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Abstract

This paper describes a depth image enhancement
method for consumer RGB-D cameras. Most existing meth-
ods use the pixel-coordinates of the aligned color image.
Because the image plane generally has no relationship to
the measured surfaces, the global coordinate system is not
suitable to handle their local geometries. To improve en-
hancement accuracy, we use local tangent planes as local
coordinates for the measured surfaces. Our method is com-
posed of two steps, a calculation of the local tangents and
surface reconstruction. To accurately estimate the local
tangents, we propose a color heuristic calculation and an
orientation correction using their positional relationships.
Additionally, we propose a surface reconstruction method
by ray-tracing to local tangents. In our method, accurate
depth image enhancement is achieved by using the local ge-
ometries approximated by the local tangents.

We demonstrate the effectiveness of our method using
synthetic and real sensor data. Our method has a high com-
pletion rate and achieves the lowest errors in noisy cases
when compared with existing techniques.

1. Introduction
Accurate and high-resolution shape measurement is re-

quired in many application fields such as autonomous
grasping [25], autonomous navigation [9], and building in-
formation modeling (BIM) [17]. Although three dimen-
sional (3D) measurement has become generally available
after the release of many consumer RGB-D cameras such
as Microsoft KinectTM [3], SoftKinetic R⃝ DS311 [2], and
ASUS Xtion PRO LIVE [1], challenges for computer vi-
sion in this area still remain [12, 16, 22, 23, 30]. Be-
cause these RGB-D cameras were primarily designed for
human interaction applications, the acquired depth images
are of low-resolution and corrupted by noise. However,
if these popular devices could capture accurate and dense
shapes, other exciting applications, such as fine-grained ob-
ject recognition, precise indoor navigation, and fine manip-
ulation, could become practical.

Figure 1. Top row: original sensor data (left) and aligned color
image (right) captured by a consumer RGB-D camera [2]. Bottom
row: 3D point clouds of a doll head that visualizes the difference
between the enhanced data using the Markov random field (MRF)
[6] (left) and our method (right). The granular noise was reduced
by our method.

The goal of this paper is to enhance both the accuracy
and resolution of a noisy low-resolution depth image cap-
tured by a consumer RGB-D camera. To achieve this two-
fold enhancement, we use the aligned high resolution color
image. Although the aligned pixel-coordinates are widely
used in this problem setting [6, 7, 12, 13, 16, 18, 20, 26, 34],
these global coordinates are not suitable for handling the ge-
ometry of the measured shapes. For example, for a depth
image, general smoothing/upsampling filters smooth the
surfaces to be parallel to the image plane [13, 18, 20, 34].
Because the image plane has no geometric relationship with
the measured surfaces, the geometries of the surfaces are
not taken into account, and are sometimes corrupted by
these filters.

In this paper, to reconstruct accurate surfaces, we intro-
duce local tangent planes as local linear approximations of
the measured surfaces. Our method is composed of two
steps, a step that estimates the local tangent planes of the
uncorrupted surfaces from a noisy low-resolution depth im-
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age and a step that reconstructs surfaces using the estimated
local tangent planes. In the reconstruction step, we first re-
construct coarse surfaces using segmentation defined by the
contact relations between local tangent planes, and then we
refine them by smoothing the normal direction components
on each local tangent plane. Smoothing the normal direc-
tion components can preserve the local surface geometries
that were linearly approximated by the local tangents. The
measured data-driven estimation of the local tangent planes
and the surface reconstructions based on them enhance both
the accuracy and resolution of a depth image without any
prior knowledge of the shape models.

We demonstrate the accuracy and noise robustness of our
method by conducting experiments on synthetic data and
real sensor data captured by a consumer RGB-D camera
[2]. Compared with the previous methods in [6, 13, 24], our
method can more accurately reconstruct smooth surfaces.

The main contributions of this paper are three-fold:

• We propose a new estimation method for local tangent
planes from images captured by an RGB-D camera.
A color heuristic principle component analysis (PCA)
and method to correct the orientations of the calculated
local tangent planes using their positional relationships
are introduced to improve the accuracy.

• We propose a new surface reconstruction method from
local tangent planes. A parallelizable evaluation of
their contacts using ray-tracing and a smoothing of
normal direction components are introduced to deter-
mine the geometries from local tangent planes.

• We demonstrate the performance of the proposed
depth enhancement method using synthetic and real
sensor data, and we show that it is more accurate and
robust to noise than existing methods.

2. Related Work
Various methods for depth image enhancement have

been proposed. In this section, enhancement methods that
aim to produce geometrically accurate as well as visually
appealing results are reviewed, focusing on their handling
of the geometries of measured shapes.

2.1. Model Based Methods

One strategy to enhance depth images leverages the
shape models of measured environments. For urban envi-
ronments, depth image enhancement methods that fit planes
or quadratic surfaces to each region of the image have been
proposed [10, 15, 28, 32]. In other methods, solutions of
some partial differential equations are used as shape mod-
els [27, 31]. These methods can achieve highly-accurate,
high-resolution reconstruction of surfaces only when the en-
vironments have a suitable geometric structure.

2.2. Model Free Methods

For general situations, there are many methods that use
local geometric conditions.

Yang et al. used the joint bilateral upsampling (JBU)
filter [20] to upsample a low-resolution depth image us-
ing an aligned color image [34]. In JBU filtering, the co-
occurrence of depth and color continuities is used as the
local geometric condition. Many methods based on this fil-
ter have been proposed [5, 7, 13, 18, 22]. For example,
to prevent over smoothing, Garcia et al. modified the JBU
filter to favor depth discontinuities using the gradient mag-
nitude of a low-resolution depth image [13], and Liu et al.
used geodesic distances in the color image [22]. Dolson et
al. extended the filter temporally to determine a depth data
stream as captured by LiDAR scanners, combining it with
a Gaussian framework [7]. Such local filtering techniques
can be parallelized because the filtering calculations at each
pixel are independent of each other. Therefore, the connec-
tions of local geometric conditions around each pixel cannot
be considered.

Global optimization methods can handle the connec-
tions of local geometric conditions at each pixel [6, 12,
14, 16, 21, 26]. Diebel and Thrun proposed a depth im-
age enhancement method formulated as an optimization of a
Markov random field (MRF), where the smoothness term is
weighted according to the texture derivatives of an aligned
color image [6]. To maintain finer details, Park et al. ex-
tended this MRF formulation [26]. They added various in-
formation about the image gradient, color image segmen-
tation, edge saliency, and non-local means as MRF terms.
Some methods that use sparse representations of images
have been proposed [16, 21]. Sparseness in a depth image
is caused by the local smoothness of the measured shapes.
However, these global optimization methods mainly focus
on the segmentation information, that is, the geometric con-
ditions defined only by the projected contours of the mea-
sured surfaces on the image plane. The geometries of the in-
terior regions of surfaces are not fully exploited. Recently,
Herrera et al. used the second derivatives of depth images
to reconstruct interior geometries [14]. Although such a
second-order smoothness prior reconstructs locally flat sur-
faces without favoring fronto-parallel planes [33], the orien-
tation of local tangents is a feature that has not been deeply
explored.

Local geometries of surfaces have been used to fill holes
of 3D data [8, 19, 27]. Kochanowski et al. used local tan-
gent planes calculated from dense 3D points surrounding
each hole [19]. Because their purpose is to fill local holes of
dense points, it is difficult to apply these methods to sparse
points captured by a consumer RGB-D camera.

Matsuo and Aoki introduced a depth interpolation pro-
cedure based on local tangent planes [24]. In this work, to
detect surface regions, local tangent planes were estimated



Figure 2. Outline of estimation of local coordinates and local linear approximations.

from a pair comprising a low-resolution depth image and
aligned color image. Our work is an improvement of this
work. Their estimation of local tangent planes does not
work well in the presence of noise because they simply ap-
plied PCA to the shapes on each superpixel [11] of the color
image. Therefore, we improve the noise robustness by in-
troducing a color heuristic PCA and orientation correction
based on their positional relationships. Additionally, we
also introduce the usage of local geometries defined by the
orientations of the local tangents. The interior geometries of
surfaces are used to improve the reconstruction accuracy.

3. Proposed Method

We first introduce the estimation procedure for the lo-
cal tangents as a local linear approximation of the measured
surfaces (Sections 3.1 and 3.2). Because the depth enhance-
ment accuracy strongly depends on the approximation accu-
racy of local tangents, we divide the local tangent estimation
process into three additional steps. This procedure is shown
on the right of Figure 2. In Section 3.3, we describe the sur-
face reconstruction procedure. The procedure is composed
of two steps, surface region detection and refinement. A
conceptual diagram of the surface refinement is shown on
the right of Figure 3.

3.1. Tangent Planes on Superpixels

In our method, tangent planes of shapes over small re-
gions are used to calculate linear approximations of mea-
sured surfaces. Superpixels [11] of a color image are used
as the basic shape-linear regions. This concept was pro-
posed in [24]. Therefore, we first review it and introduce
some notations. In the following sections (Sections 3.1.1,
3.1.2, and 3.1.3), our improvements are described.

To estimate local tangents, Matsuo and Aoki applied
PCA to each 3D point cloud defined by the locally upsam-
pled depth information on the superpixels [24]. They used
JBU [20] filters on each superpixel. Although smooth sur-
faces are well approximated by this method, in noisy cases,
the tangent planes of uncorrupted surfaces cannot be esti-
mated.

In our method, tangent plane T (S) on superpixel S is
used as a 2D plane that has finite width in 3D space. The

center c(S) of the tangent plane is the center of point cloud
d(S) that is defined by locally upsampled depth informa-
tion on superpixel S. The tangent plane is spanned by the
two eigenvectors that correspond to the two largest eigen-
values of the covariance matrix of point cloud d(S). In the
left of Figure 2, the conceptual diagram of a tangent plane
on a superpixel is shown. The lengths in each direction are
defined as the several-fold length of the square root of each
eigenvalue. The coefficient l of the length is set to six in our
experiments, to use the information of the 3D points that
exist inside ±3σ regions. We decide the sign of the normal
vector n(S) such that the inner product with the center c(S)
is not positive. If a tangent plane’s length in the depth direc-
tion is larger than threshold dth, we call that tangent plane a
steep tangent plane. We set this threshold dth = 28.0 mm.

3.1.1 Color Heuristic PCA

We first calculate the tangent planes on superpixels using a
method similar to [24]. These tangent planes are sensitive to
outliers caused by measurement noise. We then extract the
superpixels that have steep tangent planes to detect regions
corrupted by noise. We also extract small superpixels that
do not contain many pixels to refine their tangents. In our
experiments, we set the threshold for the number of pixels
nsmall to 32. The tangent planes for these extracted super-
pixels are recalculated using the following color heuristic
PCA. A color heuristic covariance matrix Acolor(d(S̃)) is
defined as

1

W

∑
x∈d(S̃)

w(|i(x)− iS |1)(x−ccolor(S̃))(x−ccolor(S̃))
T , (1)

where d(S̃) is the extended shape on superpixel S [24],
w is a weight function, i(x) is the RGB-color of point
x, iS is the average RGB-color on superpixel S, and
ccolor(S̃) is the color-difference weighted center point of
d(S̃). The denominator W is the total weighted sum W =∑

x∈d(S̃) w(|i(x)− iS |1). The notation |i|1 denotes the L1

norm of RGB-color vector i. The color-difference weighted
center point of d(S̃) is similarly defined as

ccolor(S̃) =
1

W

∑
x∈d(S̃)

w(|i(x)− iS |1)x. (2)



Here, we use the weight function w(t) = exp(−t).
We use tangent planes that are defined by the eigenval-
ues and eigenvectors of this color heuristic covariance ma-
trix Acolor(d(S̃)), instead of the steep tangent planes. Be-
cause extended neighboring shape information is used, the
smoothed tangent plane is calculated, even in noisy low-
resolution situations. The color-difference weights cause
the recalculated tangent plane to spread to neighboring re-
gions that have the same color as the superpixel. Therefore,
over smoothing around object boundaries is prevented.

3.1.2 Contact Evaluation by Ray-tracing

To improve the accuracy of the approximations, we correct
tangent orientations using spatial relationships. In this sec-
tion, we introduce our evaluation method of the spatial re-
lationships by ray-tracing.

First, we define a distance dp(T1, T2) between two tan-
gent planes T1 and T2 at pixel p. Light ray Lp at pixel p is
defined as the line through pixel p and the camera center.
When Lp ∩ T1 = {q1} and Lp ∩ T2 = {q2}, it is defined
as

dp(T1, T2) = |q2 − q1|2 . (3)

If there are no or more than two intersection points, we
define dp(T1, T2) = ∞ to be the invalid distance value.
This is the distance between the intersection points of the
tangent planes and light ray Lp. We then define the set of
pixels Q(T1, T2) = {p : pixel | dp(T1, T2) ̸= ∞}. This
is the set of pixels in the intersection of the projections of
T1 and T2 in the image plane. We use the following value
d(T1, T2) as the distance between local tangent planes T1
and T2.

d(T1, T2) = max
p∈Q(T1, T2)

{dp(T1, T2)} . (4)

Here, if the set Q(T1, T2) is empty, there are no light rays
to the pixels that intersect with both tangent planes T1 and
T2. In this case we set d(T1, T2) = ∞.

3.1.3 Correction of Orientations

We correct the orientations of the tangent planes on super-
pixels while considering the connections among neighbor-
ing tangent planes. We use d(T1, T2) in Equation 4 to ex-
tract the neighbors of a superpixel. For each superpixel S,
we extract the set of superpixels NT (S, dth) that have spa-
tially neighboring tangent planes.

NT (S, dth) =
{
S′ : superpixel

∣∣ d(T (S), T (S′)) < dth
}
.
(5)

Here, dth is a distance threshold. In our experiments, we set
dth = 28.0 mm, the same value as the definition of a steep
tangent plane. To estimate an accurate normal vector, we
apply PCA to the 3D point cloud N(S, dth) that consists
of the center points of the neighboring tangent planes as
follows:

N(S, dth) =
{
c(S′)

∣∣ S′ ∈ NT (S, dth)
}
. (6)

We use the unit eigenvector that corresponds to the smallest
eigenvalue of the covariance matrix of this 3D point cloud
as the corrected normal vector on superpixel S. Each cen-
ter point is robust to measurement noise because they are
averaged 3d points. And they are widely distributed on the
neighboring surfaces. Therefore, we simply apply PCA to
only these center points to estimate local orientations of un-
corrupted surfaces. Some results for our normal correction
for noisy data are given in the supplementary materials.

3.2. Linear Approximations of Surfaces

We evaluate the normal similarities by quantizing the
spherical coordinates of the normal vectors. To simplify the
region connection processes, we use orientation quantiza-
tions. If the normal vectors have the same quantized spheri-
cal coordinates, then we assume that they are similar. In our
implementation, the minus vector of the camera direction
vector is used as the zenith direction of the spherical co-
ordinate, and the two angle components, polar angle θ and
azimuthal angle ϕ, are quantized by the same quantization
width θth. In the circumpolar regions where the polar angle
is near 0◦ or 180◦, we use one quantized value, regardless of
the azimuthal angle because the azimuthal angle component
does not significantly change the orientation. Our quantiza-
tion tables are shown in the left image of Figure 3. Colors
used in the general normal maps represent orientations, and
the grid indicates the quantization.

We connect superpixels that have spatially neighboring
and similar normal tangent planes to determine the local
linear approximations of surfaces. Here, we use the dis-
tance value between tangent planes (Equation 4), the dis-
tance threshold dth, and a small value θsmall

th as the angle
quantization width. The quantization width controls the tol-
erance of each linear approximation. In our experiments,
dth is set to 28.0 mm as before, and we set θsmall

th = 25◦.
Generated regions are used as local coordinates to handle
local geometries of measured surfaces. We then recalcu-
late the tangent planes on each local coordinate by applying
PCA to the local shapes.

Next, we estimate the surface regions using these local
coordinates. We detect them by connecting the local coordi-
nates if they have spatially neighboring and similar normal
tangents. We use a large normal vector quantization width
θlargeth in this step. In our experiments, we set this threshold
θlargeth = 80◦. We simply implement this connection pro-
cess by giving the same label to pairs of regions that have
spatially neighboring and similar normal tangent planes.

3.3. Surface Reconstruction

In our method, the depth image is enhanced using the
previously described local coordinates and surface segmen-
tation. We first reconstruct coarse surfaces using the JBU
filter [20]. Here, this filter only uses depth data on each



Figure 3. Quantization of the normal vector and smoothing normal direction of shape.

surface if the number of low-resolution depth data points
is larger than threshold nsource. We interpolate the depth
image using the depths from the same surface so that we
do not add depth data from other surfaces. However, we
do not interpolate on any surfaces where there are only a
few source depth data points to ensure the accuracy of the
interpolated depth image. In our experiments, we set the
threshold nsource = 5.

After coarse reconstruction of the surfaces, we smooth
the normal direction components of 3D points on each local
coordinate using a Gaussian filter. The right image of Fig-
ure 3 shows a conceptual diagram of this smoothing. Here,
we avoid smoothing on the regions that have steep tangent
planes (such as object boundaries), as the local geometries
are not well approximated by the local coordinates. The
explicit definition of smoothed point x̃ of point x in local
coordinates R is

x̃ =
1

W

∑
x′∈d(R)

wGauss(
∣∣x− x′∣∣

1
)(x′, n(R))n(R) + xT , (7)

where wGauss is the Gaussian weight function, d(R) is the
interpolated shape in region R, n(R) is the normal vec-
tor, xT is the tangential component of point x, and W is
the total weighted sum. If t1(R) and t2(R) are the or-
thonormal tangent vectors, then xT = (x, t1(R))t1(R) +
(x, t2(R))t2(R). To refine the interpolated shapes, we
smooth them while preserving the local geometries that are
linearly approximated by the local coordinates.

4. Experimental Results
We tested our method by conducting two sets of ex-

periments for quantitative and qualitative evaluations. The
quantitative evaluations were performed using the well-
known Middlebury Stereo Datasets [29] (Section 4.1). In
addition, real sensor data captured by a consumer RGB-
D camera were used for the qualitative evaluations (Sec-
tion 4.2). We used the same settings for the parameters
of our method in all experiments. A summary of these
parameters is given in Table 1. Here, we compared our
results with the results of some other methods. The pur-
pose of this comparison was to evaluate the effectiveness of
the proposed local tangent coordinates. Therefore, we se-
lected basic and representative methods that use the pixel

dth nsmall l θsmall
th θlargeth nsource

28.0 mm 32 pixel 6.0 25.0◦ 80.0◦ 5 pixel

Table 1. Parameters on our experiments.

global coordinates, bilinear interpolation, MRF [6], and
pixel weighted average strategy (PWAS) [13]. Addition-
ally, we compared our method with an existing local tangent
plane based method [24].

4.1. Quantitative Evaluation on Synthetic Data

We used the depth images of the Middlebury datasets
as the ground truth and used them to generate noisy low-
resolution images by downsampling the vertical and hori-
zontal axes at rates of (1/4, 1/4), (1/4, 1/2), (1/2, 1/4), (1/2,
1/2), (1/2, 1), (1/2, 1), and (1, 1). The Middlebury datasets
provide various images of three different sizes. We used the
smallest images (463×370 pixels) of the scenes Art, Books,
Dolls, and Moebius because it is difficult to interpolate an
image that contains local variations in color and shape. The
following measurement model (Equation 8) was used to
generate simulated noise, and we used the high-resolution
color images directly.

We used a flash ladar device measurement model [4] to
simulate measurement noise. In this model, the covariance
of the distance measured at each pixel is proportional to the
square of the true distance and inversely proportional to the
cosine of the angle of incidence of the measuring light ray.
When the ground truth value was dtrue, we generated a ran-
dom number for the measured distance d at pixel p from the
following Gaussian distribution

p(d |dtrue, p ) ∝ exp

(
− (d− dtrue)

2

2σ(p, dtrue)2

)
, (8)

σ(p, dtrue) = k
d2true
cos(α)

. (9)

Coefficient k controls the level of the added noise. We
varied k from 0.0 to 5.0× 10−6 in 1.0× 10−6 increments.
At the maximum noise level k = 5.0×10−6, the covariance
of the measured distance to a target that is 1 m away is 5
mm. For reference, the coefficients of some range sensors
are given in the supplementary materials.
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Figure 4. Quantitative comparisons: MAE scores under low level noise (k = 3.0×10−6), MAE scores under high level noise (5.0×10−6),
and MAE scores and completion rates for various noise levels (upsampling rate = ×4× 4).

We evaluated the interpolation accuracy and completion
rate using the mean absolute error (MAE) scores and the
following completion rate of interpolated depth image d.

completion rate =
|P (d) ∩ P (dtrue)|

|P (dtrue)|
. (10)

Here, P (d) is the set of pixels that have depth value in
depth image d, |P (d)| is the number of pixels in P (d), and
dtrue is the ground truth depth image.

Figure 4 shows the MAE scores using different mag-
nification factors and fixed noise coefficients 3.0 × 10−6

and 5.0 × 10−6, as well as MAE scores and completion
rates using different noise coefficients and a fixed magni-
fication factor ×4 × 4. In these graphs, the results of the
proposed method, bilinear interpolation, MRF, PWAS, and
the method described in [24] are shown using red, watery,
purple, blue, and green lines, respectively. In the noisy situ-
ations, our method outperformed the other methods in terms
of accuracy. Our method had regions where depth inter-

polation was not performed, similar to [24]. The tangent
based method in [24] does not interpolate regions that have
steep tangent planes caused by noise, hence its errors were
small, but its completion rates were low. Our method had
low errors and completion rates of over 78%, higher than
the tangent based method.

In Figure 5, the absolute errors at each pixel are shown.
In these images, pixels that have no depth value are col-
ored black. All results of bilinear interpolation, MRF,
and PWAS had large errors on the neighboring regions of
surface boundaries. In contrast, the tangent plane based
method [24] and our method did not interpolate the bound-
aries of surfaces. In these results, the tangent plane based
method [24] did not interpolate regions that were not neigh-
boring boundaries. In the bilinear interpolation and PWAS
results, errors in the interior regions of surfaces were large.
In the MRF results, errors in the interior regions of surfaces
were smaller. However, in the results of our method, errors
were even more reduced than in the MRF results.
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Art

Books
Figure 5. Resulting enhancement error at each pixel (Scene Art and Books in the Middlebury datasets, noise coefficient k = 3.0 × 10−6,
upsampling rate = ×4× 4).

4.2. Qualitative Evaluation on Real RGBD Data

We applied our method to real images captured by a con-
sumer RGB-D camera. We captured depth images of size
124×92 and aligned color images of size 620×460 using a
SoftKinetic R⃝ DS311 [2]. Because the field of views of the
time of flight camera and the color camera are different, we
cropped the images to the commonly measured regions.

Figures 1 and 6 show the measured real sensor data
and enhanced data as 3D point clouds. To ensure the sur-
face smoothness, different viewpoints from the real camera
viewpoints were used. In Figure 6, the surface of a recon-
structed book in the center of the scene shows differences
for each method. The surface reconstructed by PWAS was
too rough, and the result of the tangent based method in [24]
had some holes. MRF reconstructed a smooth surface, but
the characters on the surface are not readable. In the re-
sults of our method, we can read the characters, just as in
the detailed color image. Similarly, as shown in the detailed
images of Figure 1, some of a rough doll surface was recon-
structed by MRF. Conversely, our method reconstructed a
smooth doll surface.

4.3. Parallelizability and Processing Time

The local tangent based method can be primarily im-
plemented by parallel processing. In our method, tangent
planes on superpixels can be calculated by parallel process-
ing over superpixels. Our ray-tracing for the contact eval-
uation can also be parallelized over all pixels. Once dis-
tances at each pixel (Equation 3) are calculated, they can be
efficiently integrated to detect the distances between each
tangent (Equation 4) by creating a reference table.

In this paper, we propose a partially parallelizable depth
image enhancement method, but not its parallel implemen-
tation. Therefore, we have not optimized the implementa-
tion for our experiments. However, we have implemented

Art Surface segmentation Surface reconstruction total

Tangent [24] 15.39 sec 4.36 sec 19.75 sec

Ours method 6.51 sec 12.48 sec 18.99 sec

Books Surface segmentation Surface reconstruction total

Tangent [24] 17.28 sec 5.18 sec 22.46 sec

Ours method 7.94 sec 22.87 sec 30.81 sec

Table 2. Comparisons of processing times (upsampling of ×4×4).

our method and tangent plane based method in [24] using
OpenMP so that we can approximately evaluate their pro-
cessing times. We ran our experiments on an Intel Core
i7-2600 CPU (3.40 GHz) with 16 GB RAM. Table 2 shows
the comparisons of the processing times. Because our con-
dition to connect superpixels is strict enough to omit many
unnecessary connection candidates of each superpixel, the
connection process is efficiently achieved. Therefore, the
processing times for the surface segmentation of our method
were smaller than those of the method in [24]. However,
processing times for the surface reconstruction were larger.
Because in our implementation, our shape refinement pro-
cess is parallelized in each local coordinate, larger process-
ing time is needed for larger local coordinates. Therefore,
for the scenes where large flat surfaces exist, such as Books,
total processing times were large, which were over 30 sec.

5. Conclusion
In this paper, we proposed a depth image enhancement

method using local tangent planes as local linear approx-
imations. Our method is composed of two processes, an
estimation process of local tangent planes and a reconstruc-
tion process of the surfaces from the local tangents. To im-
prove the noise robustness of the local tangent estimation,
we introduce a color heuristic PCA and orientation correc-



(a) RGB (b) Original sensor data

(c) MRF [6] (d) PWAS [13]

(e) Tangent [24] (f) Our method

Figure 6. Visual evaluation on a real sensor data. Left images in each figure show the details of the book in the center of the scene. Our
method reconstructed a so smooth surface of the centered book that the characters on the cover are readable, just as in the detailed color
image.

tion using their positional relationships. In the reconstruc-
tion process, we use not only their positional relationships,
but also their spatial orientations. Here, we introduce a local
smoothing of the normal direction components of surfaces.

Experiments using synthetic data and real data captured
by a consumer RGB-D camera were conducted, and both re-
sults show that our method can successfully enhance noisy
low-resolution depth images. In noisy cases when the pre-
vious local tangent based method in [24] could not be ap-
plied, our method could estimate accurate local tangents
and achieved a high completion rate of over 78%. Com-
pared with the existing methods that use the global coordi-
nates of the image plane, the interior regions in particular of
surfaces were reconstructed more accurately by our method.
These experimental results show the effectiveness of our lo-
cal tangent based depth enhancement.

Because our method uses only a single pair of depth and
color images, multiple spatial and temporal viewpoints are
not needed. Therefore, our method is beneficial for 3D mea-
surement in places where multiple viewpoints can not be
set, like a disaster site, or 3D measurement of moving ob-
jects. However, large processing times were required by our
method. Our method can not enhance a depth image in one
capturing time of general consumer RGB-D cameras. This
is a large drawback of our method. Although our method
is applicable to some applications, like building a 3D map
for autonomous navigation, further improvement is needed
to expand the application field. There are some room of
improvement in the use of local tangent planes for the re-
duction of the processing time. We would like to continue
to improve our method by focusing on the geometric nature
of local tangent planes.
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