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Abstract

This paper studies active learning in structured probabilis-
tic models such as Conditional Random Fields (CRFs). This
is a challenging problem because unlike unstructured pre-
diction problems such as binary or multi-class classifica-
tion, structured prediction problems involve a distribution
with an exponentially-large support, for instance, over the
space of all possible segmentations of an image. Thus, the
entropy of such models is typically intractable to compute.
We propose a crude yet surprisingly effective histogram ap-
proximation to the Gibbs distribution, which replaces the
exponentially-large support with a coarsened distribution
that may be viewed as a histogram over M bins. We show
that our approach outperforms a number of baselines and
results in a 90%-reduction in the number of annotations
needed to achieve nearly the same accuracy as learning
from the entire dataset.

1. Introduction
A number of problems in Computer Vision – image seg-
mentation, geometric labeling, human body pose estimation
– can be written as a mapping from an input image x ∈ X
to an exponentially large space Y of structured outputs. For
instance, in semantic segmentation, Y is the space of all
possible (super-)pixel labelings, |Y| = Ln, where n is the
number of (super-)pixels and L is the number of object la-
bels that each (super-)pixel can take.
As a number of empirical studies have found [1–3], the
amount of training data is one of the most significant factors
influencing the performance of a vision system. Unfortu-
nately, unlike unstructured prediction problems – binary or
multi-class classification – data annotation is a particularly
expensive activity for structured prediction. For instance,
in image segmentation annotations, we must label every
(super-)pixel in every training image, which may easily run
into millions. In pose estimation annotations, we must label
2D/3D locations of all body parts and keypoints of interest
in thousands of images. As a result, modern dataset col-

lection efforts such as PASCAL VOC [4], ImageNet [5],
and MS COCO [6] typically involve spending thousands of
human-hours and dollars on crowdsourcing websites such
as Amazon Mechanical Turk.
Active learning [7] is a natural candidate for reducing an-
notation efforts by seeking labels only on the most infor-
mative images, rather than the annotator passively labeling
all images, many of which may be uninformative. Unfortu-
nately, active learning for structured-output models is chal-
lenging. Perhaps even the simplest definition of “informa-
tive” involves computing the entropy of the learnt model
over the output space:

H(P) = −EP(y|x)[log(P(y|x))] (1a)

= −
∑
y∈Y

P(y|x) log P(y|x), (1b)

which is intractable due to the summation over an
exponentially-large output space Y .
Overview and Contributions. In this paper, we study ac-
tive learning for probabilistic models such as Conditional
Random Fields (CRFs) that encode probability distributions
over an exponentially-large structured output space.
Our main technical contribution is a variational ap-
proach [8] for approximate entropy computation in such
models. Specifically, we present a crude yet surprisingly
effective histogram approximation to the Gibbs distribu-
tion, which replaces the exponentially-large support with
a coarsened distribution that may be viewed a histogram
over M bins. As illustrated in Fig. 1, each bin in the his-
togram corresponds to a subset of solutions – for instance,
all segmentations where size of foreground (number of ON
pixels) is in a specific range [L U ]. Computing the entropy
of this coarse distribution is simple since M is a small con-
stant (∼10). Importantly, we prove that the optimal his-
togram, i.e. one that minimizes the KL-divergence to the
Gibbs distribution, is composed of the mass of the Gibbs
distribution in each bin, i.e.

∑
y∈bin P (y|x). Unfortunately,

the problem of estimating sums of the Gibbs distribution
under general hamming-ball constraints continues to be #P-
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Figure 1: Overview of our approach. We begin with a structured probabilistic model (CRF) trained on a small set of labeled images;
then search the large unlabeled pool for a set of informative images to annotate where our current model is most uncertain, i.e. has
highest entropy. Since computing the exact entropy is NP-hard for loopy models, we approximate the Gibbs distribution with a coarsened
histogram over M bins. The bins we use are ‘circular rings’ of varying hamming-ball radii around the highest scoring solution. This leads
to a novel variational approximation of entropy in structured models, and an efficient active learning algorithm.

complete [9]. Thus, we upper bound the mass of the distri-
bution in a bin with the maximum entry in a bin multiplied
by the size of the bin. Fortunately, finding the most probable
configuration in a hamming ball has been recently studied
in the graphical models literature [10–12], and efficient al-
gorithms have been developed, which we use in this work.
We perform experiments on figure-ground image segmen-
tation and coarse 3D geometric labeling [13]. Our proposed
algorithm significantly outperforms a large number of base-
lines and can help save hours of human annotation effort.

2. Related Work
Large-scale data annotation efforts in computer vision have
typically involved thousands of hours of human effort, ei-
ther for pay (Mechanical Turk) or motivated by the task be-
ing fun [14] or a game [15].
Learning from weak annotations. One theme in reduc-
ing annotation effort in recognition tasks is to learn from
weak annotations – where the annotation provides only the
name of the object in the image [16–18], or partial labelings
where the annotations for some pixels are missing [19, 20],
or learning in an interactive setting where the annotator re-
peatedly provides scribbles [21–24], or propagating labels
from annotated images to unannotated images [25]. In con-

trast, we focus on the fully-supervised active learning set-
ting where the goal is to identify which images to label; once
an image is chosen, we receive full annotations.
Active learning is a vast sub-field of machine learning, with
a number of approaches for quantifying the informativeness
of an as yet unlabeled example – based on disagreement
among a committee of classifiers [26], version space of an
SVM [27], and expected informativeness [28] for proba-
bilistic models. We focus on entropy-based active learning,
which is a natural definition of informativeness, but is in-
tractable to compute for structured models such as CRFs.
In computer vision, active learning has been used for scene
classification [29], object/image categorization [30,31], and
annotating large image and video datasets [32–36]. No-
tice that these are all instances of unstructured prediction
– binary or multi-class classification. We focus on struc-
tured prediction where the space of possible outcomes and
thus the support of the distribution of our model is expo-
nentially large. Two previous works address the problem of
exact computation of entropy in such models [37,38]. How-
ever, both these works assume chain/tree-structured graph-
ical models, which is understandable in natural language
processing, but is an unreasonable assumption for computer
vision problems. We make no such assumptions.



The closest to our goal is the recent work of Luo et al. [39],
on active learning in latent structured models. There are
a number of subtle but important differences w.r.t. to our
work. The algorithm in [39] estimates the local entropy of
the marginal distribution of each variable via convex belief
propagation [40], and asks the user to annotate the single
variable/pixel that is most marginally uncertain. In compar-
ison, the focus of our work is to estimate the entropy of the
joint distribution not the entropy of the marginal. Thus, we
are able to find an image where the model is most uncer-
tain, rather than a pixel. This matches the natural annota-
tion modality, where annotators are shown full images and
asked to provide polygonal annotations [5,6,14]. In our ex-
periments, we compare against an adapted version of the al-
gorithm from [39], which estimates the entropy of the joint
distribution by summing entropies of the marginals (thereby
assuming that pixels are independent). To its credit, [39]
studies a more general setting (learning under partial super-
vision) than the one studied in this paper (full supervision).
However, within this narrower but important domain, we
find that our approach outperforms all baselines, including
our adaption of [39].
The work of Maji et al. [41] defines a novel uncertainty
measure for structured models, called ‘MAP perturbation
uncertainty,’ which upper-bounds the true entropy of the
Gibbs distribution via MAP perturbations [42, 43] under
Gumbel noise. Note that for entropy-based active learn-
ing, ideally we require lower bounds on entropy, not up-
per bounds. Inspired by the MAP perturbation litera-
ture [42, 43], we compare to (and outperform) a baseline
that directly approximates the entropy by treating the MAP
perturbation solutions as samples.
Finally, a number of recent works have looked into active
learning with multiple modalities of annotator feedback and
rich learner-supervisor interactions beyond simply asking
for class-labels [44–46]. Combining such rich interactions
with our approach is an interesting direction for future.

3. Preliminaries and Notation
We begin by establishing the notation used in the paper.
Notation. For any positive integer n, let [n] be shorthand
for the set {1, 2, . . . , n}. Given an input image x ∈ X , our
goal is to make a prediction about y ∈ Y , where y may be
a figure-ground segmentation, or a category-level semantic
segmentation. Specifically, let y = {y1 . . . yn} be a set
of discrete random variables, each taking value in a finite
label set, yu ∈ Yu. In semantic segmentation, u indexes
over the (super-)pixels in the image, and these variables are
the labels assigned to each (super-)pixel, i.e. yu ∈ Yu =
{sky, building, road, car, . . .}.
CRF Model. Let G = (V, E) be a graph defined over the
output variables y, i.e. V = [n], E ⊆

(
[n]
2

)
. Let θu(yu)

be the unary term expressing the local confidence at site u
for the label yu, and θuv(yu, yv) be the pairwise term ex-
pressing compatibility of label yu and yv at adjacent ver-
tices. The score for any configuration y is given by the
sum S(y) =

∑
u∈V θu(yu)+

∑
(u,v)∈E θuv(yu, yv), and its

probability is given by the Gibbs distribution: P (y|x) =
1
Z e

S(y), where Z is the partition function or normalization
constant. The techniques proposed in this paper are natu-
rally applicable to higher-order CRFs. However, to simplify
the exposition we only consider pairwise energies.
These unary and pairwise terms are derived from a weighted
combination of features extracted at vertices and edges, i.e.,
θu(yu) = wᵀ

uφ(x, yu) and θuv(yu, yv) = wᵀ
uvφ(x, yu, yv).

Thus, this is a log-linear model, with S(y) = wᵀφ(x,y),
where w are all the model parameters concatenated into a
long vector, and φ(x,y) are all the features concatenated.

4. Approach: Approximate Entropy for Gibbs
We now describe our proposed active learning approach.
We begin with a small number of labelled images from
which an initial estimate of w is trained. Given a pool of
unlabeled images, our goal is to find and seek annotation
for the image where our current model is most uncertain.
Exact Entropy. For each unlabeled image x, we need to
compute the entropy of the conditional distribution P(y|x):

H(P) = −EP(y|x)[log(P(y|x))] (2a)

= −
∑
y∈Y

P(y|x) log P(y|x) (2b)

Computing this entropy exactly is intractable due to the
summation over an exponentially-large output space Y .
Variational Inference for Approximate Entropy. At a
high level, the goal of any variational method is to construct
a surrogate distribution Q(y), and measure its entropy as
an approximation to the entropy of P(y|x). There are two
desiderata for constructing a good surrogate:

• Efficiency: We should be able to quickly construct
the surrogate distribution Q(y) and compute its en-
tropy since this computation needs to be repeatedly
performed as the model learns, and the unlabeled pool
of images may be very large. Thus, Q(y) should be
compact, and allow computation of entropy in a small
number of (say O(M)) operations:

H(Q) = −
M∑
m=1

Q(ym) logQ(ym) (3)

• Approximation Quality: The surrogate Q(y) should
faithfully approximate the Gibbs distribution P(y|x)
and lead to an accurate entropy approximation, even
for high level of compactness.



In the next few subsections, we look at a few different no-
tations of compactness – first considering a standard tech-
nique and then proposing our own notion of compactness.

4.1. Surrogate with Stochastic Samples
Classical techniques such as Monte Carlo methods for nu-
merically approximating integrals involve replacing the ex-
ponentially large summation with a finite sum over a small
set of M solutions Y = {y1,y2, . . . ,yM}, which corre-
sponds to sum-of-weighted-delta (SOWD) approximation to
the Gibbs distribution:

H(P ) ≈ −
M∑
m=1

eS(y
m)

Zδ
log

eS(y
m)

Zδ
, (4)

where Zδ =
∑M
i=1 e

S(yi) is the normalizing constant of the
delta-approximation.
Broadly speaking, there are two main families of methods
for constructing Y:

• Classical Monte Carlo: where yi are samples from
the distribution P(y|x). Since direct sampling from
undirected graphical models is hard [47], typically
Markov Chain Monte Carlo (MCMC) methods such as
Gibbs sampling are used, which sample from a Markov
Chain whose stationary distribution is P(y|x).

• Quasi Monte Carlo: where yi are stochastic low-
discrepancy points that try to cover the space as uni-
formly as possible without creating any regions with
high or low density.

However, both these methods fall short. MCMC sampling
based methods are slow, often requiring a long burn-in pe-
riod before the Markov Chain converges to the stationary
distribution, and even after that a large number of samples
may be needed before they transition out of one mode of
the distribution P(y|x) to another mode. Since our goal is
to estimate entropy, it is crucial that we see samples from
as many modes of the distribution as possible. In our ex-
periments, we compare to Gibbs sampling and confirm that
it performs poorly. On the other hand, Quasi Monte Carlo
methods completely ignore the function being summed, and
may end up summing terms with insignificant effect, espe-
cially if the distribution P(y|x) is non-uniform.

4.2. Surrogate with Deterministic Samples
Instead of running a long Markov Chain to convergence,
can we efficiently find deterministic samples that are repre-
sentative of P(y|x)? Specifically, can we construct a sur-
rogate Q(y) with support on exactly M solutions Y =
{y1,y2, . . . ,yM} that optimally approximates P(y|x)?

Let Q(y) =
∑M
m=1 qm[[y = ym]], where [[·]] is the Iverson

bracket, which is 1 when the input argument is true, and
0 otherwise. Thus, Q(y) is a sum of weighted delta func-
tions. This surrogate is parameterized by (i) the location of

P
(y

|x
)

(a) Delta approximation.

P
(y

|x
)

(b) Histogram approximation.
Figure 2: Delta vs Histogram Approximation.

the support Y, and (ii) the weights q = {q1, . . . , qm} that
must clearly sum to 1. Lemma 1 shows that optimal sup-
port location and weights correspond to the top M highest
scoring configurations in P.

Lemma 1. Let Q(y;Y,q) =
∑M
m=1 qm[[y = ym]] be

a SOWD-approximation parameterized by Y and q. Let
KL(Q||P)1 =

∑
y∈Y Q(y) log Q(y)

P(y|x) denote the KL-
divergence between the two distributions. The parameters
Ŷ, q̂ that minimize KL(Q||P) are:

ŷm = argmax
y∈Y

P(y|x) (5a)

s.t. y 6= ŷm
′
∀m′ < m (5b)

q̂m =
eS(ŷ

m)∑M
m′=1 e

S(ŷm′
)

(6)

Proof. Using the method of Lagrangian multipliers and
solving the system of partial derivates of the Lagrangian.
More details in the supplement.

Lemma 1 matches what we would intuitively expect – that
if we need to approximate P with a set of points, these
should be placed at the top M most probable locations in
P. Eqn. (5) corresponds to a problem known in the graphi-
cal models literature as the M-Best MAP [48–50]. Eqn. (6)
corresponds to normalizing the unnormalized probabilities
of the M-Best MAP points to form a valid distribution.
Unfortunately, while this delta-surrogate may be intuitive, it
suffer from some pathological behaviors. One such counter-
intuitive behavior is illustrated in Fig. 2. Consider M = 2.
Lemma 1 asks us to pick the two points shown in Fig. 2a
since they have the highest probability under P. The scores
of these two configurations are very similar and thus Q
seems nearly uniform, with H(Q) ' log2 2 = 1. How-
ever, P is extremely peaky, and this will lead to wasted
effort in annotating this image. The reason for this dis-
crepence is that minQKL(Q||P) attempts to approximate
the entire distribution P, while our primary interest is in
approximating the entropy. Even if we changed the ob-
jective function, there is a second pathology. Recall that
the entropy of any discrete distribution with support on M
points is upper-bounded by log2M bits. This is a signif-
icantly smaller quantity than log2 |Y|. For instance, in a

1We work with KL(Q||P) because KL(P||Q) is not defined when Q
has more restrictive support than P.



binary image segmentation problem, the size of the state
space is |Y| = 2n, and the maximum entropy possible is
log2 2n = n bits. Here n is the number of super-pixels and
typically around 200−2000, while the number of pointsM
is typically around 10 (log2 10 = 3.29). While we do not
expect distributions over real image segmentation instances
to be nearly uniform, it is clear that as soon as the entropy
of P becomes larger than 3.29 bits, any uniform distribu-
tion Q that places support on any M points is an optimal
entropy approximator. Clearly, such an approximation can-
not be used to perform active learning.

4.3. Surrogate with Histogram Bins
Based on these intuitions, we propose a different notion of
compactness of Q – one that still requires the same number
of M parameters to represent Q, but is more representa-
tive of P globally. As illustrated in Fig. 2b, we partition Y
intoM non-overlapping bins and makeQ a normalized his-
togram over these bins. Specifically, let {ȳ1, ȳ2, . . . , ȳM}
denote the bin centers, ∆(y1,y2) denote the Hamming dis-
tance between y1 and y2, and Ym = {y | ∆(y, ȳm) ≤ r}
be the set of configurations that lie within bin m, which is
to say that they lie within an appropriately defined r-radius
distance ball of ȳm. With this notation, we define the sur-
rogate Q to be:

Q(y) =

M∑
m=1

qm[[y ∈ Ym]] =

M∑
m=1

qm[[∆(y, ȳm) ≤ r]]

(7)

i.e. if y lies in the the mth bin, it is assigned a probabil-
ity of qm. Note that this formulation can contain the delta-
approximation as a special case with r = 0, if we allow for
the bins to not be a complete cover of Y (i.e. Y 6= ∪mYm).
We can now ask a similar question as in the previous section
– what is the optimal histogram approximation?

Lemma 2. Let Q(y; {Ym},q) =
∑M
m=1

qm
|Ym| [[y ∈ Ym]]

be a histogram-approximation parameterized by bins {Ym}
and weights q. Let KL(P||Q) =

∑
y∈Y P(y|x) log P(y|x)

Q(y)
denote the KL-divergence between the two distributions.
For any fixed set of non-overlapping (potentially unequally
sized) bins {Ym}, such that Y = ∪mYm, the weights q̂
that minimize KL(P||Q) are:

q̂m =
∑

y∈Ym

P(y|x) =
1

Z
∑

y∈Ym

eS(y) (8)

Proof. Using the method of Lagrangian multipliers and
solving the system of partial derivates of the Lagrangian.
More details in the supplement.

Lemma 2 is also intuitive in its prescription – the optimal
histogram is one that represents the mass of the Gibbs dis-
tribution over each bin. Note that the partition function Z
is a constant and does not depend on the bin, thus we can
equivalently compute the mass of the unnormalized Gibbs
distribution, i.e. q̃m =

∑
y∈Ym eS(y), and then simply nor-

malize these to compute qm = q̃m∑
m′ q̃m′

.

Unfortunately, the problem of estimating sums of the Gibbs
distribution under general hamming-ball constraints contin-
ues to be #P-complete. Thus, we proposed to compute a
simple upper-bound on the unnormalized mass:

q̃m ≤ |Ym| · max
y∈Ym

eS(y), (9)

i.e. we upper-bound the mass of a bin with the maximum
entry in a bin multiplied by the size of the bin. This upper
bound is a good approximation if P is nearly flat over the
bin, and a poor approximation if P is very peaky in the bin.
In order to compute this upper-bound, we build on recent
advances in the graphical models literature for producing a
set of diverse high-scoring solutions in CRFs [10, 11, 51],
specifically the Parallel Diverse MAPs (PDivMAP) formu-
lation of Meier et al. [11]. Let y1 = maxy∈Y e

S(y) be the
MAP solution. We define M circular bins or rings around
the MAP solution, with inner and outer radii of the rings
given by Lm and Um. This allows our histogram approxi-
mation to be distribution-specific and be “centered" around
the MAP solution, which is where P places most mass. For-
mally, we search for the the highest scoring configuration in
a bin via the following optimization problem:

ym = argmax
y∈Y

∑
u∈V

θu(yu) +
∑

(u,v)∈E

θuv(yu, yv) (10a)

s.t. Lm ≤ ∆(y,y1) ≤ Um. (10b)

We set Um = Lm+1, and chose Lm’s by evenly dividing
the range [0 max ∆(·, ·)], so that the rings cover the entire
output space Y . Meier et al. [11] showed that the partial
Lagrangian dual of this modified formulation is easily opti-
mizable:

f(αm, βm) = max
y∈Y

Sα,β(y)
.
=
∑
u∈V

θu(yu) +
∑

(u,v)∈E

θuv(yu, yv)

+ αm
(
∆(y,y1)− Lm

)
− βm

(
∆(y,y1)− Um

)
(11)

where αm, βm are the two Lagrangian multipliers for the
inner and outer radius constraints respectively. This La-
grangian dual function is easy to evaluate (and consequently
minimize) since the Hamming distance function is absorbed
into the node terms:

Sα,β(y) =
∑
u∈V

(
θu(yu) + (αm − βm)[[yu 6= y1u]]

)
︸ ︷︷ ︸

Perturbed Unary Score

+
∑

(u,v)∈E

θuv(yuv). (12)



Thus, this maximization can be performed simply by feed-
ing a perturbed unary term to the algorithm used for MAP
inference (e.g. α-expansion or TRW-S). Lagrangian mul-
tipliers αm, βm can be optimized via subgradient descent,
and the update rules are described in [11].

4.4. Summary of the algorithm
To summarize the entire algorithm, we initialize the weights
of the CRF w by training on a small set of labeled images.
Then these weights are used to compute the node and edge
potentials for each image in the unlabeled pool. For each
unlabeled image, we produce the highest scoring configu-
rations in the M circular bins {Ym}, use these to estimate
the entropy and pick the unlabeled image with the highest
estimated entropy. The parameters of the model w are then
retrained and this process is repeated.

5. Experiments
We evaluate our approach on one synthetic and two real
problems. The goal of the synthetic experiments is to per-
form sanity-checks and compare the performance of our al-
gorithm when the entropy of the Gibbs distribution can be
exactly computed. The goal of the real experiments is to
show broad applicability and performance gains relative to
other approximate inference techniques that may be used to
estimate entropy.
Practical Considerations. For all experiments, we used
the PDivMAP algorithm to find the highest scoring solu-
tions in the bins, with Lm, Um set by breaking the diver-
sity range [0 max ∆(·, ·)] evenly into M = 10 bins and
αm, βm optimized via subgradient descent. Naïvely com-
puting

∑M
i=1 e

S(yi) results in loss of numerical precision
(underflow or overflow depending on whether S(yi) were
positive or negative). We used the “log-sum-exp trick”,
where the re-normalized distribution is computed as:

q̃i =
e
S(yi)−Smin

T

M∑
j=1

e
S(yj)−Smin

T

(13)

where Smin = minj∈[M ] S(yj) is the smallest score, and
T is a “temperature” parameter. When T = 1, the role
of Smin is simply to avoid numerical underflow/overflow
and otherwise does not change the entropy approximation.
When T ≤ 1, the delta-approximate distribution is sharp-
ened around the MAP (thus decreasing the estimated en-
tropy), and when T ≥ 1 the approximate distribution is
flatted towards uniform (thus increasing the estimated en-
tropy). We tried two different approaches to set T : (i) cross-
validation (where we pick T to maximize performance of
active learning on a fully-annotated held-out set), and (ii)
scaling by the score of the MAP solution, i.e. T =

∣∣S(y1)
∣∣.

Interestingly, they both performed similar, suggesting that
only a normalization of the scores was needed. All results
reported in the paper are from (ii).
Parameter learning: We learn w via Maximum (Con-
ditional) Likelihood Estimation, optimized via Stochastic
Gradient Ascent. In order to compute gradients of the likeli-
hood, we computed marginals via sum-product loopy Belief
Propagation (without damping) from Mark Schmit’s UGM
package [52]. We observed that BP converged in all our ex-
periments. We also tried MCMC for computing gradients,
but did not find any significant differences in the results.
In our preliminary experiments, we also tried parameter
learning with max-margin objectives such as N/1-slack
Structured SVMs [53–55], however the performance was
not as good as MLE. We believe this is due to the fact
that SSVMs are not probabilistic and lead to weight vec-
tors and scores that are not “calibrated” probabilities. Sim-
ilar observations [56, 57] have been made in the context of
SVMs and Logistic Regression (the unstructured analogues
of SSVM and CRFs). We believe this uncalibrated nature
of scores/probabilities leads to a model whose peak (1-best)
is generally accurate, but the entropy is unreliable.
Baselines. We compare our approach Active-PDivMAP
against 7 baselines:

• Gibbs: we run a Gibbs sampler to produce 500 sam-
ples, and then use the delta-approximation over these
samples. The burn-in period was 1000 samples.

• Perturb-and-MAP: we inject Gumbel noise into
the node potentials, followed by MAP inference, as
proposed by [42] to produce approximate samples, and
then perform delta-approximation over these samples.

• Mean-Field: we perform variational mean-field ap-
proximation to find the fully-factorized distribution
Qmf (y|x) =

∏
iQmf (yi|x), which is closest to

P(y|x) in terms of KL-divergence. Then we compute
exact entropy in this mean-field approximation.

• Min-Marginals: we use the ideas from inter-
active segmentation literature – we compute min-
marginals [58] for each super-pixel, treat this min-
marginal as a measure of uncertainty at this super-
pixel, and use the entropies of (normalized) min-
marginals averaged over all super-pixels.

• Marginals: we approximate the approach of Luo et
al. [39] by calculate the marginal probabilities at each
variable, and then summing these entropies to esti-
mate the entropy for an image. The key difference is
that [39] uses convex BP and we use loopy BP (we ob-
served that BP always converged in our experiments).
To be precise, this is only an approximation of the
“separate” algorithm from [39]. Unfortunately, a direct
comparison against all algorithms proposed by [39] is
not possible because their code is not available.



• Margin-based [59]: we calculate the margin (dif-
ference in scores) between the best solution and the
second-best solution, and select those unlabeled im-
ages with the smallest margin.

• Rand: we pick an unlabeled image uniformly at ran-
dom to annotate.

5.1. Synthetic Experiment
Setup. We generated random spanning trees on 100 nodes.
All variables took two states. The node and edge potentials
were sampled from Gaussians such that the true entropy lied
in the range of [5 20], which represents low- and mid-level
of entropy (maximum entropy possible in this setting is 100
bits). Since the graph is a tree, exact entropy can be com-
puted via sum-product message passing. Table 1 compares
the three sampling-based approaches – PDivMAP, Gibbs,
and Perturb-and-MAP – in terms of:
(a) Rank correlation: correlation between their predicted

ordering of trees and the correct ordering according to
true entropy (higher is better)

(b) True-Rank-of-Pred: the average rank of the tree picked
by the methods to be annotated, according to true en-
tropy (lower is better);

(c) Pred-Rank-of-True: average rank of the tree with the
true highest entropy in the lists generated by the meth-
ods (lower is better).

Table 1
Rank correlation (↑) True-Rank-of-Pred (↓) Pred-Rank-of-True (↓)

PDivMAP 0.47± 0.03 1.9± 0.18 1.7± 0.13
Gibbs 0.32 ± 0.04 6.6 ± 0.37 4.2 ± 0.18
Perturb-and-MAP 0.17 ± 0.04 9.5 ± 0.26 6.1 ± 0.25

In all three metrics, we can see that PDivMAP significantly
outperforms the baselines.

5.2. Foreground-Background Segmentation
Setup. We tested our algorithm on the problem of binary
(foreground-background) image segmentation. We repli-
cated the experimental setup of [60, 61]. We used the
co-segmentation dataset iCoseg [24], which consists of 37
groups of related images mimicking typical consumer pho-
tograph collections. Each group may be thought of as an
“event” (e.g., images from a baseball game, a safari, etc.).
The dataset provides pixel-level ground-truth foreground-
background segmentations for each image. We used 9 dif-
ficult groups containing 166 images in total. These images
were then split into train and test sets of equal size. We
initialize with 1 annotated image, perform active learning
on the train set, and use the test to report accuracies.
See Fig. 3 for some example images and segmentations.
Model and Features. The segmentation task is modeled
as a binary pairwise CRF where each node corresponds to
a superpixel [62] in the image. We extracted 12-dim color
features at each superpixel (mean RGB; mean HSV; 5 bin
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Figure 3: Qualitative Results: Each row shows the image, highest
scoring segmentation in different bins, and the estimated distri-
bution. Each row illustrates a different scenario: (High Entropy,
Accurate MAP), (High Entropy, Inaccurate MAP), (Low Entropy,
Accurate MAP), (Low Entropy, Inaccurate MAP). See Section 5
for details.

(a) Binary Segmentation (b) Binary Segmentation: Zoomed

(c) Geometric Labeling (d) Geometric Labeling: Zoomed
Figure 4: Accuracy vs number of images annotated. Shaded re-
gions indicate confidence intervals, achieved from 20 (top) and 30
runs (bottom). We can see that our approach Active-PDivMAP
outperforms all baselines and is very quickly able to reach the
same performance as annotating the entire dataset.

Hue histogram; Hue histogram entropy). The edge fea-
tures, computed for each pair of adjacent superpixels, cor-
respond to a standard Potts model and a contrast sensitive
Potts model. The weights at each edge were constrained
to be positive so that the resulting supermodular potentials
could be maximized via graph-cuts [63, 64].



5.3. Geometric Labeling
Dataset. We used CMU Geometric Context dataset of
Hoiem et al. [13], where every region is categorized into
one of three main classes: “ground”, “sky”, and “vertical”.
The “vertical” class is further divided into 5 subclasses:
“left”, “center”, “right”, “porous”, and “solid”. These im-
ages were then split into train and test sets with 150
and 50 images respectively. We initialized with 2 annotated
images, performed active learning on the train set, and
use the test to report accuracies. The segmentation task
is modeled as a pairwise CRF where each node corresponds
to a superpixel in the image that can take 7 states.

5.4. Results and Analysis
Qualitative Results. Fig. 3 shows example images, diverse
solutions under the current model, and entropy estimated by
our approach. We generally observed four basic situations:

• High Entropy, Accurate MAP: The MAP is accurate
but the model also places similar mass on other solu-
tions (often poorer than MAP). This is the case when
the model needs to become “sharper” towards MAP.

• High Entropy, Inaccurate MAP: The MAP is inac-
curate and the model is also highly uncertain, typically
placing mass on many inaccurate solutions. This typ-
ically happens when the model is either overfitting, or
some test image is particularly difficult.

• Low Entropy, Accurate MAP: The MAP is accurate
and the model is confident in the sense that other so-
lutions are generally inaccurate and low-probability.
These are the least informative images, and we are able
to avoid selecting them for annotation.

• Low Entropy, Inaccurate MAP: The MAP is inaccu-
rate but the diverse solutions have a lower score than
the MAP. In some sense, these images are highly in-
formative since after annotation they have the ability
to cause a significant change in the parameters. How-
ever, we do not have the ability to distinguish these
cases from the previous one without seeking annota-
tions, and thus entropy-based methods are not able to
exploit such images.

Quantitative Results and Take-Home Message. For both
experiments, we ran multiple runs with different initial im-
ages (30 runs for binary segmentation and 20 runs for geo-
metric labeling). Fig. 4 shows the accuracy of various meth-
ods vs the number of images annotated for both datasets
(shaded regions indicate confidence intervals). Note that the
performance of a “fully supervised” approach is the right-
most point on the curve. We can see that our approach
Active-PDivMAP significantly outperforms all the base-
lines, with no overlap in confidence intervals. More-
over, Active-PDivMAP is able to reach within 1%-points
of the final accuracy (where all images have been anno-

tated) with less than 9% of the data annotated. Based
on Mechanical Turk annotation statistics reported in pre-
vious work [65], a simple back-of-the-envelope calculation
– assuming 3-minutes per image, 10-cents per image × 5
MTurk annotations per image – show that our approach
saved approximately 45 hours of human-effort and $35 –
even for these medium-sized dataset.
Overall, outperforming Rand shows that even though it
may be crude, the histogram approximation does cap-
ture enough information about the entropy to be use-
ful. Outperforming Gibbs and Perturb-and-Map
shows the power of using non-overlapping bins as op-
posed to IID samples, and outperforming Mean-Field,
Min-Marginals and Marginals shows that it is better
to approximate the entropy computation with a histogram
approximation than with a fully factorized model.
Efficiency and Runtime. Due to reliance on efficient MAP
solvers (e.g dynamic graph-cuts in binary segmentation),
our implementation has fairly low overhead. Specifically,
60 subgradient iterations × 10 solutions takes 1.8s, which
is much less than Gibbs (40s for 500 samples), compara-
ble to LoopyBP (1.2s), MeanField (1.4s), and slower than
Margin-based (0.12s), and MinMarginals (0.08s).

6. Conclusions
We investigated active learning in structured probabilistic
models such as CRFs. The key challenge in such models is
that computing entropy of the model on unlabeled images
is intractable, since the distribution has an exponentially-
large support. We proposed a variational “histogram ap-
proximation” approach for estimating entropy that replaces
the exponentially-large support with a coarsened distribu-
tion that may be viewed as a histogram over M bins.
Generalizations. The assumption that bins are non-
overlapping simplifies the theoretical analysis, but our ap-
proach can be easily generalized to non-overlapping bins.
At the heart of our approach is the idea of deterministic
sampling inside an appropriately defined bin, which can be
generalized to other (Diverse) M-Best MAP methods.
We found that our approximation outperforms techniques
such as Gibbs sampling (which come with strong asymp-
totic convergence guarantees), presumably because such a
deterministic sampling procedure is quickly able to deter-
mine if the distribution under consideration is flat or peaky
(which is our primary consideration from an active learn-
ing perspective), while Gibbs samplers have a difficult time
transitioning out of the biggest mode of the distribution.
Overall, our proposed solution is theoretically well-
motivated, computationally efficient, easy to implement,
and practical.



Acknowledgements. AL contributed to this work while he
was an intern at Virginia Tech. This work was partially
supported by the National Science Foundation under grants
IIS-1353694 and IIS-1350553, the Army Research Office
YIP Award W911NF-14-1-0180, and the Office of Naval
Research grant N00014-14-1-0679. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
the U.S. Government or any sponsor.

References
[1] J. Hays and A. A. Efros, “im2gps: estimating geographic

information from a single image,” in CVPR, 2008. 1
[2] D. Parikh and C. Zitnick, “The role of features, algorithms

and data in visual recognition,” in CVPR, 2010. 1
[3] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes, “Do we

need more training data or better models for object detec-
tion?,” in BMVC, 2012. 1

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes (voc)
challenge,” IJCV, vol. 88, pp. 303–338, June 2010. 1

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in
CVPR, 2009. 1, 3

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
Common objects in context,” 2014. 1, 3

[7] B. Settles, Active Learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, Morgan & Clay-
pool, 2012. 1

[8] M. J. Wainwright and M. I. Jordan, “Graphical models, ex-
ponential families, and variational inference,” Foundations
and Trends in Machine Learning, vol. 1, no. 1-2, pp. 1–305,
2008. 1

[9] L. G. Valiant, “The complexity of computing the permanent,”
Theoretical Computer Science, vol. 8, no. 2, 1979. 2

[10] D. Batra, P. Yadollahpour, A. Guzman-Rivera, and
G. Shakhnarovich, “Diverse M-Best Solutions in Markov
Random Fields,” in ECCV, 2012. 2, 5

[11] F. Meier, A. Globerson, and F. Sha, “The More the Mer-
rier: Parameter Learning for Graphical Models with Mul-
tiple MAPs,” in ICML Workshop on Inferning: Interactions
between Inference and Learning, 2013. 2, 5, 6

[12] A. Prasad, S. Jegelka, and D. Batra, “Submodular meets
structured: Finding diverse subsets in exponentially-large
structured item sets,” in NIPS, 2014. 2

[13] D. Hoiem, A. A. Efros, and M. Hebert, “Recovering surface
layout from an image,” IJCV, vol. 75, no. 1, 2007. 2, 8

[14] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man, “LabelMe: A database and web-based tool for image
annotation,” IJCV, vol. 77, pp. 157–173, May 2008. 2, 3

[15] L. von Ahn and L. Dabbish, “Labeling images with a com-
puter game,” in CHI, CHI ’04, 2004. 2

[16] J. Winn and N. Jojic, “LOCUS: learning object classes with
unsupervised segmentation,” in CVPR, 2005. 2

[17] H. Arora, N. Loeff, D. Forsyth, and N. Ahuja, “Unsupervised
segmentation of objects using efficient learning,” in CVPR,
2007. 2

[18] J. Xu, A. G. Schwing, and R. Urtasun, “Tell me what you see
and I will show you where it is,” in CVPR, 2014. 2

[19] X. He and R. S. Zemel, “Learning hybrid models for image
annotation with partially labeled data.,” in NIPS, 2008. 2

[20] J. Verbeek and W. Triggs, “Scene Segmentation with CRFs
Learned from Partially Labeled Images,” in NIPS, 2008. 2

[21] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for opti-
mal boundary and region segmentation of objects in n-d im-
ages,” ICCV, 2001. 2

[22] C. Rother, V. Kolmogorov, and A. Blake, ““GrabCut”: inter-
active foreground extraction using iterated graph cuts,” SIG-
GRAPH, 2004. 2

[23] D. Batra, R. Sukthankar, and T. Chen, “Semi-supervised
clustering via learnt codeword distances,” in BMVC, 2008.
2

[24] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen,
“iCoseg: Interactive Co-segmentation with Intelligent Scrib-
ble Guidance,” in CVPR, 2010. 2, 7

[25] D. Küttel, M. Guillaumin, and V. Ferrari, “Segmentation
propagation in imagenet,” in ECCV, 2012. 2

[26] Y. Freund, H. Seung, E. Shamir, and N. Tishby, “Selective
sampling using the query by committee algorithm,” Machine
Learning, vol. 28, no. 2-3, pp. 133–168, 1997. 2

[27] S. Tong and D. Koller, “Support vector machine active learn-
ing with applications to text classification,” JMLR, vol. 2,
pp. 45–66, Mar. 2002. 2

[28] D. MacKay, “Information-based objective functions for ac-
tive data selection,” Neural Computation, vol. 4, no. 4,
pp. 590–604, 1992. 2

[29] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang,
“Two-dimensional active learning for image classification,”
in CVPR, pp. 1–8, 2008. 2

[30] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Active
learning with gaussian processes for object categorization,”
in ICCV, 2007. 2

[31] P. Jain and A. Kapoor, “Active learning for large multi-class
problems,” in CVPR, 2009. 2

[32] R. Yan, J. Yang, and A. Hauptmann, “Automatically labeling
video data using multi-class active learning,” in ICCV, 2003.
2

[33] B. Collins, J. Deng, K. Li, and L. Fei-Fei, “Towards scal-
able dataset construction: An active learning approach,” in
ECCV, 2008. 2

[34] A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg, “Combining
self training and active learning for video segmentation,” in
BMVC, 2011. http://dx.doi.org/10.5244/C.25.78. 2

[35] S. Vijayanarasimhan and K. Grauman, “Active frame selec-
tion for label propagation in videos,” in ECCV, 2012. 2

[36] C. Vondrick, D. Patterson, and D. Ramanan, “Efficiently
scaling up crowdsourced video annotation,” IJCV, vol. 101,
pp. 184–204, Jan. 2013. 2

[37] B. Settles and M. Craven, “An analysis of active learning
strategies for sequence labeling tasks,” in EMNLP, 2008. 2

[38] A. Culotta and A. McCallum, “Reducing labeling effort for
structured prediction tasks,” in AAAI, 2005. 2



[39] W. Luo, A. G. Schwing, and R. Urtasun, “Latent Structured
Active Learning,” in NIPS, 2013. 3, 6

[40] T. Hazan and A. Shashua, “Norm-product belief propa-
gation: Primal-dual message-passing for approximate in-
ference,” Information Theory, IEEE Trans. on, vol. 56,
pp. 6294–6316, Dec 2010. 3

[41] S. Maji, T. Hazan, and T. Jaakkola, “Active boundary anno-
tation using random map perturbations,” in AISTATS, 2014.
3

[42] G. Papandreou and A. L. Yuille, “Perturb-and-map random
fields: Using discrete optimization to learn and sample from
energy models,” in ICCV, 2011. 3, 6

[43] D. Tarlow, R. P. Adams, and R. S. Zemel, “Randomized op-
timum models for structured prediction,” in Fifteenth Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS), 2012. 3

[44] S. Vijayanarasimhan and K. Grauman, “What’s it going to
cost you?: Predicting effort vs. informativeness for multi-
label image annotations,” in CVPR, 2009. 3

[45] B. Siddiquie and A. Gupta, “Beyond active noun tagging:
Modeling contextual interactions for multi-class active learn-
ing.,” in CVPR, 2010. 3

[46] A. Parkash and D. Parikh, “Attributes for classifier feed-
back,” in ECCV, 2012. 3

[47] D. Koller and N. Friedman, Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009. 4

[48] D. Nilsson, “An efficient algorithm for finding the m
most probable configurations in probabilistic expert sys-
tems,” Statistics and Computing, vol. 8, pp. 159–173, 1998.
10.1023/A:1008990218483. 4

[49] C. Yanover and Y. Weiss, “Finding the m most probable con-
figurations using loopy belief propagation,” in NIPS, 2003.
4

[50] D. Batra, “An Efficient Message-Passing Algorithm for the
M-Best MAP Problem,” in Uncertainty in Artificial Intelli-
gence, 2012. 4

[51] C. Chen, V. Kolmogorov, Y. Zhu, D. Metaxas, and C. H.
Lampert, “Computing the m most probable modes of a
graphical model,” in AISTATS, 2013. 5

[52] M. Schmidt, “http://www.cs.ubc.ca/
~schmidtm/Software/UGM.html.” UGM: A Matlab
toolbox for probabilistic undirected graphical models. 6

[53] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun,
“Large margin methods for structured and interdependent
output variables,” JMLR, vol. 6, pp. 1453–1484, 2005. 6

[54] T. Joachims, T. Finley, and C.-N. Yu, “Cutting-plane train-
ing of structural svms,” Machine Learning, vol. 77, no. 1,
pp. 27–59, 2009. 6

[55] A. Guzman-Rivera, P. Kohli, and D. Batra, “Divmcuts:
Faster training of structural svms with diverse m-best
cutting-planes.,” in AISTATS, 2013. 6

[56] J. C. Platt, “Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods,” in Ad-
vances in Large Margin Classifiers, 1999. 6

[57] A. Niculescu-Mizil and R. Caruana, “Predicting good prob-
abilities with supervised learning,” in ICML, 2005. 6

[58] P. Kohli and P. H. S. Torr, “Measuring uncertainty in graph
cut solutions,” CVIU, vol. 112, no. 1, pp. 30–38, 2008. 6

[59] D. Roth and K. Small, “Margin-based active learning for
structured output spaces,” in ECML, 2006. 7

[60] A. Guzman-Rivera, D. Batra, and P. Kohli, “Multiple Choice
Learning: Learning to Produce Multiple Structured Out-
puts,” in Proc. NIPS, 2012. 7

[61] A. Guzman-Rivera, P. Kohli, D. Batra, and R. Rutenbar, “Ef-
ficiently enforcing diversity in multi-output structured pre-
diction,” in AISTATS, 2014. 7

[62] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Süsstrunk, “SLIC superpixels compared to state-of-the-art
superpixel methods,” PAMI, vol. 34, no. 11, 2012. 7

[63] Y. Boykov, O. Veksler, and R. Zabih, “Efficient approximate
energy minimization via graph cuts,” PAMI, vol. 20, no. 12,
pp. 1222–1239, 2001. 7

[64] V. Kolmogorov and R. Zabih, “What energy functions can be
minimized via graph cuts?,” PAMI, vol. 26, no. 2, pp. 147–
159, 2004. 7

[65] A. Sorokin and D. Forsyth, “Utility data annotation with
amazon mechanical turk,” in Workshop on Internet Vision,
CVPR., pp. 1–8, 2008. 8

http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html

