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Abstract

Metric learning has proved very successful. However,
human annotations are necessary. In this paper, we propose
an unsupervised method, dubbed Metric Imitation (MI),
where metrics over cheap features (target features, TFs)
are learned by imitating the standard metrics over more
sophisticated, off-the-shelf features (source features, SFs)
by transferring view-independent property manifold struc-
tures. In particular, MI consists of: 1) quantifying the prop-
erties of source metrics as manifold geometry, 2) transfer-
ring the manifold from source domain to target domain, and
3) learning a mapping of TFs so that the manifold is approx-
imated as well as possible in the mapped feature domain.
MI is useful in at least two scenarios where: 1) TFs are
more efficient computationally and in terms of memory than
SFs; and 2) SFs contain privileged information, but are not
available during testing. For the former, MI is evaluated
on image clustering, category-based image retrieval, and
instance-based object retrieval, with three SFs and three
TFs. For the latter, MI is tested on the task of example-based
image super-resolution, where high-resolution patches are
taken as SFs and low-resolution patches as TFs. Exper-
iments show that MI is able to provide good metrics while
avoiding expensive data labeling efforts and that it achieves
state-of-the-art performance for image super-resolution. In
addition, manifold transfer is an interesting direction of
transfer learning.

1. Introduction
The problem of computing good metrics is of great theo-

retical and practical interest in information processing. Ap-
plications include clustering [52,53], image annotation [24],
retrieval [19, 31], classification [2, 19, 51], among others.
It is often addressed by metric learning [1, 24, 28, 42, 51],
with great success in the past years. The drawback of met-
ric learning is that it requires some form of human annota-
tion (e.g. full category labels [2, 19, 37, 51], pairwise con-
straints [1, 28, 31, 44]), which is expensive to acquire.

To address this problem, this paper aims to learn good

metrics for cheap features without using human annota-
tion. We draw inspiration from transfer learning and pro-
pose a novel approach, coined Metric Imitation (MI). MI
takes state-of-the-art, off-the-shelf features as source fea-
tures (SFs) and cheap features as target features (TFs) to
learn good metrics for the TFs by imitating the metrics com-
puted over the SFs. MI is a general framework and can at
least be applied to: 1) efficiently learning good TF metrics
when SFs are more powerful than TFs, but are computa-
tionally more expensive and/or more memory-hungry; and
2) creating good metrics for TFs when SFs contain privi-
leged information but are not available at testing time.

MI comes out of a marriage of advances in metric learn-
ing and transfer learning. On the one hand, metric learning
now is able to learn good metrics over general features for
specific tasks [30], with human supervision. On the other
hand, transfer learning can now transfer knowledge (often
classifiers) learned in one domain to another [41], for which
no further human supervision is necessary. Observing both
developments then begs the question whether metrics can
be computed over one feature (i.e. SFs) to then be trans-
ferred to the domain of another feature (i.e. TFs) and au-
tomatically supervise the metric learning process there. In
this paper, we demonstrate this for several vision tasks. The
main advantages of the method are: 1) it performs in an
unsupervised manner, i.e. without human annotation; 2) it
can be efficient as only TFs are needed during test time; 3)
it can inject domain knowledge carried through SFs to TFs
for metric computation.

The metric is learned in the framework of Mahalanobis
distance learning, i.e. a linear mapping function of TFs is
learned and applied prior to performing the Euclidean dis-
tance metric. Specifically, the method works as follows:
1) it translates the properties of metrics computed over SFs
into manifold geometries; 2) it transfers the manifold to the
domain of the TFs as view-independent properties; and 3) it
learns a mapping function of the TFs so that the transferred
manifold is approximated as well as possible in the trans-
formed space. By doing this, the neighborhood properties
of data computed over the SFs are preserved in the trans-
formed space of TFs, i.e. close neighbors are still close. The
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reason for ensuring this is that neighbors search is crucial in
many vision applications, such as clustering, retrieval, and
classification.

In accordance with our previous remarks, the usabil-
ity of MI is validated in two scenarios of metric learning:
1) compute good metrics for cheap features; and 2) trans-
fer privileged information. For the first scenario, MI was
tested on instance-based object retrieval using the INRIA
Holiday dataset [27] and the UKbench dataset [38], and
on category-based image retrieval and image clustering us-
ing four other datasets: Scene-15 [34], CUReT-61 [11],
Caltech-101 [15], and Event-8 [35]. Three sophisticated,
high-dimensional features were used as the SFs: object-
bank [36], SIFT-llc [50], and the CNN feature [6], and
three general, cheap features used as the TFs: GIST [40],
LBP [39], and PHOG [4]. Extensive experiments show that
MI consistently and significantly outperforms the metrics
computed directly over the same TFs, while getting very
close to the metrics from the computationally more ex-
pensive SFs in some cases. For the second scenario, MI
was evaluated on example-based image super-resolution.
Patches of high-resolution images, which are not avail-
able at testing time, are used as SFs and patches of low-
resolution images as TFs. Experiments show that MI is able
to improve the performance of k-NN-based methods for im-
age super-resolution.

2. Related Work
Our method is generally relevant to Metric Learning,

Feature Embedding, and Transfer Learning.

2.1. Metric Learning

There has been a great deal of research devoted to metric
learning to tune distance functions with human supervision.
Typically, metric learning methods follow as guiding prin-
ciple to learn a mapping that shrinks the distances between
similar objects, while expanding the distance between dis-
similar objects. Since a comprehensive overview is beyond
the scope of this paper, we summarize the most relevant
ones according to the types of annotation used. Readers are
referred to [30] for a survey.

Class label is one of the most popular annotation types
for metric learning. Notable examples include Neigh-
borhood Component Analysis (NCA) [21], Collapsing
Classes (CC) [20] and Large-Margin Nearest Neighbors
(LMNN) [51]. NCA maximizes the expected number of
correctly retrieved points under a stochastic neighbor selec-
tion rule. CC optimizes a similar stochastic neighbor selec-
tion rule while attempting to collapse each class to a single
point. The idea enforces more regularity on the output space
than NCA and leads to a convex optimization problem, but
the assumption that entire classes can be collapsed to dis-
tinct points rarely holds in practice. LMNN [51] relaxes

this strong assumption by defining target neighbors as the k
closest samples in the same class, and maximizes margins
between distances to target neighbors and to other points.

Pairwise Constraints correspond to another popular
type of annotation used in metric learning, in which similar
(dissimilar) pairs of objects are indicated. Earlier work by
Xing et al. [53] formulates the clustering problem as a semi-
definite programming task under similarity and dissimilar-
ity constraints. With similar annotations, Davis et al. [12]
tackle the metric learning problem with an information
theoretic approach, namely by minimizing the Kullback-
Leibler divergence between a learned and a prior matrix,
expressing the pairwise constraints. Guillaumin et al. [25]
offer a probabilistic view on learning distance metrics with
pairwise constraints and solve the problem by MAP. Fol-
lowing the spirit of [12,25], Kostinger et al. [28] present the
KISS framework by formulating the problem as a likelihood
ratio test, which avoids complex optimization problems.

While all these methods perform well, human annota-
tions have to be provided. As a result, methods requiring
weaker or no supervision are desired. Our method offers
this by learning metrics over cheap features by imitating the
standard metrics computed over other, sophisticated off-the-
shelf features, which either contain privileged information
or are more useful for the tasks at hand but too computa-
tionally expensive.

2.2. Embedding

There is a great deal of work about embedding for non-
linear dimensionality reduction, with the philosophy that
many high-dimensional data can be characterized by a low-
dimensional nonlinear manifold. The methods broadly fall
into two categories: those providing a mapping function for
out-of-sample extension and those just offering a visualiza-
tion. We will briefly overview the methods which provide
mapping functions. Embedding methods proceed mainly
in two steps: 1) quantify manifold properties (local geome-
try); and 2) seek a low-dimensional space so that the learned
properties are mostly preserved. A large range of mani-
fold properties have been considered. For instance, Multi-
dimensional Scaling [7] and its extension Isomaps [45] are
designed to capture and preserve pairwise distances be-
tween points. Locally-linear embedding (LLE) [26, 43]
computes the local linearity of the manifold and attempts
to preserve that in the low-dimensional space. Laplacian
Eigenmaps (LapEigen) [3], and Hessian LLE (HLLE) [14].
proceed in a similar manner as LLE does, but the properties
captured are the locality of the manifold, and the local cur-
vature of the manifold. Due to space limitations interested
readers are referred to the comparative overview in [48].

Our approach draws inspiration from and extends the
traditional embedding methods. The method imitates the
manifold properties obtained from SFs by learning a trans-



formation for the TFs, trading off a slight drop in precision
against a significant gain in efficiency. The method also
avoids feature embedding in the high-dimensional space of
SFs, which is time-consuming.

2.3. Transfer Learning and Domain Adaptation

Our method also is akin to transfer learning. Transfer
learning addresses the problem of transferring the knowl-
edge learned in a source domain to a different target do-
main. Successful applications in vision include knowledge
transfer from one data source to another (e.g. videos to
images) [17, 23, 32] and knowledge transfer from known
classes to unseen classes [33]. The difference between such
work and ours is in the form of the knowledge. These meth-
ods transfer definitions of classes (learned classifiers) to a
new domain where few or no training data is available, by
reducing the discrepancy from source domain to target do-
main. Our goal, however, is to transfer the manifold struc-
ture from our source domain to a target domain to imitate
the metrics computed in the source domain, where features
in the source domain are kept intact. This distinction leads
to different algorithms and applications.

3. Metric Imitation
In this section, we will introduce Metric Imitation (MI)

in detail. Like most metric learning or embedding methods,
MI operates in two modes: training and mapping. Training
learns the projection transformation matrix A guided by the
transferred manifold, while ‘mapping’ performs the learned
transformation for better distance metrics during testing.

The generic problem of MI can be summarized as fol-
lows. Given a set of n training images D = {I1, I2, ..., In},
and their corresponding SFs Ds = {x1,x2, ...,xn} ∈
Rm×n and TFs Dc = {y1,y2, ...,yn} ∈ Rq×n (often
q � m), the goal is to find a transformation matrix A ∈
Rq×q that maps the n TFs y’s to n transformed points
D̄c = {ȳ1, ȳ2, ..., ȳn}, where ȳi = ATyi. The guiding
principle of the learning is to approximate the manifold de-
fined by all x’s by the manifold defined over all ȳ’s. Note
that the transformation matrix A can be a low-rank matrix
for the purpose of further dimension reduction. We force it
to be a full-rank matrix, as the dimensionality of y is itself
quite low.

3.1. Training

The training part comes with two components: learn-
ing the intrinsic manifold over the input x’s, and learning
a transformation that has to be applied to the y’s such that
the ‘intrinsic’ manifold is approximated as closely as possi-
ble in the learned space of ȳ’s.

1. Learning the intrinsic manifold over SFs: the aim
of this step is to capture the ‘intrinsic manifold’, i.e.

the manifold underlying the input data. Since visual
data is highly nonlinear, its global manifold layout tends
to be captured better by local properties, such as Lo-
cal Linear Embedding (LLE) [43], Laplacian Eigen-
maps (LapEigen) [3], or Hessian LLE (HLLE) [14].
Compared to methods for global properties, such as
Isomap [45], local ones have several advantages. They
typically yield better results, and are faster when advan-
tage is taken of matrix sparsity. Local methods share
that they first induce a local neighborhood structure over
the input data, and then quantify the corresponding lo-
cal properties over the neighborhood structure. In these
methods, the learned manifold is used for dimensional-
ity reduction [3, 14, 43]. However, we use the manifold
as a guide to learn a transformation of other features,
which are much cheaper to compute and store, so that
the learned manifold is approximated with good preci-
sion in the transformed space. Below come the two steps
of the learning.

(a) Constructing an adjacency graph: by taking each im-
age I in D as a node, the adjacency graph G =
(D, E) can be constructed in the following way: a
directed edge from node i to node j is added, i.e.
eij = 1, if Ij is among theK nearest neighbors of Ii.
The features in source domain x are used to compute
the neighbors under the L2 distance, but any distance
measure can be applied. The global structure of the
nonlinear manifold is captured by the interaction of
these overlapping local structures. The largest con-
nected component is used for further analysis if the
graph is not fully connected.

(b) Quantifying the local properties of the manifold: The
local properties (relations) of the manifold can be
quantified in a variety of ways, including local lin-
earity as in LLE [26,43], local pairwise distance as in
LapEigen [3], local ‘curviness’ as in HLLE [14], etc.
Here, we use two of the most representative ones:
local linearity and local pairwise distance. For the
reason of efficiency, their linear variants are used.

• LLE [43] assumes that the manifold is locally lin-
ear, i.e. a data point xi is characterized by en-
coding xi as a linear combinationWi (reconstruc-
tion weights) of its k nearest neighbors xij . The
weights W are learned by minimizing the follow-
ing reconstruction error:

minimize
W

n∑
i=1

‖xi −
n∑
j=1

Wijxj‖2

s.t.
n∑
j=1

Wij = 1

(1)



where Wij is only allowed to have non-zero value
if eij = 1.

• LapEigen [3] characterizes the local manifold
structure by encoding the pairwise distances be-
tween close neighbors. The neighbors are defined
also over the graph G. The weight matrix W is
defined as a Gaussian kernel function over the dis-
tance of neighboring nodes to reflect the proxim-
ity of data points:

wij =

{
exp−‖xi−xj‖2

2σ2 , if eij = 1

0 otherwise
(2)

where σ modulates the decreasing rate of W with
the distance.

Metric Imitation (MI) learns the structure of the man-
ifold underlying the x’s and describes its local prop-
erties through the weight matrix W . The learned W
is then transferred to the domain of the y’s. There a
linear mapping is learned, i.e. a matrix A ∈ Rq×q to
be applied to the y’s in order to mimic corresponding
manifold characteristics: 1) for LLE, a transforma-
tion is learned for y’s so that all mapped data points
ȳ’s are reconstructed well from their neighbors (de-
fined in graph G) with the learned reconstruction
weight W ; 2) for LapEigen, MI learns a projection
so that all nearby points in the space of the x’s are
still nearby points in the mapped space of the ȳ’s.

2. Approximating the manifold by using the TFs: with
the learned manifold property W from SFs (in the man-
ner of LLE or LapEigen), the aim of this step is to com-
pute a linear projection matrix A for TFs so that the
manifold properties learned over the SFs are preserved
as much as possible in the transformed space. Specifi-
cally, MI minimizes the following cost function:

minimize
ȳ

n∑
i=1

‖ȳi −
n∑
j=1

Wijȳj‖2. (3)

The cost function is very similar to that in Eq.1, but here
the weight matrix W is fixed and the optimization is
performed over the ȳ. For the sake of efficiency, ȳ is
constrained to be a transformed version of y by a linear
transformation: ȳ = ATy. According to the induction
of [26], solving Eq.3 can be reduced to solving the fol-
lowing generalized eigenvector problem:

YMY Ta = λY Y Ta, (4)

where

Y = (y1, ...,yn),

M = (I −W )T (I −W ),

I = diag(1, ..., 1).

Solving Eq.4 leads to q eigenvectors a1, ...,aq , with
eigenvalues ordered from the smallest to the largest.
Thus, the embedding is performed as:

y→ ȳ
.
= ATy, (5)

where the projection matrix A = (a1,a1, ...,aq).

3.2. Mapping

During the test phase, MI only computes the TFs y’s, for
the test images, and then computes the distance metric over
them with the learned projection matrix A:

d(yi,yj) = ‖ȳi − ȳj‖2 = ‖ATyi −ATyj‖2, (6)

which is then used for the task at hand. Computing the Eu-
clidean distance in this transformed space equals to com-
puting the following Mahalanobis distance function in the
original feature space:

d(yi,yj) =(yi − yj)
TH(yi − yj)

=(yi − yj)
TATA(yi − yj). (7)

The form of Eq.6 is preferred to that of Eq.7, because many
approximate, fast nearest neighbor techniques have been de-
veloped for the euclidean metric. Since the space is learned
to preserve the neighborhood properties of the ‘intrinsic’
manifold, superior performance over common metrics on
original TFs is expected. Although our mapping and the
embedding for dimensionality reduction are similar techni-
cally, they serve totally different purposes. The advantages
of MI over the embedding for dimensionality reduction of
SFs are twofold: 1) computationally more efficient, as SFs
are not needed by MI during testing, and 2) more robust,
as fewer parameters are needed to learn the projection, as
q � m. The advantage of MI over the embedding for TFs
is that the ‘privileged’ information in the source domain is
injected into the target domain at little extra cost.

4. Experiments
We evaluated Metric Imitation (MI) in the two afore-

mentioned scenarios: 1) learning of good metrics when the
source features (SFs) are more powerful but computation-
ally more expensive than the target features (TFs); 2) when
SFs contain privileged information but are not available dur-
ing test time. For the first, MI was evaluated on image
clustering, category-based image retrieval, and instance-
based object retrieval. For the second, MI is evaluated
on example-based super-resolution. For all experiments of
these four tasks, MI uses identical parameter settings: the
size of the neighborhood K was set to 40 and σ in Eq.2
was set to the mean of the L2 distance between all feature
vectors ‖xi − xj‖2, where i, j ∈ {1, ..., n}. These values



have been set empirically, but our experiments show that
MI is not very sensitive to these choices. If needed, a cross-
validation on hold-out sets can be considered.

4.1. Image Clustering

As the amount of image data is on a rampant increase,
unsupervised methods to group objects into semantically
relevant clusters are in great demand. Such clustering is
one of the core problems in modern computer vision. In
this section, we apply MI to image clustering.

Datasets: The following four popular datasets are used:
Scene-15 [34], CUReT-61 [11], Caltech-101 [15], and
Event-8 [35]. They contain 4585 images of 15 classes of
general scenes, 5612 images of 61 texture classes, 8677 im-
ages of 101 object classes, and 1574 images of 8 classes of
sports events, respectively.

Features: In order to sufficiently sample the space
of possible features, three different SFs and three differ-
ent TFs are chosen. The SFs are: SIFT-llc [50], object-
bank(OB) [36], and the CNN feature [6]. The chosen TFs
are: GIST [40], LBP [39], and PHOG [4]. They were cho-
sen because they are popular in the community, come with
available code, and are based on different underlying tech-
niques. Another more important reason is that the three SFs
are representatives of the state-of-the-art features but com-
putationally expensive (relatively), and the three TFs are
low-dimensional and computationally very cheap.

SIFT-llc is a representative image representation based
on local descriptors, which utilizes the locality constraints
to encode local descriptors and integrates the results by
max-pooling. The CNN feature [6] is obtained by vectoriz-
ing the convolutional results of the deep convolutional neu-
ral network [29], which is trained on the ImageNet dataset.
OB performs object detectors as filters and collects the re-
sponse of these semantic filters over an image. The features
were computed as follows. SIFT-llc1 and OB2 were com-
puted with their default parameters in the authors’ imple-
mentations. For the CNN feature, the MatConvNet pack-
age [49] was used with a pre-trained CNN model. The con-
volutional results at layer 16 were stacked as the CNN fea-
ture vector, with dimensionality 4096. GIST was computed
with only one cell. For LBP, the uniform one was used with
PCA for further dimensionality reduction. For PHOG, the
2-layer pyramid was used. The dimensionalities of the six
features are listed in Table 1, from which it is evident that
the TFs are much lighter and efficient to compute and han-
dle, in line with the aims of MI.

Evaluation: We follow [8, 10, 47] and used Purity (big-
ger=better) for evaluation. It measures how pure the discov-
ered clusters are according to the ground truth class labels.
Spectral Clustering was used on top of MI for the cluster-

1http://www.ifp.illinois.edu/˜jyang29/LLC.htm
2http://vision.stanford.edu/projects/objectbank

Table 1. The dimensionality of the features.
TFs SFs

GIST PHOG LBP CNN SIFT-llc OB
20 40 59 4096 21504 44604

ing. We compared to Spectral Clustering with the SFs and
TFs as inputs. The K-means algorithm was also tried, but
it generally produces similar or poorer results than Spec-
tral Clustering. As suggested in [8], we use the χ2 distance
for LBP and PHOG, and the Euclidean distance for GIST.
Euclidean distance is used for all the SFs.

Results: 50% of the images (without labels) were used
for training and the rest used for testing. Table 2 lists the
results of all methods on the four datasets over 5 random
training-test splits. Due to space limitations only one type
of TFs, LBP, is listed here (same for the following experi-
ments). GIST and PHOG generally yield similar trends than
LBP, and their outcomes are reported in the supplementary
material. It is expected to find that the SFs perform signifi-
cantly better than the TFs on image clustering. This allows
MI to learn ‘useful’ knowledge from the SFs. From the ta-
ble, it is evident that MI is able to learn a better metric for
the TFs than the common, generic ones (e.g. χ2 and L2).
For instance, on Scene-15 MI improves the purity of LBP
from 0.36 to 0.48 if the CNN feature is used as the SFs and
LapEigen is chosen. On Event-8, MI improves the purity of
LBP from 0.38 to 0.48 when OB is used as the SFs and LLE
is used. Similar trends can be observed across all datasets,
all SFs, and the two ways of encoding manifold properties.
This shows that MI efficiently provides good metrics for im-
age clustering in general, and that the framework is robust
to the specific choices of its components.

Across classes: In order to check the generality of MI,
we also tested MI in a wilder scenario, where training and
test images are from totally different classes. Half of the
classes (floored to the closest integer) were used for train-
ing and the rest of classes used for testing, i.e. 7 classes
used for training for Scene-15, 30 for CUReT-61, 50 for
Caltech-101, and 4 for Event-8. All methods run over 5
random training-testing splits and the average results are
reported in Table 3. The table shows that even when the
training images and test images are from different distribu-
tions, MI is still able to improve the performance over the
standard metrics of TFs. This suggests that MI is also able
to work in a fully unsupervised manner. This property is
important, especially for online applications where test data
is not available beforehand.

Baselines and competing methods: We compared MI
also to two baselines and one competing method. The first
baseline is to reduce the dimensionality of SFs via PCA, and
then regress the reduced SFs by TFs. The method does not
work as well as MI, only producing an improvement of 20%
to 40% of that of MI, while being much slower as the vari-

http://www.ifp.illinois.edu/~jyang29/LLC.htm
http://vision.stanford.edu/projects/objectbank


Table 2. Purity of clustering by Metric Imitation (MI), where 50% of the images are used for training and the rest for testing.
TFs MI SFs MI SFs MI SFs
LBP MI LLE MI Lap SIFT-llc MI LLE MI Lap CNN MI LLE MI Lap OB

Scene-15 0.36 0.40 0.46 0.49 0.47 0.48 0.69 0.42 0.48 0.54
CUReT-61 0.33 0.44 0.46 0.39 0.33 0.41 0.60 0.31 0.37 0.44

Caltech-101 0.32 0.34 0.34 0.51 0.37 0.36 0.68 0.37 0.35 0.52
Event-8 0.39 0.46 0.46 0.57 0.47 0.47 0.82 0.48 0.48 0.46

Table 3. Purity of clustering by Metric Imitation (MI) across classes, where half of the classes are used for training and others for testing.
TFs MI SFs MI SFs MI SFs
LBP MI LLE MI Lap SIFT-llc MI LLE MI Lap CNN MI LLE MI Lap OB

Scene-15 0.63 0.67 0.70 0.85 0.65 0.66 0.90 0.61 0.59 0.74
CUReT-61 0.62 0.62 0.64 0.65 0.66 0.69 0.77 0.51 0.58 0.68

Caltech-101 0.57 0.62 0.60 0.73 0.59 0.57 0.77 0.64 0.63 0.70
Event8 0.70 0.72 0.74 0.80 0.70 0.72 0.89 0.75 0.73 0.80

Table 4. The computational time (in seconds) of a full matrix of pairwise distance with different features, where MI(X) denotes that Metric
Imitation for feature X.

GIST PHOG LBP MI(GIST) MI(PHOG) MI(LBP) CNN SIFT-llc OB
Scene-15 0.41 0.47 0.53 0.41 0.48 0.53 21.92 104.83 215.56
CURet-61 0.61 0.71 0.78 0.62 0.71 0.84 32.68 161.29 325.97

Caltech-101 1.51 1.73 1.96 1.51 1.75 2.01 78.67 388.01 796.86
Event-8 0.05 0.06 0.08 0.05 0.06 0.08 2.76 13.56 26.69

Table 5. MAP of category-based image retrieval by MI, with 50% images used for training and the rest for testing, and recall set to 0.1.
TFs MI SFs MI SFs MI SFs
LBP MI LLE MI Lap SIFT-llc MI LLE MI Lap CNN MI LLE MI Lap OB

Scene-15 0.50 0.54 0.55 0.60 0.58 0.58 0.72 0.56 0.57 0.65
CUReT-61 0.83 0.90 0.87 0.90 0.90 0.90 0.95 0.86 0.84 0.90

Caltech-101 0.35 0.39 0.38 0.57 0.41 0.41 0.79 0.40 0.40 0.60
Event-8 0.44 0.53 0.52 0.70 0.53 0.55 0.89 0.51 0.50 0.60

Table 6. MAP of category-based image retrieval by MI with the concatenation of LBP, GIST and PHOG (LGP) used as the TFs. 50%
images are used for training and the rest for testing. Recall is set to 0.1.

TFs MI SFs MI SFs MI SFs
LGP MI LLE MI Lap SIFT-llc MI LLE MI Lap CNN MI LLE MI Lap OB

Scene-15 0.52 0.60 0.61 0.60 0.64 0.64 0.72 0.62 0.63 0.65
CUReT-61 0.84 0.95 0.93 0.90 0.94 0.96 0.95 0.92 0.90 0.91

Caltech-101 0.42 0.48 0.46 0.57 0.51 0.51 0.79 0.48 0.48 0.59
Event-8 0.52 0.63 0.63 0.70 0.65 0.64 0.88 0.60 0.56 0.58

Table 7. MAP of image retrieval by MI on the Holidays and UKbench datasets, when the recall is set to 1.0.
TFs MI SFs MI SFs MI SFs
LBP MI LLE MI Lap SIFT-llc MI LLE MI Lap CNN MI LLE MI Lap OB

Holiday 0.38 0.50 0.48 0.66 0.50 0.49 0.72 0.48 0.46 0.48
Ukbench 0.33 0.39 0.38 0.63 0.44 0.39 0.86 0.36 0.38 0.58

ance matrix of the high-dimensional SFs is needed and the
regression itself is also computationally heavy. Also, this
baseline is to ‘reconstruct’ the SFs, which is a harder prob-
lem than what MI aims to solve; MI learns (imitates) the
‘intrinsic’ neighborhood behaviors, which matter most for
many vision applications. The second baseline is to sam-
ple a collection of constraints from the distance matrix of
SFs, and to use them, along with TFs, as the input for stan-
dard metric learning (ML) methods. We tried three well-
known ML methods: LMNN [51], KISS [28], and ML-

Rank [37]. None of them performed well, mainly because
these ML methods assume the constraints to be noise-free
and perform ‘strong’ supervised learning with them. The
sampled constraints, however, are noisy. MI translates the
‘oracle’ metric to manifold structures in a more robust way
by LLE or LapEigen, which makes it more suitable to ex-
ploit the weak supervisory information. We also compared
our method to [22], where CCA is used to improve one view
of the data by using another view of data which contains
privileged information. We found that the results are sim-



ilar to that of our first baseline as both of them mimic the
global behavior of SFs. Also, CCA is slower than MI for
our tasks, because the correlation matrix of the two features
needs to be learned, which has a large number of values.

Time complexity: The computation time for a full pair-
wise distance metric for the four datasets is shown in Table
4, where MI is compared to the Euclidean distance metric
over SFs and TFs directly. The time was measured on a
desktop PC, using a single Core i5 with 2.8 GHz. From the
table, it is clear that computing metrics is much faster over
TFs than over SFs, as they are of much lower dimensions,
as shown in Table 1. It can also be observed from the ta-
ble that MI needs only marginally more computation time
than the original TFs, while improving the quality of met-
rics for the TFs significantly. This proves the usefulness of
MI, especially for scenarios with limited computing power
and limited memory budget.

4.2. Category-based image retrieval

Another typical test-bed for metric learning is retrieval.
In this section, we apply MI to the task of category-based
image retrieval, where the goal is to retrieve images of the
same category as that of the query image. The same datasets
and features are used as for image clustering in Sec.4.1.

Evaluation: Again, 50% of images were used for train-
ing (without using labels) and another 50% for testing. The
labels of test images were used for evaluation, where each
single image was taken as the query once and the mean av-
erage precision (MAP) was computed. The recall was set to
0.1 as precision of the top images matters most.

Results: Table 5 shows all the results of the four
datasets. It can be observed that MI serves its purpose well;
it improves the precision of image retrieval considerably
over the common metrics of the low-dimensional TFs. For
instance, on CUReT-61 the precision is improved from 0.83
to 0.90, and on Caltech-101 the precision is improved from
0.35 to 0.41. These results show that MI is very helpful for
retrieval, because 1) labeled training data is often not avail-
able in retrieval as the datasets are often unorganized; 2) an
efficient solution is desirable as retrieval is often performed
as an interactive task.

Concatenation of all TFs: We also tested the perfor-
mance of MI when the concatenation of LBP, GIST, and
PHOG features is used as TFs. Table 6 shows the results. As
can be seen from Table 6 and Table 5 the concatenation does
improve the performance of MI over that of using single
TFs. The most interesting observation is that MI gets very
close to or is on par with the expensive, high-dimensional
SFs. This implies that the cheap, low-dimensional features
contain a lot of useful information as long as the right trans-
formation is discovered and ensures that they are ‘read’ in a
more useful way. MI is designed exactly for this purpose.

4.3. Instance-based Object Retrieval

MI was also tested for instance-based object retrieval,
where the goal is, given an object instance, to retrieve all in-
stances of the same object class. The latter can be captured
from different views, from different distances, etc. We used
the same features as for image clustering in Sec.4.1.

Datasets: Two of the most popular datasets for this task
were used: the INRIA Holidays dataset [27] and the UK-
bench dataset [38]. Holidays provides 500 image groups
with 1, 491 images in total and for a very large variety of
scene types. Each group consists of photos of the same
scene/object taken under different conditions: rotations,
viewpoint and illumination changes. UKbench contains
10, 200 images of 2, 550 objects, 4 images for each object
from different views and distances.

Results: Half of the object classes (floored to closest in-
teger) were used for training (to learn the mapping function)
and the rest for testing. MAP was again used as the crite-
rion. The results for LBP are listed in Table 7. It is interest-
ing to see that even when trained on different datasets with-
out using any labels, MI is able to learn good metrics for
object retrieval. The learned metrics are significantly better
than the standard ones over the TFs. For instance, the MAP
of LBP is improved from 0.38 to 0.50 on Holidays and from
0.33 to 0.44 on the UKbench dataset, when the CNN feature
is used as the SFs. Yet, there is still room for improvement
when compared against the performance of the state-of-the-
art object retrieval systems (e.g. [42]). There are two main
reasons: 1) MI is trained in a fully unsupervised manner:
trained on different objects and without using any human
annotations; 2) MI uses cheap, low-dimensional features for
the sake of efficiency (the difference to [42] in terms of fea-
ture dimensionality is as large as 3 orders of magnitude).
The goal of MI is different, i.e. providing an efficient solu-
tion and avoiding any human annotations.

4.4. Image Super-resolution

The goal of image super-resolution is to generate high-
resolution (HR) images from low-resolution (LR) ones.
Example-based learning methods have proven successful in
learning from a collection of patch pairs: LR patches and
corresponding HR patches [5, 9, 13, 46]. In this section, we
apply MI to example-based image super-resolution. In or-
der to better show the advantage of MI, we follow the ap-
proaches which are directly based on k-NN search [5,9,18].
The very recent method JOR [9] was employed for compar-
ison. JOR jointly learns a collection of regressors from LR
patches to HR ones, which collectively yield the smallest
super-resolving error for all training data, and selects the
most appropriate regressor for each test patch via a voting
scheme by its k nearest neighbors from the training sam-
ples. MI replaces the standard L2 metric in the k-NN search
by the learned metric, and keeps the rest of the system in-



Bicubic JOR JOR + MI
Figure 1. Examples with an upscaling factor ×4. Best seen on the screen. Images are obtained from the Internet.

tact. By the replacement, the method (JOR + MI) is now
trying (via imitation) to retrieve neighbors defined over HR
patches: searching for LR patches whose corresponding HR
patches are similar to the desired HR patch of the test LR
patch. This exactly tallies with the goal of example-based
image super-resolution.

Since the number of training samples for image super-
resolution is much larger (often millions) than that for other
vision tasks considered in this paper, solving the eigenvec-
tor problem of MI directly is intractable. We employed the
eigenfunction technique [16] for an approximate solution.
We tested MI with 0.5 million training patches. The method
was evaluated on the two standard datasets Set5 and Set14,
and MI improves the PSNR from 32.30 to 32.53 on Set5,
and from 28.90 to 29.10 on Set14 for an upscaling factor
of ×3. For a factor ×4, MI improves JOR from 29.94 to
30.15 on Set5 and from 27.13 to 27.25. The method JOR
+ MI trained with 0.5 million patches is on par with the
JOR trained with 5 million patches [9], but is considerably
faster both at training and testing. The method also out-
performs the very recent method SRCNN [13] using deep
convolutional network, in terms of both performance and
speed (in terms of speed at testing, SRCNN is on par with
JOR trained from 5 million patches [9]). We also trained the
method with 5 million patches, but observed no further im-
provement. A possible reason is that once samples densely
cover the space, standard metrics are sufficient to find good
neighbors. We leave the investment to learn more effec-
tively from very large datasets as our future work. How-
ever, we believe that the case with 0.5 million patches suf-
fices to prove the concept: MI yields an efficient solution
to image super-resolution without sacrificing performance.
Two image examples are shown in Fig. 1. The examples
and the numbers show that MI improves the results of JOR

by transferring domain knowledge from the space of HR
patches into that of LR patches.

5. Conclusion

The paper proposed the novel Metric Imitation method
to learn good metrics for features in one domain (target
features, TFs) by imitating the metrics computed over fea-
tures of another domain (source features, SFs), and this even
without supervision. MI translates the neighborhood behav-
ior of SFs into manifold geometry, and transfers it to the do-
main of TFs as a guide for metric learning. MI then seeks
a linear mapping function of the TFs so that the transferred
manifold can be approximated well, which leads to an imi-
tation of the metrics computed over the SFs. The method is
easy to understand and easy to implement. The usefulness
of MI has been corroborated by two scenarios with four
popular vision tasks. Extensive experiments have shown
that MI is able to learn significantly better metrics over
cheap TFs, while only slightly increasing the time complex-
ity during testing. We hope the idea of metric imitation and
manifold transfer will also prove useful for metric learn-
ing and transfer learning. The code is available at www.
vision.ee.ethz.ch/˜daid/MetricImitation.
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