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Abstract

Shape cues play an important role in computer vision,
but shape is not the only information available in images.
Materials, such as fabric and plastic, are discernible in
images even when shapes, such as those of an object, are
not. We argue that it would be ideal to recognize materials
without relying on object cues such as shape. This would
allow us to use materials as a context for other vision tasks,
such as object recognition. Humans are intuitively able to
find visual cues that describe materials. Previous frame-
works attempt to recognize these cues (as visual material
traits) using fully-supervised learning. This requirement is
not feasible when multiple annotators and large quantities
of images are involved. In this paper, we derive a framework
that allows us to discover locally-recognizable material at-
tributes from crowdsourced perceptual material distances.
We show that the attributes we discover do in fact separate
material categories. Our learned attributes exhibit the same
desirable properties as material traits, despite the fact that
they are discovered using only partial supervision.

1. Introduction
Computer vision has relied heavily on shape cues. Pop-

ular image features, including HoG [7] and SIFT [13],
essentially encode object shapes for recognition. Images,
however, capture much more than merely the shape of ob-
jects in a scene. Real-world images capture the appearance
of materials, such as fabric, plastic, and wood, even when
the complete shape of the object is not discernible. The
recognition of these materials in images can provide crucial
information for scene understanding. Recognizing that a
cup is made of glass and not plastic, for example, can be
used to inform a robot how to properly grasp it.

Recognizing real-world materials has proven challeng-
ing. Materials exhibit a wide variety of appearances, par-
ticularly at a local (image-patch) level. Current meth-
ods [5, 12, 18] for material recognition address this chal-
lenge by making single image-wide material predictions or
by using very large image patches that in fact contain all or
most of the object extents. These approaches inevitably use

Cimpoi et al. [5]

Sharan et al. [18]

Proposed Method

Patch Size (px)

A
cc

u
ra

cy
 (

%
)

Accuracy vs. Patch Size

Figure 1. Local material recognition is challenging. When adapted
to use aggregated features from local image patches, methods that
perform well on full images quickly lose accuracy. Previous work
has shown that using material traits as an intermediate representa-
tion addresses this issue [17]. We propose a method for weakly-
supervised discovery of such traits.

object cues (i.e., their shapes) to recognize materials. It is
unclear whether plastic is recognized because it looks like
a cup, or because of its characteristic material appearance.
This is undesirable, as it will prevent the use of material
information for scene understanding tasks including object
recognition. Why would knowing that an object is made of
plastic help recognize that it is a cup if recognition of plastic
relies on knowing that it is a cup?

We argue that material recognition should be performed
without relying on object cues such as shape. We would
instead like to be able to locally recognize characteristic
material appearance. If we could do that, we could ag-
gregate local information inside an object region to predict
what material the object is made of. This is a challenging
task, and all previous methods essentially rely on object
cues. Figure 1 clearly shows that when existing methods1

1We implement the Improved Fisher Vectors of [5] and all features of
Sharan et al. [18] and aggregate them across local patches within object
regions to generate the results in Figure 1.



Figure 2. Sample material image patches. Asking annotators to
merely “describe” the patches is an ambiguous question. Patches
may look similar even though the annotator does not have a con-
crete word to define the similarity. We instead ask only for binary
visual similarity decisions.

are restricted to use only local image patches they perform
increasingly poorly.

We intuitively expect to find some form of local visual
cues that indicate material without relying on a global view
of an image. Schwartz and Nishino [17] indeed demonstrate
this by introducing locally-recognizable material attributes
which they refer to as “material traits.” Material traits
enable recognition of material categories using features
extracted from patches as small as 32 × 32 pixels. They
describe materials based on characteristic appearances like
shiny and smooth. Fabric, for example, can appear woven
or smooth, but not liquid. When taken as an aggregate
across an image region, their traits can be used to identify
material categories. Since material traits do not imply
the presence of any particular object, they can be used to
perform object-independent material recognition.

Material trait recognition, as previously proposed, relies
on a set of fully labeled material trait examples. This
assumption hinders scaling the method with larger training
datasets. We hardly have a mutually agreeable vocabulary
for describing materials and their visual characteristics.
Considering the images in the first column of Figure 2,
for instance, one may call them fuzzy and others may call
them fluffy. People may also be inconsistent in annotating
material traits. Some may only annotate the patches in the
second column as smooth and others may only see them as
translucent. Cimpoi et al. [5] alleviate these problems for
texture recognition by preparing a pre-defined vocabulary.
They may do so by focusing on apparent texture patterns
like stripes and dots. Materials underlie these texture pat-
terns (i.e., the stripes or dots on a plastic cup are still plastic)
and do not follow such a vocabulary.

We propose to automatically discover locally-
recognizable material attributes. We achieve this by
exploiting human perception of visual material similarity.
Humans are able to reliably assess material similarity
from local visual information [10]. We hypothesize that
people judge material similarity based on characteristics
equivalent to visual material traits. For instance, a person
would perceive an image patch of wool to be similar to

that of sheep fur as both look fuzzy. Humans can look at
the images in Figure 2 and see that images in each column
share visual properties without necessarily being able to
identify them. By analyzing human assessments of the
visual similarities of different local material image patches,
we should be able to build a classifier to recognize these
implicit local visual attributes. In this work we show that
such assessments can easily and reliably obtained.

We use crowdsourcing (Amazon Mechanical Turk) to
determine the visual similarity of material categories as
seen by humans. For this, we show image patches of dif-
ferent materials as references and ask whether other image
patches from other materials look similar. These results are
aggregated to compute pairwise visual distances between
material categories. The idea is to identify a space of mate-
rial attributes that preserves these pairwise distances while
permitting reliable recognition of the attributes on local
image patches. For this, we first convert the distance matrix
into a category-attribute matrix that realizes desirable char-
acteristics such as sparsity. We then train a joint attribute
classifier that predicts, on average for each category, the
desired attribute likelihoods. Our formulation requires no
supervised labeling of attributes on training data.

There are an infinite number of random local attributes
which can be used to recognize materials. In our work,
we are specifically discovering those that underlie human
perception. We show that humans agree on a common
perception of similar materials, and that we can in fact
encode this perception in our discovered attributes. The
discovered attributes show clear correlations with known
visual material traits [17]. Due to the constraints we impose
on the learning process, the discovered attributes also ex-
hibit similar spatial sparsity patterns to those that are char-
acteristic of known traits. This is in contrast with random
attributes which exhibit no such patterns. Our framework
requires only simple annotations that can be quickly and
consistently collected. Unlike previous methods, we do not
rely on visual properties that are only visible at a global
image level.

2. Related Work
The majority of existing methods for attribute-based

recognition, whether that be for objects or materials, rely on
a pre-defined set of attributes that are relevant to the specific
task in question [4, 8, 9]. Such approaches benefit from the
fact that we can intuitively understand the attributes used for
recognition. All of these approaches are task-specific and
would require manual definition of a new set of attributes
for each new task. Our approach requires minimal anno-
tation, and the attributes arise entirely from the inherent
visual similarity of the relevant categories. While we focus
on materials in this paper, our method is not task-specific.

Berg et al. [3] describe a framework for learning object



attributes from web data (images and associated text). This
approach learns some localized attributes, however the re-
quired text annotations are image-wide and do not guaran-
tee locality. Recently, Patterson and Hays [14] proposed
a process to discover and recognize scene-wide attributes
in natural images. While they are able to discover a large
amount of attributes, their learned attributes are not local.
Rastegari et al. [15] learn a binary attribute representation
(binary codes) for images. As with existing methods, how-
ever, these attributes are image-wide and not local.

Cimpoi et al. [5] demonstrate a method for learning
an arbitrary set of describable texture attributes based on
terms derived from psychological studies. As noted by
Adelson [1], texture is only one component of material
appearance, and cannot alone describe our perception of
materials. Though their results demonstrate impressive
performance on the Flickr Materials Database [19], their
learned attributes apply only globally. Our proposed for-
mulation explicitly models the desired properties of the
category-attribute space at an image patch level.

Akata et al. [2] formulated attribute discovery as a label
embedding problem. Yu et al. [22] propose a two-step
procedure for discovering and classifying attributes based
on a similarity matrix. They propose to compute a distance
matrix using Euclidean distances in the raw feature space
of labeled image patches. Our attribute discovery process
can be viewed as a form of label embedding. We cannot,
however, simply use raw features to define similarities. We
show that raw features do not encode the human perceptual
information required to discover intuitive material traits.

We rely on human perception of material similarity to
discover meaningful local material attributes. Wills et al.
[21] have proposed a relevant procedure for measuring hu-
man perception of gloss. They measure perceptual gloss via
non-metric multidimensional scaling applied to a series of
relative comparisons. Their proposed method is, however,
limited to measurement of one property (gloss). It does not
apply to material recognition and is not a local process.

3. Perceptual Distance between Materials
Our goal is to discover a set of attributes that exhibit the

desirable properties of material traits. We want to achieve
this without relying on fully-supervised learning. Known
material traits, such as “smooth” or “rough,” represent vi-
sual properties shared between similar materials. We expect
that attributes that preserve this similarity will satisfy our
goal. We propose to define a set of attributes based on
the perceived distances between material categories. By
working with distances rather than similarities, we avoid
any need to assume a particular similarity function. For this,
we obtain a measurement of these distances from human
annotations.

From a high-level perspective, our attribute discovery

consists of three steps:
1. Measure perceptual distances between materials
2. Define an attribute space based on perceptual distances
3. Train classifiers to reproduce this space from image

patches

Defining perceptual distance between material categories
poses a challenge. If each material had a single typical
appearance (e.g., if metal was always shiny and gray), we
could simply compute the difference between these typical
appearances. This is not the case. Materials may exhibit
a wide variety of appearances, even sharing appearances
between categories (what we refer to as material appearance
variability). An image patch from a leaf, for example, may
appear similar to certain fabrics or plastics.

Directly measuring distances via human annotation
would be ideal, as we have an intuitive understanding of
the differences between materials. As Sharan et al. [18]
showed, this understanding persists even in the absence of
object cues. It is, however, also a difficult task to obtain
these distance. Given two query image patches, annotators
would have to decide how different the patches look on a
consistent quantitative scale. We would instead like to ask
simple questions that can be reliably answered.

We propose that instead of asking how different patches
look, we reduce the question to a binary one: “Do these
patches look different or not?” We assume that this will give
us sufficient information to obtain consistent and sensible
perceptual information. Our underlying assumption for this
claim is that if a pair of image patches look similar, they do
so as a result of at least one shared visual material trait.

To transform a set of binary similarity annotations into
pairwise distances, we represent each material as a point
defined by the average probabilities of similarity to each
material category. The pairwise distances between these
points define the material perceptual distance matrix. This
process treats each material category as a point in a space
of typical (but not necessarily realizable) material appear-
ances. The resulting distance between a pair of materials
depends on joint similarity with all material categories,
including the pair in question, and is thus robust to material
appearance variability.

Formally, given a set of N reference images with mate-
rial category cn ∈ {1 . . .K}, we obtain binary similarity
decisions sn ∈ {0, 1}K for each reference image against a
set of sample images from each category. We represent each
material category in the space of typical material category
appearances as K-dimensional vectors pk:

pk =
1

Nk

∑
n|cn=k

sn, (1)

where Nk = |{cn|cn = k}|. Entries dkk′ in the K × K
pairwise distance matrix D are then defined as:
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Figure 3. Example projections of materials into a 2D similarity
subspace. The locations of the two material categories corre-
sponding to the axes are marked. We would expect that, in this
case, water would lie furthest along the “water” axis and likewise
with leather. Materials with common visual properties, such as the
smoothness of plastic and glass, lie close to each other. Materials
with distinct visual properties, such as woven fabric and shiny
metal, do not.

dkk′ = ‖pk − pk′‖2 . (2)

We obtain the required set of binary similarity annota-
tions through Amazon Mechanical Turk (AMT). Each task
presents annotators with a reference image patch of a given
material category (unknown to the annotator) and a row of
random image patches, one from each material category.
We use patches from images of the 10 material categories
from the Flickr Materials Database of Sharan et al. [19].
Annotators are directed to select image patches that look
similar to the reference. Examples of suggested similar im-
age patches are given based on known material traits. Each
set of patches is shown to 10 annotators, and final results
are obtained from a vote where at least 5 annotators must
agree that the patches look similar. We collect similarity
decisions for 10,000 reference image patches.

The 2D projection in Figure 3 shows that the similarity
values obtained from the AMT annotations agree with our
own intuitive understanding of material appearance. The
plot shows the locations of material categories projected
into one 2D subspace of the 10-dimensional space of typical
material appearances. We would expect that the two materi-
als corresponding to the typical materials in each subspace
will lie close to their respective axes. In this case, water is
most similar with itself, but is also similar to glass. Leather
is likewise most similar with itself, but also similar to fabric.

To show that we do in fact obtain a consistent distance
matrix, we compute the difference between the distance
matrix computed with all annotations versus that from only
n of the N total annotations. The difference drops quickly
(within the first few hundred samples of 10,000), showing
that annotators agree on a single common set of perceptual
distances.

4. Defining the Material Attribute Space
Discovering attributes given only a desired distance ma-

trix poses a challenge. A straightforward approach would
be to directly train classifiers to predict attributes that en-
code the distance matrix. This would be a particularly
under-constrained problem as we do not even know which
attributes to associate with which categories.

We instead propose to separate attribute association and
classifier learning into two steps. First, we discover at-
tributes in an abstract form by discovering a mapping be-
tween categories and attribute probabilities. We ensure
that the mapping preserves the pairwise perceptual material
distances, and then train classifiers to predict the presence
of these attributes on image patches.

As described in Section 3, we obtain a distance matrix
D from crowdsourced similarity answers for K material
categories C = {1 . . .K}. Using D, we find a mapping
that indicates which attributes are associated with which
categories. The number of attributes we discover is arbi-
trary, and we refer to it as M . The mapping is encoded in
the K ×M category-attribute matrix A. We restrict values
in A to lie in the interval [0, 1] so that we may treat them as
conditional probabilities.

We impose two constraints on the category attribute
mapping. A should map categories to attributes in a way
that preserves the measured distances in D, and the map-
ping should contain realizable values. If the values in A
are not plausible, we will not be able to recognize the
attributes on image patches. For example, one potential at-
tribute mapping would be to assign each attribute to a single
category. Attribute recognition then becomes the same as
the intractable probelm of material category recognition on
single image patches.

We formulate the attribute discovery process as a mini-
mization problem over category-attribute matrices A:

A∗ = argmin
A

d (D;A) + wAκA (A) (3)

with hyperparameter wA. d describes how well the current
estimate of A encodes the pairwise perceptual differences
between material categories, and κA is a constraint that
makes the discovered attribute associations exhibit a real-
izable distribution.

The category-attribute matrix that best encodes the de-
sired pairwise distances will minimize the following term
defined over rows ak of the matrix A:

d (D;A) =
∑

k,k′∈C

(‖ak − ak′‖2 −Dkk′)
2 . (4)

To discover realizable attributes, we encode our own
prior knowledge that recognizable attributes exhibit a par-
ticular distribution and sparsity pattern. We observe that



semantic attributes, specifically visual material traits, have
a Beta-distributed association with material categories [17].
Generally, a material category will either strongly exhibit
a trait or it will not exhibit it at all. Intermediate cases
occur when a material category exhibits a particularly wide
variation in appearance. Fabric, for example, sometimes
has a clear “woven” pattern but, in the case of silk or other
smooth fabrics, does not. We would like the values in A
to be Beta-distributed to match the distribution of known
material trait associations.

The canonical method for matching two distributions
is to minimize a divergence measure between them. To
incorporate this into a minimization formulation, we need
a differentiable measurement for the unknown empirical
distribution of values in A. We choose the KL-divergence
and Gaussian kernel density estimator. The Gaussian kernel
density estimate at point p is:

q (p;A) =
1

KM

∑
k,m

(
2πh2

)− 1
2 exp

{
− (akm − p)2

2h2

}
(5)

The KL-divergence between the distribution of the values
in the category-attribute matrix A and the target Beta distri-
bution β (p; a, b) with a = b = 0.5 can then be written as:

κA (A) =
∑
p∈P

β (p; a, b) ln

(
β (p; a, b)

q (p;A)

)
. (6)

5. Training a Material Attribute Classifier
We now must derive classifiers that recognize the at-

tributes defined by the category-attribute mapping. As
attributes are not defined semantically, we cannot ask for
further annotation to label training patches with attributes.
Instead, we propose a model and a set of constraints that
will enable us to predict our discovered attributes on mate-
rial image patches.

We do not know a priori any particular semantics or
structure associated with the attributes, thus we model our
attributes using a general two-layer non-linear model [6].
We constrain the predictions such that they reproduce the
desired values in the attribute matrix (in expectation) while
also separating material categories when possible.

Formally, given a training set of N image patches rep-
resented by D-dimensional raw feature vectors xn with
corresponding material categories cn ∈ C, we train a model
f with parameters Θ that maps an image patch to M at-
tribute probabilities: f (xn;Θ) : RD → [0, 1]

M . Given an
intermediate layer with dimensionality H and parameters
W1 ∈ RH×D, W2 ∈ RM×H , b1 ∈ RH , b2 ∈ RM the
prediction for an instance xn is defined as:

f (xn;Θ) = h (W2h (W1xn + b1) + b2)

h (x) = min (max (x, 0) , 1) . (7)

As additional regularization, used only during training, we
mask out a random fraction of the weights used in the model
to discourage overfitting (akin to dropout [11]).

We formulate the full classifier training process as a
minimization problem:

Θ? = argmin
Θ

r (X;A,Θ) + w1κ (X;Θ)−

w2π (X;A,Θ) , (8)

with hyperparameters w1 and w2. r (Equation 9) is a
data term indicating the difference between predicted and
expected attribute probabilities. κ and π (Equations 10
and 11) are, respectively, constraints on the the distribution
of attribute predictions and on the pairwise separation of
material categories.

The category-attribute matrix encodes the probabilities
that each category will exhibit each attribute. We repre-
sent this in our classifier training by matching the mean
predicted probability for each attribute to the given entry
in the category-attribute matrix:

r (X;A,Θ) =
∑
k∈C

∥∥∥∥∥∥ak −
1

Nk

∑
i|ci=k

f (xi;Θ)

∥∥∥∥∥∥
2

2

. (9)

Equation 9 directly encodes the desired behavior of the
classifier, but it alone is under-constrained. Each prediction
for each instance may take on any value so long as their
mean matches the target value.

We have observed that, similar to category-attribute as-
sociations, predicted probabilities for known material traits
are also Beta-distributed. Local image regions exhibiting a
trait will have uniformly high probability for that trait, only
decreasing around the trait region edges. We constrain the
predicted probabilities such that they are Beta-distributed.
Using the formulation discussed in Section 4, we again
minimize a KL-divergence of a kernel density estimate:

κ (X;Θ) =
∑
p∈P

β (p; a, b) ln

(
β (p; a, b)

q (p; f (X;Θ))

)
, (10)

where f (X;Θ) represents the N ×M matrix of attribute
probability predictions for the training dataset, and q, a, b
are defined as in Equation 6.

One of the goals for our attribute representation is to
discover attributes that allow for material classification. If
this were our only goal, we could simply maximize the
distance between the predicted attributes for all pairs of
different material categories. This would conflict with our
goal of preserving human perception, as material categories
do not always exhibit different appearances. We instead
modify this separation by weighting each component of
the distance based on the values in the category-attribute
matrix:
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Figure 4. t-SNE [20] embedding of materials from the raw feature [17] space (a) and from our discovered attributes (b). We embed a
set of material image patches into 2D space via t-SNE using raw features and predicted attribute probabilities as the input space for the
embeddings. Though t-SNE has been shown to perform well in high-dimensional input spaces, it fails to separate material categories from
the raw feature space. Material categories are, however, clearly more separable with our attribute space.

π (X;A,Θ) =
∑

i,j∈N |ci 6=cj

pT
ijpij (11)

pij =
(
2
∣∣aci − acj

∣∣− 1
)
(f (xi;Θ)− f (xj ;Θ)) .

This separates the material categories in attribute space
only when the attributes dictate that there is a perceptual
difference.

6. Analysis of Discovered Attributes
To analyze the properties of attributes discovered by our

framework, we follow the procedures outlined above to col-
lect annotations and discover a set of attributes. Since both
learning steps involve minimization of a non-linear, non-
convex function, we rely on existing optimization tools2 to
find suitable estimates. As a raw feature set, we use the
local features of Schwartz and Nishino [17].

If our attributes described a space that successfully sep-
arates material categories, we would expect categories to
form clusters in the attribute space. To verify this, we com-
pute a 2D embedding of a set of labeled image patches. For
the embedding, we use the t-SNE method of van der Maaten
and Hinton [20]. t-SNE attempts to generate an embedding
that matches the distributions of neighboring points in the
high- and low-dimensional spaces. In Figure 4, we rep-
resent image patches by their raw feature vectors (a) and
predicted attribute probability vectors (b), and compare the
2D embeddings resulting from each. Material categories are
separated much more clearly in our attribute space than in
the raw feature space.

Part of the usefulness of visual material traits, as shown
in [17], is derived from the fact that they each represent a

2Specifically, L-BFGS with box constraints for A and stochastic gra-
dient descent for Θ.

particular intuitive visual material property. This is evident
in the spatial sparsity pattern of the traits, specifically the
fact that they appear in regions and not randomly within an
image. Traits such as “shiny” are highly localized, while
others such as “woven” or “smooth” exist as coherent re-
gions within a particular material instance. Figure 5 shows
examples of per-pixel attribute probabilities predicted from
our discovered attribute classifiers. The attributes exhibit
both sparse and dense spatial patterns that are consistent
within local regions. Dense attributes generally correspond
with smooth image regions. Sparse attributes often indicate
localized surface features such as specific texture patterns.

For comparison, in Figure 6 we visualize per-pixel pre-
dictions for an attribute classifier trained on a random at-
tribute matrix A. Unlike attributes based on human per-
ception, these random attributes do not exhibit the same
meaningful spatial consistency.

We aimed to discover attributes similar to the visual
material traits that underlie human perception. We thus
expect that the discovered attributes exhibit a correlation
with known traits. Figure 7 shows the correlation between
13 discovered attributes and 13 known material traits using
attributes predicted on labeled material trait image patches.
Collectively, we can indeed describe material traits using
the discovered attributes. Visually similar traits, such as
rough and woven, show similar correlations with the at-
tributes. Discovered attributes are also consistent with the
semantic properties of material traits. Rough and smooth
are mutually exclusive traits, and we see that discovered
attributes that positively correlate with smooth do not gen-
erally correlate with rough.

We quantitatively evaluate the discovered attributes us-
ing logic regression [16]. Given a set of image patches with
known traits, we predict our discovered attributes as binary
values for use as input variables in a logic regression model



Input Attribute 1 Attribute 2 Attribute 3 Attribute 4
Figure 5. Per-pixel discovered attribute probabilities for four attributes (one per column). These images show that the discovered attributes
exhibit patterns similar to those of known material traits. The first attribute, for example, appears consistently within the woven hat and the
koala; the second attribute tends to indicate smooth regions. The last two columns show we are discovering attributes that can appear both
sparsely and densely in an image, depending on the context. These are all properties shared with visual material traits.

Figure 6. Typical per-pixel attribute probabilities based on a ran-
dom attribute matrix. Unlike the predictions for attributes derived
from human perception, these attributes appear randomly within a
region and do not reflect any local visual properties.

for material traits. Logic regression from 30 attributes alone
(no other features) achieves comparable accuracy (75% vs.
77%) to the method of [17] using a complex feature set.
These results show that the discovered attributes do collec-
tively encode intuitive visual material properties.

7. From Discovered Attributes to Materials

Seeing that discovered attributes encode visual material
properties, we would expect them to also serve as an in-
termediate representation for material category recognition.
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Figure 7. Correlation between discovered attribute predictions and
material traits. Groups of attributes can collectively indicate the
presence of a material trait. Metallic, for example, correlates
positively with attribute 0 and negatively with attribute 8.

To test this, we follow the material recognition procedure
described by Schwartz and Nishino [17], substituting our
discovered attributes for their labeled material traits. We



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Predicted Category

Fabric

Foliage

Glass

Leather

Metal

Paper

Plastic

Stone

Water

Wood

Fa
br

ic

Fo
lia

ge

Gla
ss

Lea
th

er

M
et

al

Pa
pe

r

Pla
st

ic

Sto
ne

W
at

er

W
oo

d

T
ru

e
 C

a
te

g
o
ry

Figure 8. Confusion matrix for material recognition on FMD
images. Well-recognized categories, such as foliage, correspond
with categories that appeared distinct in human annotations for
perceptual distance. Annotators regularly selected foliage patches
as appearing different from all other categories.

compute the histograms of these predicted probabilities
across the material region and use them as input for a
histogram kernel SVM. As we focus on local attributes,
these previous local results (and those of Sharan et al. [18]
on scrambled images) serve as the correct baseline.

For comparison with Schwartz and Nishino [17], we
compute average material recognition accuracy on the
Flickr Materials Database (FMD). All results are computed
using M = 30 discovered attributes and 5-fold cross-
validation unless otherwise specified.

Our attributes achieve an average accuracy of 48.9%
(σ = 1.2%) on FMD images using only local information.
This is comparable to results reported by Schwartz and
Nishino [17] and Sharan et al. [18] (using only local in-
formation) even though we are discovering attributes using
only weak supervision.

Figure 8 shows a confusion matrix for FMD images. In
agreement with previous work, metal is the most challeng-
ing category to identify. Foliage is very well-recognized.
This follows from the results of our measurements of human
perception, as annotators consistently found that foliage
image patches looked different from all other material cat-
egories. Fabric was previously somewhat challenging to
recognize locally [17], and we see that paper is also chal-
lenging in this case. It is possible that subtle cues separating
paper and plastic were not visible to the annotators.

Figure 9 shows that accuracy reaches a plateau as the
training dataset size increases. We also compute accuracy
for varying values of M and find that past M = 30, there is
little (<0.1%) gain in accuracy from additional attributes.
These plateaus indicate that we are in fact extracting as
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Figure 9. Accuracy vs. training set size. Accuracy does not
continue to increase as we use larger training datasets. This shows
that we have successfully extracted as much local information as
possible from human perception.

much perceptual material information as we can from the
available data.

8. Conclusion
We introduced a local attribute discovery and recognition

framework for visual material attributes. We measure dis-
tances between material categories as perceived by humans,
and use these distances to discover and recognize a set of
attributes. We accomplish this using only simple annota-
tions that can be quickly and consistently collected in large
amounts. Our framework results in automatically discov-
ered local material attributes that encode human material
perception while still proving useful for material recogni-
tion from local information. This is in contrast to random
attributes which do not exhibit such properties.

By embedding material image patches into a 2D space
using our discovered attributes, we see that they do in
fact separate materials into distinct clusters in a way that
raw features cannot. Per-pixel visualizations show that the
discovered attributes exhibit the same desirable properties
as those of visual material traits. We have shown that it is
possible to recognize materials using only local information
by exploiting human perception. Using only basic annota-
tions, we achieve the same accuracy as existing methods
which rely on exhaustive per-patch material trait annota-
tions. We expect our perceptually-discovered attributes to
prove useful in further scene understanding tasks.
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