in color). The layout of the results is the same as in Fig. 6.
Foreground classes (e.g. screen, sidewalk, person, torso, pole, cloud, table, light, and elephant) are successfully recognized by our system.

precision of the classification results. We plan to investigate
alternative approaches like [26] of mining discriminative
data points that better describe each class. Our system still
faces challenges in trying to recognize very less-represented
classes in the dataset (e.g., bird, cow, and moon). This could
be handled via better contextual models per query image.

7. Conclusion

In this work, we have presented a novel scene parsing
algorithm that improves the overall labeling accuracy, with-
out smoothing away foreground classes which are important
for human observers. Through combining likelihood scores
from different classification models, we have successfully
boosted the strengths of individual models, thus improv-

ing both the per-pixel, as well as the per-class accuracies.
To avoid eliminating correct labels through image retrieval,
we have encoded global context into the parsing process in
a probabilistic framework. We have extended the energy
function to include global label costs that achieve more se-
mantically meaningful parsing output. Experiments have
shown the superior performance of our system on the SIFT-
flow dataset and comparable performance to state-of-the-art
methods on the LMSun dataset.
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