
Scene Labeling with LSTM Recurrent Neural Networks

Wonmin Byeon1 2 Thomas M. Breuel1 Federico Raue1 2 Marcus Liwicki1

1 University of Kaiserslautern, Germany.
2 German Research Center for Artificial Intelligence (DFKI), Germany.

{wonmin.byeon,federico.raue}@dfki.de {tmb,liwicki}@cs.uni-kl.de

Abstract

This paper addresses the problem of pixel-level segmen-
tation and classification of scene images with an entirely
learning-based approach using Long Short Term Mem-
ory (LSTM) recurrent neural networks, which are com-
monly used for sequence classification. We investigate two-
dimensional (2D) LSTM networks for natural scene images
taking into account the complex spatial dependencies of la-
bels. Prior methods generally have required separate clas-
sification and image segmentation stages and/or pre- and
post-processing. In our approach, classification, segmen-
tation, and context integration are all carried out by 2D
LSTM networks, allowing texture and spatial model param-
eters to be learned within a single model. The networks
efficiently capture local and global contextual information
over raw RGB values and adapt well for complex scene
images. Our approach, which has a much lower compu-
tational complexity than prior methods, achieved state-of-
the-art performance over the Stanford Background and the
SIFT Flow datasets. In fact, if no pre- or post-processing is
applied, LSTM networks outperform other state-of-the-art
approaches. Hence, only with a single-core Central Pro-
cessing Unit (CPU), the running time of our approach is
equivalent or better than the compared state-of-the-art ap-
proaches which use a Graphics Processing Unit (GPU). Fi-
nally, our networks’ ability to visualize feature maps from
each layer supports the hypothesis that LSTM networks are
overall suited for image processing tasks.

1. Introduction
Accurate scene labeling is an important step towards im-

age understanding. The scene labeling task consists of par-
titioning the meaningful regions of an image and labeling
pixels with their regions. Pixel labels can (most likely)
not only be decided with low-level features, such as color
or texture, extracted from a small window around pixels.
For instance, distinguishing “grass” from “tree” or “forest”

would prove tedious under such a setting. As a matter of
fact, humans perceptually distinguish regions via the spatial
dependencies between them. For instance, visually similar
regions could be predicted as “sky” or “ocean” depending
on whether they are on the top or bottom part of a scene.

Consequently, a higher-level representation of scenes
(their global context) is typically constructed based on the
similarity of the low-level features of pixels and on their
spatial dependencies using a graphical model. The graph-
ical models construct the global dependencies based on
the similarities of neighboring segments. The most pop-
ular graph-based approaches are Markov Random Fields
(MRF) [4, 15, 16, 25] and Conditional Random Fields
(CRF) [10, 20]. However, most such methods require pre-
segmentation, superpixels, or candidate areas.

More recently, deep learning has become a very ac-
tive area of research in scene understanding and vision in
general. In [23], color and texture features from overseg-
mented regions are merged by Recursive Neural Networks.
This work has been extended by Socher et al. [22] who
combined it with convolutional neural networks. Among
deep learning approaches, Convolutional Neural Networks
(CNNs) [17] are one of the most successful methods for
end-to-end supervised learning. This method has been
widely used in image classification [14, 21], object recog-
nition [12], face verification [24], and scene labeling [5, 3].

Farabet et al. [3] introduced multi-scale CNNs to learn
scale-invariant features, but had problems with global con-
textual coherence and spatial consistency. These problems
were addressed by combining CNNs with several post-
processing algorithms, i.e., superpixels, CRF, and segmen-
tation trees. Later, Kekeç et al. [13] improved CNNs by
combining two CNN models which learn context informa-
tion and visual features in separate networks. Both men-
tioned approaches improved accuracy through carefully de-
signed pre-processing steps to help the learning, i.e., class
frequency balancing by selecting the same amount of ran-
dom patches per class, and specific color space for the input
data.

1

In order to improve modeling of long range dependen-
cies, Pinheiro et al. [19] first revealed the use of large input
patches to consider larger contexts. However, that would
reduce the resolution of the final label image, and a huge
redundancy of overlapping regions would make the learn-
ing inefficient. Hence, they introduced Recurrent Convo-
lutional Networks (RCNNs) for scene labeling. RCNNs
train different input patch sizes (the instances) recurrently
to learn increasingly large contexts for each pixel, whilst en-
suring that the larger contexts are coherent with the smaller
ones.

In this work, we investigate a two-dimensional (2D)
Long Short Term Memory (LSTM) recurrent neural net-
work architecture to take into account the local (pixel-by-
pixel) and global (label-by-label) dependencies in a sin-
gle process for scene labeling. We can skip any additional
processing or conditions like multi-scale or different patch
sizes to solve the scene labeling task with the least human
or machine’s effort. LSTM recurrent neural networks [11]
were originally introduced for sequence learning. These
networks include recurrently connected cells to learn the
dependencies between two time frames, then transfer the
probabilistic inference to the next frame. The LSTM mem-
ory block stores and retrieves this information over short or
long periods of time.

LSTM networks have been successfully applied to many
tasks such as handwriting [8] and speech recognition [6].
They were extended to multi-dimensional learning which
improved handwriting systems [9]. Image processing task
were also considered with the multi-dimensional model [7,
2, 1]. This work demonstrated their utility for image label-
ing, binarization or texture analysis, but only on very simple
data (simple digit images, graphical or texture data).

Our work builds on the foundations laid in [7]. How-
ever, we focus particularly on natural scene image labeling.
RNN-based approaches are known to be difficult to train
with high noise and large data. Particularly in large data,
long-term dependencies are vanished while the information
is accumulated by the recurrence. We now support large
scene images which contain huge variations of instances
for each label and which can have an enormous size. We
show how LSTM networks can be generalized well to any
vision-based task and efficiently learnt without any task-
specific features. LSTM networks also automatically learn
short and long-range contextual information by end-to-end
entirely supervised training. The advantages of our work
can be summarized as follows:

• Our model learns long range dependencies on their
own in an efficient way without additional process or
task-specific feature. In the network, the local predic-
tion is influenced by its neighboring contexts which
contain previous spatial dependencies. Therefore, each
local prediction is implicitly affected by the global

contextual information of the image. The benefits
of the ability to learn local and global dependencies
through the networks make the task completely end-
to-end supervised learning.

• We avoid any hand-crafted feature extraction, multi-
scale input pyramids, pre-, or post-processing, with-
out performance penalty. The networks automatically
learn relevant features and contexts of each label only
from raw RGB values with only a small number of
weights. This simpler architecture keeps the comput-
ing time per image low, and our system does not in-
clude any extra post-processing techniques — such ad-
ditional steps would improve accuracy by a few ex-
tra percents, but often taken very long to process, e.g.,
Farabet et al. [3] reported an accuracy improvement of
1.4% at the expense of their CNN+CRF algorithm be-
ing 100 times slower.

• The choice of architecture or parameters for scene la-
beling (and vision-based tasks in general) are much
simpler compared to other deep network approaches.

• The total number of weights in our networks is much
smaller compared to other deep network approaches,
but the performance is maintained. Our total training
time was less than 10 days, and testing took around 1
second only per image on a single-core CPU, which is
reasonable for practical applications. It can still be im-
proved dramatically by implementing a GPU version.

• All above advantages indicate that our system needs a
very little human effort and computational complexity
to achieve near state-of-the-art performance.

• The internal feature activations were easily visualized
and show what is learnt from images and how it is
learnt. As remarked in [26], visualizing features is
crucial for neural-network-based approaches to intu-
itively understand the learning process, but challeng-
ing after the first layer since activations of networks
does not correspond to the pixel space. Visualization
also suggests that LSTM networks can be applied well
to vision-based tasks in general.

2. 2D LSTM Recurrent Neural Networks for
Scene Labeling

In this paper, the networks are divided into the three main
layers: input layer, hidden layer, and output layer. The hid-
den layer consists of 2D LSTM layer and feedforward layer,
and is stacked as deep networks. The architecture of 2D
LSTM networks is illustrated in Figure 1.

n

Input I k

LSTM LSTM

LSTM LSTM

3xnxn

2D LSTM Layer

3

nw i

S

T

3

LSTM

M

LSTM

LSTMLSTM

…. ∑

1

1

1

1

Pr (c∣wi)
Output

Softmax

Hidden Layer

…. sky tree

road grass

foregroundmountainwater building

(S = 10) x (4 directions) T = 20 (M = 50) x (4 directions)
L = 8 (the number of class)

 3xnxn

 3xnxn 3xnxn Feedforward Layer

 ∑

Figure 1: 2D LSTM network architecture. A input image Ik is divided into non-overlapping windows wi (a grid) sized n×n.
Each window with RGB channels (3×n×n) are fed into four separate LSTM memory blocks. The current window of LSTM
block is connected to its surrounding directions x and y, i.e., left-top, left-bottom, right-top, and right-bottom; it propagates
surrounding contexts. The output of each LSTM block is then passed to the Feedforward layer, where sums all directions
and squash it by the Hyperbolic tangent (tanh). At the last layer, the outputs of the final LSTM blocks are summed up and
sent to the softmax layer. Finally, the networks output the class probabilities (Pr(c|wi)) for each input window. The bottom
images are corresponding outputs for each layer.

2.1. Input Layer

The input can be one RGB pixel (3×1×1) or window
(3×n×n). With pixel-wise input, the network is able to give
each pixel a precise label, but the sequence of pixels can
become very long if the size of the image is big. Besides,
in large images adjacent pixels tend to have similar values.
It means the dependencies within the pixels is redundant.
Therefore, non-overlapping windows were used as input —
the input images were split into grids. The window-wise
input combines the local correlation of the pixels but main-
tains global coherence of the image. Unlike previous tasks
with 2D LSTM networks, scene images are big and high
quality. Thus, the window integrates the local context and
reduces the total sequence size. It will help both the local-
ization, and the keeping of longer range dependencies with-
out losing global context. Moreover, it will speed-up the in-
ference process. The size of the final prediction is reduced,
but can be easily upscaled by some interpolation method
(e.g., cubic interpolation) and does not influence the final
results much since the same label may occur several times
within a small window. In Section 2.3, we will introduce a
probabilistic target coding scheme to handle multiple labels
in one window.

2.2. Hidden Layer

The hidden layer includes 2D LSTM layer (four LSTM
memory blocks) and feedforward layer. The activations
from the 2D LSTM layer represent the surrounding context

in all directions and are combined in the feedforward layer.
2D LSTM Layer: LSTM is a subnet that allows to eas-

ily memorize the context information for long periods of
time in sequence data. In images, this temporal dependency
learning is converted to the spatial domain. The subnet in-
cludes three gates: the input gate (i), the forget gate (f),
and the output gate (o) which overwrite, keep, or retrieve
the memory cell c respectively at the position t. W , H , and
C are weight matrices for input to gates, recurrent connec-
tions, and cell to gates. hx

t−1 and hy
t−1 are the output activa-

tion from previous direction x and y. d and d′ indicate x or
y direction, and f1(·) and f2(·) are logistic sigmoid (sigm)
and hyperbolic tangent (tanh), respectively.

First, input gate (it) and forget gates for the x and y di-
rections (fx

t and fy
t) are computed by

it = f1(Wi · at +
∑

d(H
d
i · hd

t−1 + Cd
i · cdt−1) + bi)

fd′

t = f1(Wf · at +
∑

d(H
d
f · hd

t−1) +Cd′

f · cd
′

t−1 + bd
′

f)

After, the current memory cell (ct) is updated by forget-
ting the previous contents (cxt−1 for x and cyt−1 for y direc-
tion) and including the new memory (c̃t)

c̃t = f2(Wc̃t · at +
∑

d(H
d
c̃t
· hd

t−1) + bc̃t)

ct =
∑

d(f
d
t } cdt−1) + it } c̃t

At the end, the final activation at the current position (ht)
is calculated with the output gate (ot) which regulates the
amount of information to be output.

ot = f1(Wo · at +
∑

d(H
d
o · hd

t−1) + Co · ct + bo)

ht = ot } f2(ct)

Feedforward Layer: Feedforward layer includes fully
connected layer with a nonlinear activation function and
the summation of the LSTM layer activations from all di-
rections. From the last layer, each LSTM memory block
scans on all directions (left-top, left-bottom, right-top, and
right-bottom, see Figure 1), then the outputs are combined
together in this layer. For mid-level hidden layers, out-
puts from each LSTM memory block are convoluted, and
squashed by the hyperbolic tangent (tanh). These results are
used as an input in the next level. This layer acts as a feature
mapping from 2D LSTM layer, so the amount of features
from all contextual information on the image is generated
and combined together in this layer. The size of the layer
corresponds to the number of feature maps — the bigger
size of feedforward layer create more features. As can be
seen in Figure 2, more detailed features are created in lower
levels and more abstract and complex features at higher lev-
els with global contexts. At the end, at the final level, all
features from all directions are accumulated and sent to the
output layer.

2.3. Output Layer

The outputs from the last hidden layer is normalized with
the softmax function:

Pr(c|wi) =
eac(wi)∑

l∈{1,...,L} e
al(wi)

where ac(wi) is the final activation of the input window wi

obtained from the last hidden layer for corresponding target
c, and l is the one of target classes.

Our goal is to find the maximum likelihood of all training
samples. As an objective function, we apply the negative
log probability, i.e., cross entropy error function:

E = −
C∑

c=1

zc ln Pr(c|wi) (1)

where zc ∈ {0, 1}. Pr(c|wi) is the predicted probability
of the class c.

Probabilistic Target Coding: To compare the multi-
class probability (Pr(c|wi)) with the target c for errors, a
1-of-K coding scheme is typically used, i.e., a binary vector
with all elements set to zero except one which corresponds
to the correct class. It encodes the desired output — In Eq.
(1), zc is decided by the encoding vector. However, in our
scenario, the size of the target vector is the same as the size
of input window, n×n. Thus, the target is not a single class,
but a vector of size n×n which can contain more than one
class. We quantify errors within each window containing

Layer1

Layer2

sky

tree road grass

foregroundmountainwater building

Figure 2: Visualization of feature maps in each layer. The
activations are sampled after the convolutional summing of
four LSTM blocks. Each activation from each input win-
dow is projected down to the image space. Each image
represents the features from each hidden node of the cor-
responding layer. Note that a lighter color represents higher
activations.

multiple classes in their target vector by applying a prob-
abilistic target coding scheme. Finally, the error function
Eq. (1) is modified using the probability of an occurrence
at class c.

E = −
C∑

c=1

fc
n×n

ln Pr(c|wi) (2)

where fc is the frequency of occurrence for class c in wi,

Table 1: Pixel and averaged per class accuracy comparison on the Stanford Background dataset (in %). Approaches which
include pre- or post-processing, and/or multi-scale pyramids are not reported here as they cannot be directly compared. LSTM
networks lead to high performance with a very fast inference time on CPU. Balancing the class frequencies of input images
would improve the class-average accuracy, but is not realistic for scene labeling in general. The performance of recurrent
CNNs (RCNNs) reported here is from two instances. For more details, see Section 3.1. CT indicates the averaged computing
time per image

Method Pixel Acc. Class Acc. class frequency CT (sec.) # parameters
Superparsing 2010 [25] 77.5 - - 10 to 300 -
Singlescale ConvNet 2013 [3] 66 56.5 balanced 0.35 (GPU) -
Augmented CNNs 2014 [13] 71.97 66.16 balanced - 701K
Recurrent CNNs 2014 [19] 76.2 67.2 unbalanced 1.1 (GPU) -
LSTM networks (window 5×5) 77.73 68.26 unbalanced 1.3 (CPU) 173K
LSTM networks (window 3×3) 78.56 68.79 unbalanced 3.7 (CPU) 155K

Table 2: Pixel and averaged per class accuracy comparison on the SIFT Flow dataset (in %). For performance comparison,
approaches which include pre- or post-processing, and/or multi-scale pyramids are not reported here (For the SIFT Flow
dataset, we compared multi-scale ConvNet as no single-scale version is reported in [3]). LSTM networks lead to high
performance with a very fast inference time on CPU. Balancing the class frequencies of input images would improve the
class-average, but is not realistic for scene labeling in general. The performance of RCNNs reported here is with two instances.
For more details, see Section 3.1. CT indicates the averaged computing time per image.

Method Pixel Acc. Class Acc. class frequency CT (sec.) # parameters
Multi-scale ConvNet 2013 [3] 67.9 45.9 balanced - -
Augmented CNNs 2014 [13] 49.39 44.54 balanced - 1225K
Recurrent CNNs 2014 [19] 65.5 20.8 unbalanced - -
LSTM networks (window 5×5) 68.74 22.59 unbalanced 1.2 (CPU) 178K
LSTM networks (window 3×3) 70.11 20.90 unbalanced 3.1 (CPU) 168K

and n×n is the size of wi.

3. Experiments

Datasets: Our approach has been tested on two fully
labeled outdoor scene datasets: the Stanford Background
dataset [4] and the SIFT Flow dataset [18]. The Stanford
Background dataset contains 715 images composed of 8
common labels chosen from existing public datasets (572
images used for training, the rest for testing). Note that one
of the labels, “foreground” contains unknown objects. Each
image has a different resolution (on average 320×240). The
SIFT Flow dataset is more challenging with 2688 images of
256×256 pixels each. The dataset is split into 2488 images
used for training and the rest for testing. The images include
33 semantic labels labeled by LabelMe users.

We report both pixel accuracy and class-average accu-
racy to compare our performance with other approaches.
The pixel accuracy measures the ratio of true positive over
all pixels, and class-average accuracy averages all class ac-
curacies using the equal weight for all classes. The measure
of class-average accuracy has more impact when the classes
are imbalanced in the test images (which is common on out-
door scene images as most scenes contain “sky” but not e.g.,

“tree”).
All of LSTM network models in our experiment have

three layers. The second and third layer have 20 LSTM
with 30 units in the feedforward layer and 50 LSTM (no
feedforward layer at the final level) respectively. In the first
layer, the hidden size was decided based on the size of win-
dow, i.e., 4 LSTM with 10 units in the feedforward layer for
3×3 input windows and 10 LSTM with 12 units in the feed-
forward layer for 5×5 input windows. At the end, the out-
put of the networks was reduced by a factor of window-size
which is up-scaled with cubic interpolation for final evalu-
ation. Online gradient descent was used for training with a
learning rate of 10−6 and a momentum of 0.9.

3.1. Results and Comparisons

Table 1 compares the performance of LSTM networks
with current state-of-the-art methods on the Stanford Back-
ground dataset, and Table 2 compares the performance on
the SIFT Flow dataset. Note that we did not consider other
methods which include pre- or post-processing, and multi-
scale version in the tables to make the comparison as fair as
possible. However, our single-scale networks are still com-
parable to the multi-scale versions of state-of-art-methods,
e.g., pixel accuracy of 78.8% for multi-scale CNNs [3],

sk tr ro gr wa bu mo fo

class label

0

5

10

15

20

25

ra
ti

o
 (

%
)

train
test

sk
y

tr
e
e

ro
a
d

g
ra

ss

w
a
te

r

b
u
ild

in
g

m
o
u
n
ta

in

fo
re

g
ro

u
n
d

sky

tree

road

grass

water

building

mountain

foreground

94.4 1.3 0.0 0.1 0.9 2.3 0.1 0.9

4.9 65.2 1.0 3.2 0.9 18.5 1.2 5.0

0.0 0.5 88.8 0.8 1.4 2.5 0.0 6.0

0.2 2.2 4.5 85.4 0.2 3.0 0.8 3.8

3.2 0.6 16.7 0.6 60.6 8.0 0.2 10.2

2.2 6.6 2.5 0.4 0.3 78.9 0.3 8.9

10.5 21.7 4.9 13.8 4.9 22.7 9.4 12.0

2.2 4.3 9.7 5.0 1.2 14.0 0.3 63.3

Mean diagonal = 68.3(%)

tr
u
e
 l
a
b
e
l

predicted label

Figure 3: Class frequency distribution (top) and confusion
table on the Stanford Background dataset (bottom). As can
be observed, the percentage of misclassification labels is
correlated with the frequency of the class in the dataset, e.g.,
The training and testing sets contain only 2% of “mountain”
labels and less than 5% of “water” and “grass” labels. As
a consequence, “mountain” was confused with “tree” and
“building”, “water” with “road”, and ‘tree” with “build-
ing”. From these mislabeling results, we can observe that
the wrong predictions were often caused in the label pre-
diction level but not the segmentation level (some examples
are shown in Figure 5).

76.36% for multi-scale augmented CNNs [13], and 78.56%
for single-scale LSTM networks. Multi-scale CNNs with
further post-processing, i.e., superpixel, CRF, and segmen-
tation tree, slightly improve the accuracy by a few more
percents, but are around 15-100 times slower than without
post-processing.

With RCNNs, two instances were considered for the ac-
curacy comparison. Note that higher network instances in-
crease the context patch size to correct a final prediction.
An increase in the number of instances will maintain the
capacity of the system constant (since the network weights
are shared), but it will cause a dramatic growth in train-
ing time. The testing time was reported as increasing ten-
fold when one more instance was added on the network.
With pixel accuracy, LSTM networks performed about 2%
better compared to RCNNs with two instances, but around
2% worse than RCNNs with three instances on the Stanford

Background dataset. On the SIFT Flow dataset, the accu-
racy of LSTM networks was around 4% higher than RCNNs
with two instances, but around 7% lower than with three in-
stances. However, the differences for average per class ac-
curacy were less than 1% with both two and three instances
on all datasets. Overall, our network model is efficient in
training and testing — LSTM networks do not need time-
consuming computations to combine long-range context in-
formation. Our approach achieved results higher than com-
pared methods without extra effort in an end-to-end manner.

3.2. Result Analysis

The confusion matrix on the Stanford Background
dataset is reported in Figure 3. “mountain” is the hard-
est class (only 9.5% class accuracy), but this is explained
by the extremely small size of the training and testing sets
compared to other classes (see the class frequency distribu-
tion in Figure 3). Note that other methods solved this issue
by balancing class frequencies, yet doing so is not realistic.
The most often confused labels are “mountain” with “tree”
or “building”, and “water” with “road’. It is clear from class
frequency distribution in Figure 3 that “mountain” and “wa-
ter” have the least frequent samples in both the training and
testing sets. The visual labeling results of confused classes
will be shown in Figure 5. These are mostly well-segmented
but mislabeled.

Selected examples of labeling results from the Stanford
dataset are shown in Figure 4. Our approach yields very pre-
cise pixel-wise labeling. Figure 5 shows an example of mis-
classification compared to the ground-truth. The results in
the first and second row were mislabeled in the ground-truth
image (human mistakes), but correctly classified by LSTM
networks. The misclassification regions from the third row
mostly include very foggy mountains, so is not so visible
even to the human eyes. The results from the fourth to sixth
rows show a precise segmentation but an incorrect labeling
(because of the ambiguity of the label’s characteristics). All
of these examples reflect difficulties of the datasets and task.

4. Conclusion

We have presented a completely learning-based ap-
proach for scene labeling. LSTM networks learn the neigh-
boring context information of every pixel and internally
model the global dependencies between labels using re-
current connections. This architecture is simple and well-
adapted for natural scene images. Our experiments show
performance gains without any hand-crafted features, pre-
or post-processing techniques, and multi-scale pyramids
from input images. Moreover, our architecture has a (com-
paratively) fast training and testing time on a single-core
CPU, as it uses a smaller number of parameters than other
deep-learning approaches.

Figure 4: The results of scene labeling on the Stanford Background dataset. First row: input image; Second row: ground-
truth; Third row: predicted image. Colors on images indicate labels — identical colors on ground-truth and predicted images
indicate a correct labeling

As future work, we will investigate solutions for the fail-
ure cases shown in Figure 5. A possible direction will be
the use of a chromatic opponent to avoid the confusion of
ambiguous labels by increasing the contrast among pixels
(the limitation of RGB input). These mistakes are caused
by the behavior of LSTM networks, i.e., the context infor-
mation is propagated on a large image (a long sequence) and
the contexts from small regions are collapsed by the big re-
gions. By solving this issue, our labeling results will give
more precise labeling and reduce noises. Furthermore, the
computational time of our approach can even be improved
by the GPU version of LSTM networks. Other directions
include the analysis of feature maps and internal representa-
tion in deeper RNN models to adapt or generalize for other
vision-based tasks in general.

References
[1] W. Byeon and T. M. Breuel. Supervised texture segmentation

using 2d lstm networks. In Image Processing (ICIP), 2014
IEEE International Conference on, pages 4373–4377, Oct
2014. 2

[2] W. Byeon, M. Liwicki, and T. Breuel. Texture classification
using 2d lstm networks. In Pattern Recognition (ICPR), 2014
22nd International Conference on, pages 1144–1149, Aug
2014. 2

[3] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 35(8):1915–
1929, Aug 2013. 1, 2, 5

[4] S. Gould, R. Fulton, and D. Koller. Decomposing a scene
into geometric and semantically consistent regions. In Com-
puter Vision, 2009 IEEE 12th International Conference on,
pages 1–8, Sept 2009. 1, 4

[5] D. Grangier, L. Bottou, and R. Collobert. Deep convolutional
networks for scene parsing. 1

[6] A. Graves. Generating sequences with recurrent neural net-
works. CoRR, abs/1308.0850, 2013. 2

[7] A. Graves, S. Fernndez, and J. Schmidhuber. Multi-
dimensional recurrent neural networks. In J. de S, L. Alexan-
dre, W. Duch, and D. Mandic, editors, Artificial Neural Net-
works ICANN 2007, volume 4668 of Lecture Notes in Com-
puter Science, pages 549–558. Springer Berlin Heidelberg,
2007. 2

[8] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami,
H. Bunke, and J. Schmidhuber. A novel connectionist system
for unconstrained handwriting recognition. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 31(5):855–
868, May 2009. 2

[9] A. Graves and J. Schmidhuber. Offline handwriting recogni-
tion with multidimensional recurrent neural networks. 2

[10] X. He, R. Zemel, and M. Carreira-Perpindn. Multiscale con-
ditional random fields for image labeling. In Computer Vi-
sion and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, vol-
ume 2, pages II–695–II–702 Vol.2, June 2004. 1

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, Nov 1997. 2

[12] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recog-
nition? In Computer Vision, 2009 IEEE 12th International
Conference on, pages 2146–2153, Sept 2009. 1

[13] T. Kekeç, R. Emonet, E. Fromont, A. Trémeau, C. Wolf, and
F. Saint-Etienne. Contextually constrained deep networks for
scene labeling. In Proceedings of the British Machine Vision
Conference, 2014, 2014. 1, 5

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In

Input image Ground truth Predicted image

Figure 5: Selected mislabeled examples from LSTM networks. The first and second errors are mainly from mislabeling in
the ground-truth (gt): human mistake — the car and human parts are labeled as “road” instead of its label “foreground” in
the ground-truth. The third misclassified regions are from very foggy forest. Furthermore, the reflection of a car wheel on
the water is misclassified as a wheel (label “foreground”). These examples are understandable mistakes. The results show
the difficulties of our dataset and the ambiguity of actual labels. The fourth to sixth examples show the common mistakes
of LSTM networks — the well-segmented regions were mislabeled. First row: road (gt) to grass (predicted); Second row:
water (gt) to road (predicted); Third row: grass (gt) to road (predicted)

F. Pereira, C. Burges, L. Bottou, and K. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012. 1

[15] M. Kumar and D. Koller. Efficiently selecting regions for
scene understanding. In Computer Vision and Pattern Recog-

nition (CVPR), 2010 IEEE Conference on, pages 3217–3224,
June 2010. 1

[16] D. Larlus and F. Jurie. Combining appearance models and
markov random fields for category level object segmentation.
In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1–7, June 2008. 1
[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Com-
put., 1(4):541–551, Dec. 1989. 1

[18] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-
ing via label transfer. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 33(12):2368–2382, Dec 2011.
4

[19] P. Pinheiro and R. Collobert. Recurrent convolutional neu-
ral networks for scene labeling. In T. Jebara and E. P. Xing,
editors, Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 82–90. JMLR Work-
shop and Conference Proceedings, 2014. 1, 5

[20] C. Russell, P. H. S. Torr, and P. Kohli. Associative hierar-
chical crfs for object class image segmentation. In in Proc.
ICCV, 2009. 1

[21] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks. CoRR,
abs/1312.6229, 2013. 1

[22] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.
Convolutional-recursive deep learning for 3d object classifi-
cation. In Advances in Neural Information Processing Sys-
tems, pages 665–673, 2012. 1

[23] R. Socher, C. C. yu Lin, A. Y. Ng, and C. D. Manning. Pars-
ing natural scenes and natural language with recursive neural
networks. In Proceedings of the International Conference on
Machine Learning (ICML-11), 2011. 1

[24] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifica-
tion. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 1701–1708, June 2014. 1

[25] J. Tighe and S. Lazebnik. Superparsing: Scalable non-
parametric image parsing with superpixels. In K. Dani-
ilidis, P. Maragos, and N. Paragios, editors, Computer Vision
ECCV 2010, volume 6315 of Lecture Notes in Computer Sci-
ence, pages 352–365. Springer Berlin Heidelberg, 2010. 1,
5

[26] M. Zeiler and R. Fergus. Visualizing and understanding con-
volutional networks. In D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, editors, Computer Vision ECCV 2014, volume
8689 of Lecture Notes in Computer Science, pages 818–833.
Springer International Publishing, 2014. 2

